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The spatial and temporal evolution of geodesic acoustic mode (GAM) parametri-

cally excited by drift waves (DW) is investigated both analytically and numerically.

Our results show that the nonlinearly excited GAM propagates at a group velocity

which is, typically, much larger than that due to finite ion Larmor radius as pre-

dicted by the linear theory. The nonlinear theory presented here could, thus, explain

the discrepancies between the experimentally measured dispersion relation of GAM

and that from the linear theory. Further implications of these findings for proper

understanding of experimental observations are also discussed.

Geodesic Acoustic Modes (GAM) [1, 2] are finite-frequency components of zonal struc-

tures [3, 4] unique in toroidal plasmas, which are capable of scattering microscopic drift-wave-

type (DW) turbulence [5] including drift Alfvén waves into stable short radial-wavelength

regime [2, 6–9], and, therefore, regulating the turbulence intensity and the associated wave-

induced transports [10].

It is known that GAM has a finite linear group velocity due to finite Larmor radius

(FLR) effects, and this linear group velocity is typically radially outward in consistence with

GAM continuum, due to radial temperature profiles. This linear group velocity of GAM has

been discussed in several works [2, 11, 12], and is shown to have important consequences on

the nonlinear excitation of GAM by DW turbulences and change the absolute/convective

nature of the parametric instability [8, 13]. Radial propagation of GAM has been observed

in several experiments [14, 15], and the propagation has been interpreted using the linear

theory of kinetic GAM (KGAM) [16]. However, in-depth analysis of the experimentally

obtained dispersion relation leads to the fact that, even though a quadratic dependence of

GAM frequency on its radial wavevector is indeed obtained, qualitatively consistent with

linear theory of KGAM [16], the coefficient for ion FLR effects is much larger than that

predicted by linear theory [11, 17]. This discrepancy has also been found in a numerical

simulation [12], and up to now, there is no first-principle-theory-based interpretation.
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We note that, GAM is an n = 0/m ≃ 0 mode such that it cannot be driven unstable

by expansion free energy of the plasma. Here, m and n are, respectively, the poloidal and

toroidal mode numbers of torus. Thus, GAM can be observed only when it is nonlinearly

driven by ambient turbulences, and in this case, the spatial-temporal evolution of GAM

is dominated by the nonlinear drive of DW. As a result, the propagation of GAM, and

experimental dispersion relation should also be interpreted using nonlinear theory.

The equations describing the nonlinear interactions between GAM and DW turbulence

are derived using gyrokinetic theory [2, 8]. Assuming that the DW turbulence constitutes

a constant-amplitude pump wave and a lower sideband with a much smaller amplitude due

to the modulation of GAM, the normalized coupled nonlinear equations describing GAM

excitation by DW are then given as equations (9) and (10) of Ref. 8. Since these two

equations are the starting point of this work, we give it explicitly here. Assuming the

following mode structure decomposition of the single n ̸= 0 DW and GAM in the straight-

field-line toroidal flux coordinate (r, θ, φ)

δϕP = AP e
−inφ−iωP t

∑
m

eimθΦ0(nq −m) + c.c.,

δϕS = ASe
inφ−i(ωG−ωP )t

∑
m

e−imθΦ∗
0(nq −m) + c.c.,

δϕG = AGe
−iωGt + c.c.;

and the eikonal Ansatz is assumed for the radial envelopes; i.e.,

AP = ei
∫

kP dr,

AS = e−i
∫

kP dr
(
ei
∫

kGdr + c.c.
)
,

AG = ei
∫

kGdr + c.c.;

the nonlinear equations describing GAM excitation by DW are then [8](
∂t + γS + iωP − iω∗ − iCdω∗ρ

2
i∂

2
r

)
AS = Γ∗

0E , (1)(
∂t(∂t + 2γG) + ω2

G − CGω
2
Gρ

2
i∂

2
r

)
E = iωGΓ0∂

2
rAS. (2)

Here, subscripts P , S and G represent, respectively, pump DW wave, lower sideband and

GAM, Φ0(nq −m) is the fine radial scale structure associated with finite k∥ and magnetic

shear, E ≡ ∂rAG/α is the electric field of GAM, Γ0 ≡ (αiTi/ωPTe)
1/2ckθ,PAP/B is the

normalized pump wave amplitude, α ≡ i(αiωPTe/Ti)
1/2 with αi ≡ 1 + δP⊥/(en0δϕP ) is an

order unity coefficient [18], δP⊥ is the perturbed perpendicular pressure due to δϕP in the

k⊥ρi ≪ 1 limit [18], γS and γG are the Landau damping rates of DW sideband and GAM,

ω∗ is the diamagnetic frequency, ρi = mcv⊥/eB is the Larmor radius of ions. The kinetic

term in equation (1), i.e., the term proportional to Cd comes from finite radial envelope
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variation due to the coupling between neighboring poloidal harmonics. The expression for

Cd can be derived from equation (19) of Ref. 19, and one has Cd ∼ O(ϵ/(n2q′2ρ2i )) with

q being the safety factor. On the other hand, the kinetic term in equation (2); i.e., the

term proportional to CG comes from FLR of GAM. Thus, CG ∼ O(1) and its detailed

expression be obtained from equation (9) of Ref. [17]. Other notations are standard. We

note that, system nonuniformities in equations (1) and (2), which may affect qualitatively

the convective/absolute nature of the parametric process as shown in Ref. 8, are systemically

ignored here, since we focus on the radial propagation of the parametrically excited GAM

in this work.

Equations (1) and (2) can be solved using two-spatial two-temporal scales expansion of

E and AS, such that ∂t = −iω0 + ∂τ and ∂r = ik0 + ∂ξ, with τ and ξ denoting the slow

temporal and spatial variations. The coupled nonlinear equations reduce to

(∂τ + VS∂ξ)AS = Γ∗
0E , (3)

(∂τ + VG∂ξ)E =
1

2
Γ0(k

2
0 − 2ik0∂ξ)AS. (4)

Here, in equation (3) and (4), γS and γG are ignored, assuming that the system is well above

the excitation threshold [2] to delineate the physics of radial propagation. Moreover, VS =

2Cdω∗ρ
2
i k0 and VG = CGωGρ

2
i k0 are, respectively, the linear group velocities of DW sideband

and GAM. We note that, VS and VG have the same sign for typical tokamak parameters

[2, 8], such that the excitation of GAM by DW turbulence is a convective amplification

process, ignoring system nonuniformities [13, 20]. In deriving equations (3) and (4), the

following frequency and wavenumber matching conditions for resonant decay are applied

−ω0 + ωP − ω∗ + Cdω∗k
2
0ρ

2
i = 0,

−ω2
0 + ω2

G + CGω
2
Gk

2
0ρ

2
i = 0,

where (ω0, k0) for resonant decay can be solved.

Moving into the wave frame by taking ζ = ξ − Vcτ , with Vc = (VS + VG)/2, the coupled

nonlinear equations, (3) and (4), can then be combined to yield the following equation

describing the nonlinear spatial-temporal evolution of the parametrically excited GAM(
∂2
τ − V 2

0 ∂
2
ζ

)
E =

1

2
k2
0Γ

2
0E − ik0Γ

2
0∂ζE . (5)

Here, V0 = (VS − VG)/2. Letting E = exp(iβζ)A(ζ, τ), with β = k0Γ
2
0/(2V

2
0 ), equation (5)

reduces to (
∂2
τ − V 2

0 ∂
2
ζ

)
A =

(
1

2
k2
0Γ

2
0 + βk0Γ

2
0 − β2V 2

0

)
A ≡ η̂2A. (6)
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Equation (6) can be solved, and yield the following unstable solution

A = Â0 exp
[
ikIζ +

√
η2 − k2

IV
2
0 τ
]
, (7)

in which, kI is the wavenumber conjugate to ζ at τ = 0, and Â0 is a constant. Assuming

|V0∂ζ | ≪ |∂τ |, i.e., convective damping due to FLR effects are higher order corrections to

the temporal growing [2, 21], the general solution, (7) can be reduced to the following time

asymptotic solution:

A = A0 exp

(
η̂τ − η̂ζ2

2V 2
0 τ

)
, (8)

in which,

A0 = Â0 exp

−V 2
0 τ

2η

(
kI −

iη̂ζ

V 2
0 τ

)2
 .

The time asymptotic solution of GAM electric field, E , is then

E = E0 exp

(
η̂τ + iβ(ξ − Vcτ)−

η̂

2V 2
0 τ

(ξ − Vcτ)
2

)
, (9)

which has an oscillation (the iβ(ξ−Vcτ) term in the exponent) due to the modulation of the

pump DW, besides the dominant temporal growth (the η̂τ term in the exponent). At the

same time, the envelope is propagating at Vc = (VS + VG)/2, which is much larger than the

linear group velocity of GAM. We note that the validity condition for the time asymptotic

solution given in equation (9) is |ξ − Vcτ | ≪ |V0τ |.
One then have readily from equation (9) that, the nonlinearly excited GAM, is charac-

terized by a nonlinear radial wavevector

kNL = k0 − i∂ξ lnE = k0
(
1 + Γ2

0/(2V
2
0 )
)
, (10)

i.e., the wavevector increases with pump DW amplitude, and is larger than that predicted

from frequency/wavenumber matching conditions.

The real frequency of the excited GAM, can also be obtained from equation (9),

ωNL = ω0 + i∂τ lnE = ω0 +
k0Γ

2
0Vc

2V 2
0

. (11)

ω0(k0) can be solved from the matching conditions, which can then be substituted into

equation (11), and yield:

ωNL = ωG +
k0Γ

2
0Vc

2V 2
0

+
1

2
CGωGk

2
0ρ

2
i

= ωG +
k0Γ

2
0Vc

2V 2
0

+
CGωGρ

2
i k

2
NL

2(1 + Γ2
0/(2V

2
0 ))

2
. (12)
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This is the nonlinear dispersion relation of the parametrically excited GAM. We note that,

both V0 and Vc are proportional to k0, and thus, the nonlinear frequency shift due to the

modulation of DW, k0Γ
2
0Vc/(2V

2
0 ), is independent of k0. Thus, finite amplitude DW will

increase the frequency of the nonlinearly driven GAM. This may explain the existence of

the higher frequency branch of the “dual-GAM” observed in HT-7 tokamak [16]. On the

other hand, the coefficient for kinetic dispersiveness, is in fact, decreased by a factor (1 +

Γ2
0/(2V

2
0 ))

2. The reason why experimental analysis found an “increased” coefficient is that,

in the analysis of experimental data, one employed the linear dispersion relation of GAM

and used the expression (ωobs − ωloc)/(ωlock
2
obsρ

2
i ) to determine the coefficient CG. Here,

the subscript “obs” denotes experimental observation, and “loc” denotes local continuum

frequency of GAM. Since as we have shown in equation (12), “ωobs − ωloc” contains, besides

the kinetic dispersiveness, also the nonlinear frequency increment k0Γ
2
0Vc/(2V

2
0 ); which, thus,

can lead to an over-estimation of the coefficient CNL
G [22].

The coupled GAM and DW sideband wavepacket, propagates at a nonlinear group ve-

locity Vc = (VS +VG)/2, which is much larger than the linear group velocity of GAM due to

|VS| ≫ |VG| (|ωP | ≃ |ω∗| ≫ |ωG| for resonant decay). Thus, to interpret the propagation of

GAM nonlinearly excited by DW turbulences including DAW, linear theory of KGAM [2, 17]

is not adequate, and one must apply the nonlinear theory here. We note also that, while

both the real frequency and wavevector of the excited GAM depend on the amplitude of

the pump DW, the nonlinear group velocity, is determined by k0 from matching conditions,

and is independent of the pump amplitude. Thus, for the comparison of experimentally

observations with analytical theory, the nonlinear group velocity may be a better candidate.

The coupled nonlinear GAM and DW sideband equations, equations (1) and (2), are

solved numerically. Here, we fix Cd = CG = 1, ωG = 0.1, ωP = ω∗ = 1, and study the

coupled nonlinear equations by varying Γ0. The dependence of the nonlinear wavenumber

kr on pump amplitude is given in Fig. 1, where the dots are the wavenumbers from numerical

solution, the diamonds are the obtained from equation (10); and the solid curve is obtained

from matching condition. For the parameters we have here, the wavevector solved from

matching conditions k0 = 0.32. We may see from Fig. 1 that, our nonlinear theory fits

well with the numerical results; and it reduces to k0 as Γ0 approaches 0. The comparison of

the numerically measured nonlinear group velocity with our theory, is presented in Fig. 2,

where the dots are numerical results and the diamonds are obtained from Vc = (VS +VG)/2,

and VS and VG are defined with k0. We note that, for the parameters we used in numerical

solution, VS = 0.64, VG = 0.032 and Vc = (VS + VG)/2 = 0.34 ≫ VG. Very good agreement

between numerical results and analytical theory (< 3% discrepency) are obtained here,

suggesting that experimentally observed radial propagation of GAM must be understood
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FIG. 1: Nonlinear wavenumber kr v.s. pump

amplitude Γ0
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FIG. 2: Nonlinear group velocity vg v.s. pump

amplitude Γ0

using nonlinear theory.

The nonlinear frequency of GAM is given in Fig. 3, where the dots are numerical results

and the diamonds represents ωNL from equation (11). Note that, for the parameters we use

here, ω0 = 0.105, and the nonlinear frequency from numerical solution increases with pump

DW amplitude, as predicted by our theory.

In conclusion, the equations describing the spatial/temporal evolution of parametrically

coupled GAM and DW are studied both analytically and numerically. It is found that, the

parametrically excited GAM propagate at a nonlinear group velocity, which is the mean

of the linear group velocities of GAM and DW turbulence, and is much larger than that
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FIG. 3: Nonlinear GAM frequency ωNL v.s. pump

amplitude Γ0

predicted by linear theory of kinetic GAM. The wavevector of the excited GAM, has a

quadratic dependence on the amplitude of the constant-amplitude pump DW. On the other

hand, the nonlinear group velocity is independent of the pump DW amplitude; suggesting

it as a good candidate for the comparison between experiments and analytical theory. Our

nonlinear theory, further shows that there is a nonlinear up shift in the GAM frequency.

Implications of the present theoretical findings to the HT-7 experimental observations are

also discussed. Our results demonstrate that one must include nonlinear effects in order to

properly analyze experimental observations of GAM.
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