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Effects of system nonuniformities and kinetic dispersiveness on the spontaneous

excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are

investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations

describing parametric decay of DW into GAM and DW lower sideband are derived,

and then solved both analytically and numerically to investigate the effects on the

parametric decay process due to system nonuniformities; such as nonuniform dia-

magnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness.

It is found that, the parametric decay process is a convective instability for typical

tokamak parameters when finite group velocities of DW and GAM associated with

kinetic dispersiveness and finite radial envelope are taken into account. When, how-

ever, nonuniformity of diamagnetic frequency is taken into account, the parametric

decay process becomes, time asymptotically, a quasi-exponentially growing abso-

lute instability. This result is possibly that in the present work of most significant

practical impact for DW induced turbulence transport.

I. INTRODUCTION

Drift wave (DW) type turbulence [1] induced by expansion free energy due to plasma

nonuniformities is generally considered to be the primary cause of anomalous transport

in tokamak plasmas; and the resultant transport fluxes, typically, scale linearly with the

turbulence intensity [2]. It has been demonstrated, by both analytical theory and large

scale simulations, that the n = 0 zonal flow (ZF), including both the low-frequency ZF

(LFZF) [3–5] and its finite frequency counterpart, the geodesic acoustic mode (GAM) [6, 7],
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can be spontaneously driven by DW turbulence and plays important role in its regulation

by scattering it into stable short radial wavelength fluctuations [8, 9]. Thus, excitation of

ZF, which provides a possible mechanism for DW turbulence self-regulation, is considered

to be crucial in triggering L-H transition and has received major attention in fusion research

in the past decade.

GAM is predominantly an electrostatic mode unique to toroidal plasmas, characterized

by an n = 0/m = 0 scalar potential, and an n = 0/m = 1 up-down antisymmetric density

perturbation. Here, n/m are the toroidal/poloidal mode numbers. Similar to LFZF, strong

coherent interactions between GAM and DW turbulences are also identified experimentally.

Observations generally show an inverse relation between GAM intensity and background

turbulence level. Resonant coherent parametric decay process [10, 11] is proposed as the

mechanism for GAM excitation by DW turbulence, during which DW turbulence decay into

a short radial wavelength lower sideband and a GAM with the constraint of frequency and

wavenumber matching conditions [7, 9].

The excitation of GAM by DW turbulence has been investigated using the paradigm of

parametric decay instability in several earlier works [12–19]. However, in these works, the

excitation of GAM is investigated either ignoring the plasma nonuniformities or the contri-

bution of kinetic dispersiveness. As we will show in this work, plasma nonuniformities, such

as the nonuniformity of diamagnetic frequency ω∗(r) and/or GAM continuum, and the finite

linear group velocities of GAM and DW sideband, due to the kinetic dispersiveness, play

important roles in the excitation of GAM and qualitatively change the features of paramet-

ric decay instability. Thus, the effects of kinetic dispersiveness and plasma nonuniformities

must be properly taken into account to correctly assess the nonlinear excitation of GAM

and the size scaling of transport in a realistic experiment [20].

There are three different spatial scales in GAM-DW nonlinear interactions; i.e., the scale

length of the DW radial envelope LP , the scale length of diamagnetic frequency nonunifor-

mity L∗, and the scale length of GAM continuum LG. Here, |LP | ∼
√
ρiL∗ ≪ |L∗|∼|LG| ∼ a,

with a being the minor radius of the tokamak. Due to the scale separation, effects of nonuni-

form ω∗(r) and ωG(r) can be ignored when one considers implications of finite group velocities

and finite pump scale length, LP , on GAM excitation. Meanwhile, we note that earlier local

theories are, thus, valid only when one considers radial scale lengths shorter than LP . In

this paper, we will investigate the effects of finite LP , L∗ and LG on GAM excitation.



3

The rest of the paper is organized as follows. Section II presents the physical model and

derivation of the governing equation using a nonlinear gyrokinetic approach. In Sec. III,

effects of finite kinetic dispersiveness and finite pump wave scale length on GAM excitation

are investigated. We show that, when finite group velocities associated with kinetic dis-

persiveness are considered, GAM excitation is a convective instability for typical tokamak

parameters; which is, thus, of less interest for confinement research. Section IV considers the

consequences of diamagnetic frequency and GAM continuum nonuniformities on the para-

metric instability. Section IVA, in particular, considers effects of nonuniform diamagnetic

frequency on GAM excitation, while assuming uniform pump and uniform GAM frequency.

On a longer time scale, the excitation of GAM becomes a quasi-exponentially growing ab-

solute instability due to the trapping of DW sideband and formation of eigenmode between

turning points induced by nonuniform diamagnetic frequency. Finally, in Sec. IVB, the

parametric instability is considered taking all three nonuniformities self-consistently. Sum-

mary and discussions on possible extensions of this work are given in Sec. V

II. THE PHYSICAL MODEL

The derivation of the coupled nonlinear DW-GAM equations follow closely Refs. 7, 9

and 21. Here, we assume that the DW and GAM are both electrostatic perturbations.

Furthermore, we assume sufficient proximity to the marginal stability with |γL/ω| ≪ 1, such

that GAM will only modify the radial envelope of DWs, while the parallel mode structure of

DW is not affected. The nonlinear dynamic evolution of the coupled DW and GAM system

is described in terms of a three-wave parametric decay instability; i.e., each fluctuation is

taken to be coherent and composed of a single n 6= 0 DW, δφd, and a GAM δφG. The DW is

taken to consist of a pump wave (ωP ,kP ) and a lower sideband (ωS,kS) due to the nonlinear

interactions of the pump with GAM (ωG, kG). Thus,

δφd = δφP + δφS,

δφP = AP e
−inξ−iωP t

∑

m

eimθΦ0(nq −m) + c.c.,

δφS = ASe
inξ−i(ωG−ωP )t

∑

m

e−imθΦ∗
0(nq −m) + c.c.,

δφG = AGe
−iωGt + c.c.;
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and the eikonal Ansatz is assumed for the radial envelopes; i.e.,

AP = ei
∫

kP dr,

AS = e−i
∫

kP dr
(

ei
∫

kGdr + c.c.
)

,

AG = ei
∫

kGdr + c.c..

The subscripts d, P, S and G represent, respectively, drift wave, pump, sideband, and GAM.

φ0(nq −m) is the short radial scale structure associated with finite k‖ and magnetic shear

Φ0(nq −m) ≡ 1√
2π

∫ ∞

−∞
e−i(nq−m)ηψo(η)dη,

with η being the extended coordinate along the magnetic filed B. Ψ0(η), thus, corresponds to

parallel mode structure, and the normalization
∫∞
−∞ |ψ0(η)|2 dη = 1 is assumed. The other

notations are standard. We note here that, for simplicity, the m 6= 0 poloidal sidebands

of GAM scalar potential are ignored. Extension of the following analysis to include δφG

poloidal sidebands associated with finite Te/Ti is tedious but straightforward.

The nonlinear response can be systematically derived from the nonlinear gyrokinetic

equation [22]

(∂t + ωtr∂θ + iωd)k δHk = − qs
m
Jk

(

∂tδφ∂E +
∇Xδφ× b̂

Ωc
· ∇X

)

F0

+
qs
m

∑

k=k′+k′′

Jk′
∇Xδφk′ × b̂

Ωc

· ∇XδHk′′; (1)

where δH is the nonadiabatic part of the fluctuating particle distribution function, and

δF =
qs
m
δφ

∂

∂E
F0 +

∑

k⊥

exp(−ik⊥ · v × b/Ωc)δHk.

Note that here, for notation brevity, the subscript s for particle species (e and i for electrons

and ions, respectively) is kept only in the particle charge qs. Furthermore, a large aspect-ratio

axisymmetric tokamak with equilibrium magnetic field given by B0 = B0(eξ/(1 + ǫ cos θ) +

(ǫ/q)eθ) is considered in this work. Here, ξ and θ are, respectively, toroidal and poloidal

angles of the torus, ǫ = r/R0 ≪ 1 is the inverse aspect ratio, r and R0 are the minor and

major radii, and (r, θ, ξ) are straight-field-line toroidal flux coordinates. Meanwhile, ωtr =

v‖/qR0 is the transit frequency, ωd is the magnetic drift frequency, k⊥ is the perpendicular

wave vector, ρL = mcv⊥/qsB is the Larmor radius, Ω = qsB/mc is the gyrofrequency, q is
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the tokamak safety factor, Jk = J0(k⊥ρL) is the Bessel function accounting for finite Larmor

radius (FLR) effects, and E = (v2‖ + v2⊥)/2.

The nonlinear equations for the GAM-DW system can be derived in terms of the quasineu-

trality conditions
n0e

2

Ti

(

1 +
Ti
Te

)

δφk = 〈eJkδHi〉k − 〈eδHe〉k; (2)

where, subscript “k” stands for P , S or G and angular brackets indicate velocity space

integration. By separating the linear from nonlinear response as δH ≡ δHL + δHNL, and

applying the ω ≫ ωtr,i, ωd,i assumptions for the nonlinear ion responses, we obtain, after

straightforward algebra,

n0e
2

Ti

(

1 +
Ti
Te

)

δφk − 〈eJkδHL
i 〉k + 〈eδHL

e 〉

= − i

ωk

〈

e
c

B

∑

k=k′+k′′

b · (k′′ × k′)δφk′δHe,k′′

〉

k

− 〈eδHNL
e 〉k

− i

ωk

〈

e
c

B

∑

k=k′+k′′

b · (k′′
⊥ × k′

⊥) (JkJk′ − Jk′′) δφk′δHi,k′′

〉

k

. (3)

For the n 6= 0 DW, the electron response is adiabatic due to the fast electron motion

along the magnetic field line shielding parallel electric field; thus, δHe,d = 0. While for

GAM, with n = m = 0, the nonadiabatic electron response can be solved from electron

gyrokinetic equation as in [23], and we obtain

δHL
e,G = − e

Te
δφGF0,

and

δHNL
e,G = 0.

For nonlinear DW equation, with typically k⊥ρi ≪ 1, the first term on the right hand side

of equation (3) dominates; since δHe,d = 0 and δHe,G 6= 0 such that there is no commutative

cancelation. The last term on the right hand side of equation (3) is formally O(k2rρ
2
i ) smaller

than the first term. The nonlinear DW equation, then reduces to

n0e
2

Ti

(

1 +
Ti
Te

)

δφk − 〈eJkδHL
i 〉k = e

c

B

1

ωk
k′θδφk′

∂〈δHe,G〉
∂r

, (4)

with the constraint k = k′ + kG.
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For GAM, the first two terms on the right hand side of equation (3) are both zero. The

nonlinear GAM equation can be written as

n0e
2

Ti

(

1 +
Ti
Te

)

δφG −
〈

eJGδH
L
i,G

〉

+
〈

eδHL
e,G

〉

= − i

ωG

〈

e
c

B
b · k′′ × k′ (Jk′ − Jk′′) (δφk′δHk′′ + δφk′δHk′′)

〉

k

− i

ωG

〈

e
c

B
b · k′′ × k′ (Jk − 1) (Jk′δφk′δHk′′ − Jk′′δφk′′δHk′)

〉

k
. (5)

For DW turbulence, |ω| ≃ |ω∗| ≫ |ωtr|, |ωd|, so that the second term on the right hand

side of equation (5) is O(ω2
tr/ω

2) or O(ω2
d/ω

2) smaller than the first term. The dominant

nonlinear term, the first term, is of the form of the well-known Reynolds stress.

The nonlinear coupled DW-GAM equations can be obtained from equations (4) and

(5). Here we assume that the amplitudes of the two daughter waves, i.e., GAM and DW

lower sideband, are much smaller than the pump wave; and derive the nonlinear equations

describing GAM and DW sideband excitation. The DW sideband equation can be written

as

DS∂tAS = − c

B
kθ,Pkr,G

Ti
Te
A∗

PAG, (6)

with DS ≡ D0(ωS,kS, r), and D0 is the linear dispersion function of DW formally defined

by

D0 ≡ 1 +
Ti
Te

−
∫ ∞

−∞
ψ0(η)

〈

eJ0(γ)δH
L
i

〉

dη/

(

n0e
2

Ti
AP

)

.

The nonlinear GAM equation, on the other hand, can be written as

ǫG∂tδφG = −αi
c

2B
kθ,Pk

3
r,Gρ

2
i δφSδφP , (7)

with the linear dispersion function of GAM, ǫG, formally given by [7]

ǫG ≡
[

n0e
2

Ti

(

1 +
Ti
Te

)

δφG −
〈

eJGδH
L
i,G

〉

+
〈

eδHL
e,G

〉

]/(

n0e
2

Ti
δφG

)

,

and the coefficient αi = 1 + δP⊥/(en0δφP ) in the |k⊥ρi| < 1 limit [9].

Since the DW sideband has a frequency and wavenumber very close to the pump wave

δφP ∗ due to the frequency separations |ωG| ≪ |ωP |, DS(ωS,kS, r) can be expanded about

ωP∗ and kP∗ to yield

DS(ωS,kS, r) = D0r(ωP ∗, kP ∗ , r0) +
∂D0r

∂ωP ∗

(i∂t + ωG) +
∂D0r

∂kS

∣

∣

∣

∣

∣

0

kS +
1

2

∂2D0r

∂k2S

∣

∣

∣

∣

∣

0

k2G

+
∂D0r

∂r0
(r − r0) +

1

2

∂2D0r

∂r20
(r − r0)

2 + iDI + · · · .
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Noting that drift waves have, typically, quadratic dispersiveness, D0 may then be modeled

as

D0 = ω − ω∗ exp(−(r − r0)
2/L2

∗) + Cdω∗ρ
2
i k

2
i + iDI ,

assuming a Gaussian profile for ω∗. We then have

DS = i

(

∂t + γS + iωP − iω∗

(

1− (r − r0)
2

L2
∗

)

− iCdω∗ρ
2
i

∂2

∂r2

)

, (8)

where γS represents collisionless damping for DW sideband, and the term proportional to Cd

comes from finite radial envelope variation due to the coupling between neighboring poloidal

harmonics.

Defining E = ∂rδφG/α, with α = i(αiωPTe/Ti)
1/2, we obtain the following coupled non-

linear equations [24]:

(

∂t + γS + iωP − iω∗

(

1− (r − r0)
2

L2
∗

)

− iCdω∗ρ
2
i

∂2

∂r2

)

AS = Γ∗
0E , (9)

(

∂t(∂t + 2γG) + ω2
G(r)− CGω

2
G(r0)ρ

2
i

∂2

∂r2

)

E = −Γ0∂t∂
2
rAS, (10)

in which, Γ0 ≡ (αiTi/ωPTe)
1/2ckθ,P δφP/B is the normalized pump amplitude. These two

equations, equations (9) and (10), describe the parametric decay of the pump DW into a

DW lower sideband and a GAM. In this work, we will study the linear parametric excitation

of GAM by DW turbulence; emphasizing the effects of nonuniformities due to, e.g., pump

finite spatial extent and nonuniform DW frequency, while neglecting the feedback of GAM

and DW sideband on DW pump. The feedback of GAM and DW sideband to DW pump

is important when their amplitudes become finite. Self-consistent nonlinear investigation of

GAM and DW sideband feedbacks on DW pump will be carried out in a future publication.

III. UNIFORM PLASMA: CONVECTIVE GAM AMPLIFICATION

First, we investigate effects of finite group velocities due to kinetic dispersiveness on the

parametric excitation of GAM. For simplicity of discussion, only the finite spatial extent of

the DW pump, LP , is taken into account here; while assuming L∗ = LG = ∞. Note that,

LP is the radial scale length of the linear DW eigenmode, which is determined by L∗ and

finite dispersiveness associated with FLR; and one typically has LP ∝
√
L∗ρi ≪ L∗. So
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the simplification of neglecting the finite pump radial extent is valid when one considers the

time scale shorter than LP/v
NL
G , with vNL

G being the nonlinear group velocity [16, 25], which

will be determined later.

If two temporal- and spatial-scale expansion of AS and E is applied, such that ∂t =

−iω + ∂τ and ∂r = −ikr + ∂z, with |∂τ | ≪ |ω| and |∂z| ≪ |kr|, the coupled DW sideband

and GAM nonlinear equations can be reduced to

(∂τ + γS + VS∂z)AS = Γ∗
0(z)E , (11)

(∂τ + γG + VG∂z)E = k2rΓ0(z)AS. (12)

Here, VS = Cdω∗ρ
2
ikr and VG = CGω

2
G(0)ρ

2
ikr/ω are, respectively, the linear group velocities

of DW sideband and GAM, and ω and kr are determined from the following frequency and

wavenumber matching conditions for resonant decay [7]:

ω − ωP + ω∗ − Cdω∗ρ
2
i k

2
r = 0,

ω2 − ω2
G − CGω

2
G(0)ρ

2
i k

2
r = 0.

Equations (11) and (12) recover the results of [7] if the finite linear group velocities are

ignored;

(γ + γS)(γ + γG) = k2rΓ
2
0.

Thus, parametric excitation by DW favors short wavelength kinetic GAM (KGAM), and the

threshold condition for spontaneous excitation can be estimated from k2rΓ
2
0 = γSγG [7]. This

also motivates our investigation of the effect of kinetic dispersiveness on KGAM excitation,

as it increases with kr.

When finite group velocities are taken into account, equations (11) and (12) are in the

standard form of parametric instability discussed in [26]. From the results of [26], we readily

know that the instability is convective for VdVG ∝ CdCG > 0; i.e., the DW sideband and

GAM linearly propagate in the same direction while being parametrically amplified. For

VdVG < 0, the parametric instability is an absolute instability. To show this more in detail,

equations (11) and (12) can be solved both analytically, using an asymptotic approach, and

numerically as illustrated in the following.

To investigate the spatiotemporal evolution of the coupled GAM-DW system, let’s further

simplify the problem, and ignore the spatial dependence of the pump amplitude Γ0(z), i.e.,
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we focus on the convective nature of the parametric instability. Taking ξ = z − Vct with

Vc = (Vd + VG)/2, the coupled DW-GAM equations reduce to

(∂2t − V 2
0 ∂

2
ξ )E = k2rΓ

2
0E (13)

in the wave moving frame, with V0 = (Vd − VG)/2. If the kinetic dispersiveness is taken as

small correction to the temporal growing wave, i.e., E = f(ǫt, z) exp(krΓ0t), with |∂t ln(f)| ≪
krΓ0, the above equation can be solved, yielding the following asymptotic solution [24]:

E =
C√
t
exp

[

krΓ0t−
krΓ0

2V 2
0 t

(z − Vct)
2

]

. (14)

Here, C is a constant coefficient, and the above aysmptotic solution is valid for |V0t| ≫
|z − Vct|. From this asymptotic solution, we can see that when VGVd > 0, the coupled DW

sideband-GAM wave packet propagates at a hybrid group velocity Vc = (VG + Vd)/2, which

is typically much larger than the linear group velocity of GAM by O(ω∗/ωG). This may

explain the much larger “nonlinear group velocity” observed in simulation [15, 16] and, also,

in experiments [25]; which can not be interpreted in terms of the linear group velocity of

KGAM.

In addition to analytic solutions, we have also carried out numerical solution of equations

(9) and (10), and the results are shown in Fig. 1. Here, the pump wave amplitude is taken

to be Gaussian, and the nonuniformities of ω∗ and ωG are ignored. Cd = 1 is fixed, and the

sign of CG can be changed to change the absolute/convective property of the parametric

instability. We can see that, for CG = 1, the DW and GAM sideband are coupled together

and propagate out of the unstable region. The mode amplitudes at the origin will first grow,

then decay; showing the typical features of convective instability. Meanwhile, for CG = −1,

the mode amplitudes at the origin will keep growing; demonstrating the characteristics of

an absolute instability.

The absolute/convective property of the parametric instability is determined by the sign

of VGVd, and finally, CdCG. Note Cd is usually positive while CG is positive for typical

tokamak parameters, such as temperature ratio Te/Ti and/or the tokamak safety factor q.

Readers interested in the dependence of the sign of CG on plasma parameters may refer to

[7] for a detailed discussion. Thus, for typical tokamak parameters, the parametric decay

of DW pump into GAM and a stable short radial wavelength DW sideband is usually a

convective instability. Typically, the generated DW sideband and GAM are coupled together
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FIG. 1: Figs. 1a and 1c are respectively the GAM amplitude at r0 v.s. time for CG = ±1.

Figs. 1b and 1d are respectively the snapshot of mode structure at t = 100/ωG for

CG = ±1.

and propagate out of the pump DW localization domain before they can grow to sufficiently

large amplitude. Thus, this process is of lesser interest for fusion confinement research, since

GAM can not attain a sufficient amplitude to suppress DW turbulence.

IV. NONUNIFORM PLASMA: GAM ABSOLUTE INSTABILITY

A. Nonuniform Diamagnetic Frequency Effect

For typical tokamak parameters, when short spatial scales are considered (|r − r0| ≤
LP ) and nonuniformity of ω∗(r) and/or ωG(r) is ignored, the excitation of GAM by DW
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turbulence is a convective instability, which is of lesser interest from the confinement point

of view. Thus, in order to understand potential important roles of nonlinear DW-GAM

dynamics, one needs to consider the nonuniformties of ω∗(r) and/or ωG(r). In this section,

we will ignore nonuniformities of both GAM frequency and pump amplitude in order to

delineate the effects of nonuniform diamagnetic frequency on GAM excitation. For the

simplicity of discussion, collisionless damping of both GAM and DW sideband is also ignored

; i.e., γS = γG = 0.

Taking ∂t = −iω, the coupled nonlinear GAM-DW sideband equations become:

(

ω − ωP + ω∗

(

1− (r − r0)
2

L2
∗

)

+ Cdω∗ρ
2
i

∂2

∂r2

)

AS = iΓ∗
0E ,

(

ω2 − ω2
G + CGω

2
Gρ

2
i

∂2

∂r2

)

E = −iωΓ0
∂2AS

∂r2
.

The coupled equations can be solved in Fourier space, and we obtain the nonlinear DW

sideband eigenmode equation in kr space [27]

(

ω∗

L2
∗

∂2

∂k2r
+ ω − ωP + ω∗ − Cdω∗ρ

2
i k

2
r +

ωk2rΓ
2
0

ω2 − ω2
G − CGω

2
Gρ

2
i k

2
r

)

AS = 0. (15)

Linear DW eigenmode equation in kr space can be recovered if one ignores the nonlinear

term (the term proportional to Γ2
0) in equation (15), which can be solved to yield the finite

radial extent of the pump DW in kr space, and, equivalently, localization in real space with a

typical scale length ∝ √
L∗ρi. We note that this localized mode structure due to nonuniform

ω∗(r) corresponds to the finite radial envelope LP discussed in the previous section.

As kr → ∞, the dominant term in the potential well of equation (15) is the DW kinetic

dispersiveness term (the term proportional to Cdρ
2
i k

2
r); thus, it yields a bounded solution

in Fourier space. If the nonlinear drive is strong enough, with |ω2 − ω2
G| ≃ |2γωG| ≫

|CGω
2
Gρ

2
i k

2
r |, the KGAM kinetic dispersiveness term can be ignored. As a result, the KGAM

excitation will reduce to the GAM excitation limit; i.e.,

(

ω∗

L2
∗

∂2

∂k2r
+ ω − ωP + ω∗ − Cdω∗ρ

2
i k

2
r +

ωk2rΓ
2
0

ω2 − ω2
G

)

AS = 0. (16)

The reduced nonlinear DW sideband eigenmode equation in Fourier space, equation (16),

yields the following dispersion relation

L2
∗

ω∗
(ω − ωP + ω∗)β

2 = 2l + 1, l = 0, 1, 2, 3 · · · (17)
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FIG. 2: Growth rates of parametric instability for different radial eigenmode numbers.

Here, the circles represent the numerical solution of equation (15) while diamonds

represent the analytical solution given by equation (17)

with β given by

β4L
2
∗

ω∗

(

Cdω∗ρ
2
i +

ωΓ2
0

ω2
G − ω2

)

= 1.

The eigenmode structure of DW sideband in Fourier space is given by

AS ∝ exp

(

− k2r
2β2

)

, (18)

with an extent of |kr| ≃ |β|. A posteriori, this is also consistent with our assumption that

the DW sideband eigenmode must be localized in Fourier space to satisfy the |CGω
2
Gρ

2
i k

2
r | ≪

|ω2 − ω2
G| ≃ |2γωG| condition.

The comparison of the analytical solution, equation (17), with the numerical solution of

equation (15) is shown in Fig. 2. For most unstable mode with moderate radial eigenmode

number, the analytical solution of the reduced eigenmode equation shows a quite good ac-

curacy compared with the numerical solution of the full eigenmode equation. The nonlinear

eigenmode structure is also shown in Fig. 3, which is localized in Fourier space as we ex-

pected. Thus, our assumption of ignoring kinetic dispersiveness of KGAM is self-consistent.

In Sec. IV, the coupled nonlinear equations (9) and (10) with uniform pump amplitude

and ωG have been solved numerically as an initial value problem. There, the initial pertur-

bation is located at r0, where the diamagnetic frequency is peaked. As a consequence, we

observe that the coupled GAM and DW sideband wave packets propagate away from their

original position. When the radial position of DW sideband turning points is reached, due

to the nonuniform diamagnetic frequency, the wave packet will be reflected and propagate

through r0 again. Meanwhile, due to DW sideband reflection, the convective instability
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FIG. 3: Nonlinear DW eigenmode structure in Fourier-kr space.

becomes a quasi-exponentially growing absolute instability. The GAM amplitude logarithm

at r0 is shown in Fig. 4; and we can see that the amplitude of GAM at r0 first grow, and

then decays, and then grows again. Thus, it is clearly a convective instability behavior

between in time interval of 0− 1500 time steps, which confirms our analysis in the previous

section. When one looks at longer time scale behavior, the outward propagating wave packet

will, again, get to the DW turning points and be reflected. The time asymptotic behavior

of the GAM amplitude at the origin, thus, becomes quasi-exponentially growing when the

nonlinear eigenmode, derived analytically, is being set up.

0 500 1000 1500 2000 2500
−10

−5

0

5

10

15

20

25

30

t

lo
g

(φ
G

(r
0))

 

 

FIG. 4: GAM amplitude Logarithm at the origin v.s. time.

B. Nonuniform GAM and DW Sideband

With all the nonuniformities self-consistently included, the coupled nonlinear equations

(9) and (10) must be solved numerically. Here, the pump wave is assumed to be the linear



14

−200 −150 −100 −50 0 50 100 150 200
−600

−400

−200

0

200

400

600
t=800

−200 −150 −100 −50 0 50 100 150 200
−3000

−2000

−1000

0

1000

2000

3000
t=960

−200 −150 −100 −50 0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1
x 10

4 t=120

−200 −150 −100 −50 0 50 100 150 200
−2

−1

0

1

2
x 10

5 t=1440

−200 −150 −100 −50 0 50 100 150 200
−4

−2

0

2

4
x 10

6 t=1720

−200 −150 −100 −50 0 50 100 150 200
−2

−1

0

1

2
x 10

7 t=1880

 

 

FIG. 5: Snapshots of mode structure at six different times

DW eigenmode determined by the radial profile of ω∗(r) and the DW kinetic dispersiveness,

ω2
G(r) is taken as a monotonically decreasing function of r, and Cd = CG = 1 is chosen,

such that the parametric instability is a convective instability on the short time scale, as we

discussed in Sec. III. Due to nonuniformity of GAM continuum, one may obtain from the

matching conditions that the excited KGAM has a larger kr in the outer region of r0 and,

consequently, larger growth rate.

The mode structures of coupled DW sideband and GAM at six different times are shown

in Fig. 5. One may see that, due to the nonuniformity induced by GAM continuum, the

mode structures propagating on both sides are not symmetric. The wave packet initially

propagating outward, has a larger kr and, thus, larger growth rate and group velocity.

Consequently, one may observe that, it also has a larger amplitude; then it is reflected at

the turning point induced by ω∗(r), and propagates inward, completing a full “bouncing”

period of wave packets radially trapped by nonuniform ω∗.

Time histories of GAM amplitude at r = r0 is shown in Fig. 6, in which the solid curve

corresponds to the nonuniform GAM frequency case, while the dashed line, illustrates the

uniform GAM frequency case for comparison. One may see that, both cases are qualitatively

similar; i.e., the nonuniformity of ω∗(r) is the dominant effect on the longer time scale, which
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FIG. 6: Logarithm of E (r0) v.s. t. Here, we take a localized pump, and nonuniform ω∗(r),

and the solid curve represents the result with nonuniform ωG(r), while the dashed curve

represents the result with uniform ωG

renders the convective parametric instability into a quasi-exponentially growing absolute

instability. We may also see that, from the comparison between uniform and nonuniform

ωG(r) cases on may conclude, that GAM continuum plays a relatively minor role here,

compared with ω∗(r). Due to the mismatches [26] induced by spatially varying ωG(r), the

case with nonuniform ωG(r) has a slightly smaller growth rate, since GAM frequency change

is small in the localization domain of the DW pump. For comparison, in Fig. 7, we show

another case, with nonuniform ωG(r) and ω∗(r), but uniform pump amplitude. We may

see that, the qualitative behavior is the same as that of a localized pump, but the growth

rate is larger here due to the larger period of parametric amplification. However, a more

careful comparison of numerical results in Figs. 5 and 6, suggests that significant effect of

nonuniform ωG(r) is present on time scales comparable or shorter than the DW trapped time

due to nonuniform ω∗(r). Experimentally, such effect should be measurable with sufficient

spatial (radial) and temporal resolution to sample DW and GAM radial profiles after an

impulsive excitation of DW turbulence burst.
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V. CONCLUSIONS AND DISCUSSIONS

In this paper, spontaneous excitation of GAM by DW turbulence, which is generally

accepted to be important in regulating DW turbulence, is investigated taking into account

the effects of nonuniformities and finite group velocities of DW and GAM due to kinetic

dispersiveness. There are three different spatial scales in the parametric instability processes

between GAM and DW turbulence; i.e., DW radial envelope scale length LP , diamagnetic

frequency ω∗(r) radial profile L∗, and GAM continuum LG, with LP ∼ √
L∗ρi ≪ L∗, LG ∼

a. In this paper, the effects of various nonuniformities on GAM nonlinear excitation are

discussed, with emphasis on the convective/absolute nature of the parametric instability

[26].

For typical tokamak parameters, GAM and DW sideband satisfying the wavenumber

matching conditions propagate in the same direction [7, 24], and, thus, the parametric de-

cay process of DW into GAM is a convective instability. When one considers finite radial

envelope of the pump DW and the finite linear group velocities of GAM and DW sideband,

the excited GAM and DW sideband are coupled and propagate out of the unstable domain

in a time scale of order LP/VC , with VC ≃ Vd/2. Here, Vd is the linear DW group velocity,

such that this time is comparable with that for DW linear eigenmode set up. Thus, one



17

needs to consider the diamagnetic drift frequency ω∗(r) radial profile. Due to the turning

points induced by ω∗ nonuniformity, DW sideband and, thus, GAM, are reflected; propa-

gating between the turning points and rendering time asymptotically the parametric decay

process into a quasi-exponentially growing absolute instability. The effect of nonuniform

ω∗(r) on GAM excitation is also investigated analytically for a strong drive case, when the

finite dispersiveness of GAM can be neglected. Lastly, the self-consistent problem includ-

ing all three nonuniformities is investigated numerically, and our results indicate that the

radial profile of ω∗(r) plays the dominant role in rendering the convective instability into

a quasi-exponentially growing absolute instability. The nonuniformity of GAM continuum,

meanwhile, introduces asymmetries between outward and inward propagating modes, but

the qualitative picture remains the same. Our results, thus, indicate that, to properly inter-

pret the experimental results of GAM excitation by DW turbulences, plasma nonuniformities

must be taken into considerations; which could change the properties of the parametric pro-

cess qualitatively.

A major assumption of this work is that the amplitude of the sideband is much smaller

than that of the pump DW, AS ≪ A0, and, hence , we separate φd = φP + φS. This

assumption, often applied to derive the growth rate and threshold condition, is applicable

only in the linear growth stage of the parametric decay process. The feedback of the daughter

waves on the pump wave, and thus, the nonlinear evolution of the turbulence spectrum, is

beyond the scope intended here. To systematically study the nonlinear regulation of DW

turbulence by GAM, and, consequently, DW turbulence radial spreading via excitation of

GAM, a set of fully nonlinear two field model equations [28] must be derived. This will be

reported in a future publication.
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