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Abstract

In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The

saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a �shbone-like

mode with su�cient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-

magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and

nonlinear dynamics of the n = 1 mode with e�ects of energetic beam ions for a typical DIII-D discharge where

both saturated kink mode and �shbone were observed. Linear simulation results show that the n = 1 internal kink

mode is unstable in MHD limit. However, with kinetic e�ects of beam ions, a �shbone-like mode is excited with

mode frequency about a few kHz depending on beam pressure pro�le. The mode frequency is higher at higher

beam power and/or narrower radial pro�le consistent with the experimental observation. Nonlinear simulations

have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD

simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam

ion e�ects, the �shbone-like mode can also transit to a saturated kink mode with a small but �nite mode frequency.

These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.
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1 INTRODUCTION

There is much interest recently in the phenomena of internal three-dimensional (3D) deformations in magnetically

con�ned fusion devices such as tokamak, reversed �eld pinch (REP) and spherical tokamak (ST). The examples of

the 3D structures are termed as snakes, saturated kinks, long-lived modes (LLMs) and single helical axis (SHAx)

con�gurations. The snakes, characterized by a localized region of plasma density that rotates within the �eld of view

of various diagnostics, were �rst observed at the Joint European Torus (JET)[1, 2]. The standard model proposed by

Wesson[3] suggests that the localized cooling of the q = 1 surface leads to the formation of a magnetic island, which

traps the excess ions from the pellet and causes the formation of the snakes. Moreover, in Tore Supra the snake

patterns were found to be radially located well inside the q = 1 surface[4], and the impurity-induced snakes observed

on Alcator C-Mod suggest the importance to separate the dynamics between the plasma density and temperature[5].

In addition to snakes, a continuous dominantly m = 1, n = 1 mode emerges and persists after sawteeth oscillations in

TCV[6, 7], and LLMs were observed in the Mega-Ampere Spherical Tokamak (MAST) with weakly reversed safety

factor pro�le and minimum safety factor qmin just above unity[8]. The non-resonant internal kink mode (NRK)

was also observed in the National Spherical Torus Experiment (NSTX)[9], and numerical simulations carried out by

Breslau et al.[10] showed that the nonlinearly saturated n = 1 NRK in NSTX could induce a (2,1) magnetic island

at the q = 2 surface[11]. Wang et al. then further investigated the linear and nonlinear dynamics of the NRK in

NSTX considering toroidal rotation[12] and energetic particle e�ects[13]. Also in the RFX-mode reversed �eld pinch

the SHAx state was reported[14]. The snakes, LLMs, SHAx, etc, as suggested by Cooper et al.[15, 16, 17], represent

the same physical phenomenon: saturated dominantly m = 1, n = 1 internal kink modes.

The saturated kink mode is often closely associated with sawtooth oscillations.The mode can induce large fast

ion transport and signi�cant modi�cation in the q pro�le[8, 18, 19]. As a result, understanding them is important

for the operation of the International Thermonuclear Experimental Reactor (ITER) where the q = 1 radius could be

as large as half of the minor radius.

Nonlinear saturated m = 1, n = 1 internal kinks have been investigated both analytically[20, 21, 22] and

numerically[23, 24, 25]. Recently, Cooper et al. considered the saturated kinks as bifurcated equilibrium states[15,

16, 17] and analysed the 3D deformations by applying the equilibrium codes VMEC[26] and ANIMEC[27]. In this

work, the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K[28, 29] has been applied to investigate

the dynamics of the n = 1 kink mode in DIII-D sawteething plasmas. Compared to previous work using single �uid

model, this work includes the important kinetic e�ects of energetic beam ions using a kinetic-MHD hybrid model

with realistic tokamak geometry and plasma pro�les of a DIII-D discharge. Our results show that the existence

of the saturated kink mode after an initial sawtooth crash. With beam ion kinetic e�ects, a �shbone-like mode is

excited with mode frequency around a few kHz, and the mode frequency is larger with higher beam power and/or

narrower radial pro�le of the beam pressure. These results are consistent with the experimental observation in the
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DIII-D plasmas.

This article is organized as follows: Sec. II brie�y introduces the M3D-K code and parameters used in this work.

In Sec. III the MHD results of the n = 1 kink mode are presented. Sec. IV describes the simulation results of the

�shbone-like mode with beam ion e�ects. Finally discussion and summary are given in Sec. V.

2 M3D-K MODEL AND BASIC PARAMETERS

This work is performed using the global kinetic-MHD hybrid code M3D-K[28, 29], in which the background thermal

plasma is described by the resistive MHD model while the energetic particles are treated using drift kinetic equation.

Particle-in-cell method[29] is employed for solving the drift kinetic equation. The M3D-K code has been extensively

applied to study MHD modes and energetic particle instabilities in tokamaks[29, 30, 31, 32, 33, 12, 13, 34].

We consider a beam-heated discharge in DIII-D plasmas. As shown in Fig. 1, a spectrogram from localized ECE

measurement near the q = 1 surface contains multiple m = 1, n = 1 oscillations between successive sawtooth crash

events (solid vertical lines), including �shbone-like modes that chirp down in frequency from approximately 15.5 kHz

to 14 kHz (A). An o�-axis neutral beam source is added to on-axis neutral beam injection at t = 3000 ms, elevating

the toroidal carbon impurity rotation near the q = 1 surface. Equilibrium plasma pro�les for these simulations are

taken from t = 3110 ms (dashed vertical line). As the beam particle distribution becomes more broad with time,

the �shbone relaxes to a constant frequency oscillation at around 14 kHz, growing in amplitude over time until the

onset of sawtooth reconnection (B).
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Figure 1: Spectrogram from localized ECE measurement near the q = 1 surface.

The main parameters and pro�les in the DIII-D discharge are as follows: major radius R0 = 1.63 m, minor

radius a = 0.616 m, inverse aspect ratio ϵ ≡ a/R0 = 0.378, elongation κ = 1.65, triangularity δ = 0.036, toroidal

magnetic �eld B0 = 1.90 T , density n0 = 5.6 × 1019 m−3, central thermal plasma beta βthermal,0 = 3.40%, Alfvén
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speed vA ≡ B0/(µ0ρ0)
1/2 = 3.91 × 106 m/s, Alfvén time τA ≡ R0/vA = 4.17 × 10−7 s. The resistivity pro�le is

given by Spitzer form η(T ) = η0(T/T0)
−3/2, where η0 and T0 are, respectively, the resistivity and temperature at

the magnetic axis. The pressure pro�le is given by

P (Ψ) = Pthermal,0(1− 2.432Ψ + 3.098Ψ2 − 2.434Ψ3 + 0.773Ψ4) + Pbeam,0 exp(−Ψ/∆Ψ), (1)

where Pthermal,0 and Pbeam,0 are, respectively, the pressure of bulk plasma and energetic particles at the magnetic

axis, and Ψ is the normalized poloidal �ux variable varying from 0 at axis to 1 at the edge of the plasma. Pbeam,0 =

0.49 Pthermal,0, and ∆Ψ = 0.39. The total pressure P (Ψ) is used in the MHD simulation. The density pro�le is

given by

n(Ψ) = n0(1− 0.5298Ψ− 1.348Ψ2 + 3.361Ψ3 − 2.1799Ψ4), (2)

where n0 is the density at the magnetic axis, and the density pro�le is assumed to be �xed with time. The safety

factor pro�le is given by

q(Ψ) = 0.911− 0.126Ψ + 4.299Ψ2 − 7.678Ψ3 + 7.127Ψ4, (3)

with q(0) = 0.911 at the center and q(1) = 4.533 at the edge, and the q = 1 surface is located at Ψ = 0.191. Detailed

pro�les of safety factor, pressure and density are shown in Fig. 2.
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Figure 2: Equilibrium pro�les of q, pressure and density.

The beam ions have a slowing-down distribution in energy, and are distributed exponentially in pitch angle and

the radial direction,

f =
cH(v0 − v)

v3 + v3c
exp(−(Λ− Λ0)

2/∆Λ2) exp(−⟨Ψ⟩ /∆Ψ), (4)

where c is a normalization factor, H is the step function, v0 is the beam particle injection speed, vc is the critical

velocity given by

v3c =
3
√
π

4

me

mi
(
2Te

me
)3/2, (5)

Λ ≡ µB0/E is the pitch angle parameter, Λ0 = 0.6, ∆Λ = 0.3, ∆Ψ = 0.39, ⟨Ψ⟩ is Ψ averaged over the particle orbit.

The beam ions consist of both co-passing and trapped particles, and the normalized particle speed and gyroradius

are given by v0/vA = 0.705 and ρh/a = 0.0429.
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3 MHD simulations

We consider here linear and nonlinear evolution of the n=1 mode in the MHD limit, i.e., the beam ions are described

by MHD model and the kinetic e�ects of beam ions are neglected. The MHD results will be compared with the

simulation results with beam ion kinetic e�ects in the next section.

First, linear MHD simulations of n=1 mode are performed for the given equilibrium. The results show an ideally

unstable kink mode with linear growth rate γτA = 0.0141, this mode is mainly located inside the q = 1 rational

surface with dominant mode number n = m = 1. Detailed mode structure is shown in Fig. 3 (a). The corresponding

results with beam ion kinetic e�ects are shown in Fig. 3 (b) and (c) and will be discussed in next section.

Figure 3: Velocity stream function U of the eigenmode. (a) Without energetic particles. (b) ∆Ψ = 0.39 and

Pbeam,0/Ptotal,0 = 0.329 with energetic particles. (c) ∆Ψ = 0.25 and Pbeam,0/Ptotal,0 = 0.418 with energetic particles.

Now we turn to the nonlinear MHD simulation results. To initialize the simulation, the current and heat sources

are prescribed to be consistent with the equilibrium current and pressure pro�les. Here η0 was set to be 10−5,

correspondingly the Lundquist number S = 1/η0 = 105. The viscosity and perpendicular thermal conductivity were

uniform and chosen to be, respectively, ν = 3 × 10−5 (ϵaVA) and χ⊥ = 3 × 10−4 (B2
0R0/VA). We start the 3D

nonlinear simulation with an n = 1 perturbation, which evolves into an n = 1 internal kink instability in the linear

phase. As shown in Fig. 4, the time evolution of the central pressure P(0) and the kinetic energy of di�erent toroidal

modes indicates that the mode reaches a 3D quasi-steady state after the initial sawtooth crash, with the n = 1 mode

being the dominant component. The corresponding Poincaré plots of magnetic surfaces during the saturated phase

are almost stationary, and they are shown in Fig. 5 (a). The pressure pro�le at the same toroidal plane is shown in

Fig. 6 (a), it is �atten inside the q = 1 surface and consistent with the structure of magnetic surfaces. In addition,
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as shown in Fig. 7 (a), the corresponding q pro�le at the same time is �atten inside and almost equals unity. The

results with beam ion kinetic e�ects (Fig. 5 (b), Fig. 5 (c), Fig. 6 (b), Fig. 6 (c)), Fig. 7 (b), and Fig. 7 (c) will be

discussed in next section.
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Figure 4: (a) Evolution of total kinetic energy and P(0). Time is normalized with the Alfvén time τA. (b) Kinetic

energy evolution of di�erent toroidal modes.
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Figure 5: Poincaré plots of magnetic surfaces at the ϕ = π/2 toroidal plane and at t = 2300 τA. (a) Without

energetic particles. (b) With energetic particles and ∆Ψ = 0.39. (c) With energetic particles and ∆Ψ = 0.25.

Figure 6: Pressure contour pro�les at the ϕ = π/2 toroidal plane and at t = 2300 τA. (a) Without energetic particles.

(b) With energetic particles and ∆Ψ = 0.39. (c) With energetic particles and ∆Ψ = 0.25.

8



0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ψ

q

(a)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ψ

q

(b)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ψ

q

(c)

Figure 7: q pro�les at the ϕ = π/2 toroidal plane and at t = 2300 τA. (a) Without energetic particles. (b) With

energetic particles and ∆Ψ = 0.39. (c) With energetic particles and ∆Ψ = 0.25.

Fig. 8 compares evolution of the n = 1 kinetic energy with and without high n components. It is shown that

the n = 1 modes both saturate after the sawtooth crash, and high n components enhance the saturation level of the

n = 1 kinetic energy.
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Figure 8: Evolution of the n = 1 kinetic energy. The solid line (red) shows simulation result with toroidal modes

from n = 0 to n = 1, and the dashed line (blue) shows simulation result with toroidal modes from n = 0 to n = 7.

To investigate the dependence of the 3D quasi-steady state (or saturated kink) on the resistivity, we have per-

formed the simulations with �xed ratio of the resistivity, viscosity and perpendicular thermal conductivity (i.e.,

ν/η0 = 3, and χ⊥/η0 = 30). As shown in Fig. 9 (a), all cases reach 3D quasi-steady states for the resistivity range

of η0 = 3.33 × 10−6 ∼ 9 × 10−5. The corresponding kink saturation level varies from Umax ∼ 1.1 × 10−3 (ϵ2vA) to

Umax ∼ 3.0× 10−3 (ϵ2vA).

We now investigate the dependence of the existence of the saturated kink on the perpendicular thermal conduc-

tivity χ⊥. Fig. 9 (b) shows the nonlinear evolution of the kinetic energy for several values of χ⊥ at �xed resistivity

and viscosity. We observe that when the perpendicular thermal conductivity decreases below a critical value, the

quasi-steady state with the saturated kink mode transits from quasi-steady states of saturated kink to sawteeth

cycles, similar to the previous results of Halpern et al.[25]. In their work, it was demonstrated that increasing

the perpendicular thermal conductivity can trigger a transition from sustained sawtooth cycles to a 3D stationary

equilibrium.
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Figure 9: (a) Evolution of total kinetic energy with �xed ratio of the resistivity, viscosity and perpendicular thermal

conductivity. (b) Evolution of total kinetic energy with di�erent perpendicular thermal conductivity, keeping �xed

resistivity and viscosity.

To summarize our MHD simulation results, we �nd that the nonlinear evolution of the n=1 kink mode results

in a 3D quasi-steady state equilibrium of saturated kink for a DIII-D discharge. It should be noted that the ratio

of χ⊥/η0 = 30 used is realistic for the expected parameter of the experiment although the resistivity values used

are much larger than the experimental value. The experimentally relevant resistivity values are computationally

prohibitive for the code used and cannot be considered in this work.
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4 Simulations with beam ion e�ects

We now consider in this section the kinetic e�ects of energetic beam ions on the n = 1 kink mode using the M3D-K

code both linearly and nonlinearly. Both the linear and nonlinear simulation results are presented below.

4.1 Linear results

To study the dependence of linear stability on the beam power, Fig. 10 shows the mode frequency and linear growth

rate of the n = 1 mode as a function of beam ion pressure fraction at the magnetic axis Pbeam,0/Ptotal,0, with the

thermal pressure Pthermal kept �xed. When the beam pressure increases, both the mode frequency and linear growth

rate become larger. As shown in Fig. 3 (a), the mode structure is up-down symmetric with zero mode frequency in

the MHD limit. When the beam pressure is su�cient large, the mode transits from a MHD-like mode to �shbone-like

mode with a �nite mode frequency and twisted mode structure, as shown in Fig. 3 (b).
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Figure 10: Mode frequency and linear growth rate as a function of Pbeam,0/Ptotal,0 with ∆Ψ = 0.39. ωA ≡ 1/τA.

With the same Pthermal and integrated beam pressure
´ 1
0
PbeamdΨ, the mode frequency and linear growth rate

decreases when the radial pro�le of the beam pressure becomes broader, as shown in Fig. 11. Moreover, a narrower

beam radial pro�le leads to a more twisted mode structure (Fig. 3 (c)) than that of a broader pro�le(Fig. 3 (b)).
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Figure 11: Mode frequency and linear growth rate versus di�erent ∆Ψ, with the same Pthermal and
´
PbeamdΨ.

It should be pointed out the �nite mode frequency is induced by the non-adiabatic response of beam ions.

Furthermore the calculated mode frequencies in Fig. 10 and Fig. 11 correspond to frequencies of a few kHz in the

plasma frame consistent with experimental measurement. Furthermore the simulated dependence of mode frequency

on beam ion pro�le agree qualitatively with the measured trend of �shbone excitation. In the experiment, the

�shbone tends to be excited with higher beam power and narrower beam radial pro�le (i.e., on-axis heating).

4.2 Nonlinear results

We now present nonlinear results with beam ion kinetic e�ects. Two radial pro�les of the beam ion pressure with the

same Pthermal and
´ 1
0
PbeamdΨ are chosen for the nonlinear simulation. As given by Eqs. (1) and (4), ∆Ψ = 0.39

with Pbeam,0/Ptotal,0 = 0.329, and ∆Ψ = 0.25 with Pbeam,0/Ptotal,0 = 0.418 are respectively used. Fig. 12 show that

the mode also saturates as a 3D quasi-steady state after the initial sawtooth crash for both cases, with the n = 1

mode being the dominant one. Compared with the corresponding MHD nonlinear results, The Poincaré plots of

magnetic surfaces during the saturated phase are similar. The only di�erence is that, with energetic beam ions, the

structure of magnetic surfaces rotates with a �nite frequency as shown in Figs. 5 (b) and Fig. 5 (c). Similarly, the

corresponding pressure pro�les at the same plane (shown in Figs. 6 (b) and Fig. 6 (c)) are �atten inside the q = 1

surface and consistent with the structure of magnetic surfaces. Moreover, the q pro�les at the same time (shown in

Fig. 7 (b) and Fig. 7 (c)) are �attened and almost equals unity inside the q = 1 surface, similar to the MHD result.
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Figure 12: Kinetic energy of di�erent toroidal modes versus time. (a) ∆Ψ = 0.39 and Pbeam,0/Ptotal,0 = 0.329. (b)

∆Ψ = 0.25 and Pbeam,0/Ptotal,0 = 0.418.

To investigate whether the saturation of the mode depends on the nonlinearity of energetic particles or MHD, The

MHD response from the thermal plasmas is constrained to be linear by keeping only the n = 1 toroidal perturbation.

As shown in Fig. 13, the n = 1 kinetic energy grows to a very large amplitude and does not saturate. This indicates

that the saturation of the mode is due to MHD nonlinearity. Our results are di�erent from typical �shbone results,

in which the mode saturation is mainly due to nonlinear �attening of the energetic particle distribution function[29].
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Figure 13: n = 1 kinetic energy versus time without MHD nonlinearity. The solid line (red) represents ∆Ψ = 0.39

and Pbeam,0/Ptotal,0 = 0.329, while the dashed line (blue) represents ∆Ψ = 0.25 and Pbeam,0/Ptotal,0 = 0.418.

Fig. 14 compares the n = 1 and n = 0 components of the kinetic energy with and without energetic beam

ions. As shown in Fig. 14 (a), beam ions e�ects are destabilizing for the n = 1 mode during the linear phase and

stabilizing during the nonlinear phase (i.e., reducing the nonlinear saturated level of the n = 1 mode). Furthermore,

the saturation level of the n = 0 component is higher with beam ions, as shown in Fig. 14 (b). Fig. 14 also show

that a narrower radial pro�le of beam ions leads to a stronger linear growth rate and a higher saturation level of the

n = 0 component.
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Figure 14: (a) The n = 1 kinetic energy versus time. (b) The n = 0 kinetic energy versus time.

We now discuss the dependence of mode frequency on beam ion pressure pro�le. Fig. 15 shows the evolution

of the mode frequency for the two beam pro�les. For the broader beam pro�le case, the mode frequency in the

nonlinear phase is slightly lower than the initial linear frequency. However, for the narrower beam pro�le case, the

mode frequency chirps down more signi�cantly in the nonlinear phase.

To summarize the nonlinear results with beam ion kinetic e�ects, we �nd that the n = 1 mode with beam ion

e�ects also leads to a quasi-steady state of saturated kink as in the MHD case in the last section. The main di�erence

with the MHD results is that the 3D saturated kink mode now acquires a �nite mode frequency due to the kinetic

e�ects of beam ions. Also the mode frequency chirps down signi�cantly during the nonlinear evolution for the case

with a narrow beam pro�le. This result is consistent with the experiment observation that the so-called �shbone

instability tends to appear with on-axis NBI injection where the beam pro�le is peaked near the axis.
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Figure 15: Nonlinear evolution of the mode frequency with two di�erent beam radial pro�les.

Finally we discuss the e�ects of the n=1 mode on the beam ion pro�le. Fig. 16 shows the redistribution of beam

ions with v = 0.705 vA due to the �shbone-like mode with ∆Ψ = 0.25 and Pbeam,0/Ptotal,0 = 0.418. Note that the

horizontal axis Pϕ = eΨ+Mv∥RBϕ/B is the toroidal angular momentum and can be regarded as a radial variable.

First, after the initial sawtooth crash (at t = 500 τA), both of the co-passing and trapped particles are strongly

redistributed inside the sawtooth region. Then, during the nonlinear saturation of the kink mode (from t = 1500 τA

to t = 2500 τA), the distribution of both co-passing and trapped particles becomes more �attened inside the q = 1

surface. According to previous work[36, 37, 38], the redistribution level of trapped particles decreases with increasing

particle energy and a critical energy is obtained from the condition ωpr = 2π/τcr, where ωpr is the precessional

frequency. The critical energy of trapped particles is given by

Ecrit = 2πMκsrsR0ωB/τcr, (6)

where M is the ion mass, κ is the ellipticity of the cross-section, ωB is the cyclotron frequency, and the subscript `s'

labels the values at the q = 1 �ux surface. Assuming κs ∼ 1.3, and τcr = 165 τA in our simulation, the calculated

critical velocity of trapped particles is vcrit = 0.803 vA, which is a little larger than the velocity of beam ions shown

in Fig. 16. As a result the trapped particles should be weakly redistributed, which seems to be contrary to our

simulation results. However, when the frequency of the �shbone-like mode is considered, the condition ωpr = 2π/τcr

is changed to |ωpr − ω| = 2π/τcr[34], where ω is the mode frequency. The frequency of the mode is estimated as

ω = 0.012 ωA during the initial sawtooth crash, and the calculated critical velocity of the trapped particles is modi�ed

to vcrit = 0.921 vA, which is consistent with the strong redistribution of the trapped particles with v/vA = 0.705 in

our simulation.
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Figure 16: Beam ions redistribution induced by the �shbone-like mode with ∆Ψ = 0.25 and Pbeam,0/Ptotal,0 = 0.418.

(a) Co-passing particles with Λ = 0.2 and v/vA = 0.705. (b) Trapped particles with Λ = 1.0 and v/vA = 0.705.

5 DISCUSSION AND CONCLUSION

In this work we have performed a systematic study of linear and nonlinear dynamics of the n = 1 kink mode in DIII-D

plasmas. Compared to previous work, realistic modeling of thermal plasma evolution using resistive MHD model and

beam ion kinetic e�ects are considered in our simulation. Based on the parameters and pro�les of a realistic DIII-D

discharge plasmas, our results show that in MHD limit the n = m = 1 kink mode is ideally unstable, nonlinearly a

quasi-steady state with the saturated kink mode has been found after the �rst sawtooth crash. Furthermore, with

the kinetic e�ects of the beam ions, a �shbone-like mode is excited with mode frequency around a few kHz, and the

mode frequency is larger with higher beam power and/or narrower radial pro�le of the beam pressure. Nonlinear

simulations show that the �shbone-like mode could also transit to a saturated kink mode with a �nite mode frequency
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after the sawtooth crash. These results are consistent with the experimental observation of saturated kink mode

between sawtooth crashes.

In our simulation, the resistivity values are not realistic and much larger than the experimental value because the

experimentally relevant resistivity values are computationally prohibitive for the code. Furthermore the fast chirping

dyanmics of the �shbone has not been reproduced. A proper modeling of the observed chirping �shbone requres

much longer simulations with beam ion source and slow evolution of pressure pro�les. This will be in future with

necessary improvement in code e�ciency.

In conclusion, nonlinear simulations of the n=1 kink mode have been carried out with or without beam ion kinetic

e�ects using the kinetic-MHD code M3D-K for the parameters and pro�les of a DIII-D sawteething discharge. The

simulation results show that the n=1 kink/�shbone instability transits to a 3D quasi-steady state after an initial

sawtooth crash. With beam ion kinetic e�ects, the saturated kink mode acquires a �nite mode frequency on order

of a few kHz. These results agree qualitatively with the experimental observation in the DIII-D plasmas.

ACKNOWLEDGEMENTS

One of authors(Wei Shen) gratefully thanks Professor Liu Chen for valuable comments. This work was supported by

the ITER-CN under Grant Nos. 2013GB104004, the NSF of China under Grants Nos. 11235009, and Fundamental

Research Fund for Chinese Central Universities. This material is based upon work supported in part by the U.S.

Department of Energy, O�ce of Science, O�ce of Fusion Energy Sciences, using the DIII-D National Fusion Facility,

a DOE O�ce of Science user facility, under Awards DE-FC02-04ER54698 and DE-AC02-09CH11466, DE-AC02-

76CH03073. The simulations were carried out using the supercomputer Edison at NERSC.

References

[1] A. Weller, A. D. Cheetham, A. W. Edwards, R. D. Gill, A. Gondhalekar, R. S. Granetz, J. Snipes, and J. A.

Wesson, Phys. Rev. Lett. 59, 2303 (1987).

[2] R. D. Gill, A. W. Edwards, D. Pasini, and A. Weller, Nucl. Fusion 32, 723 (1992).

[3] J. A. Wesson, Plasma Phys. Controlled Fusion 37, A337 (1995).

[4] A.-L. Pecquet, P. Cristofani, M. Mattioli, X. Garbet, L. Laurent, A. Geraud, C. Gil, E. Jo�rin, and R. Sabot,

Nucl. Fusion 37, 451 (1997).

[5] L. Delgado-Aparicio, L. Sugiyama, R. Granetz, D. A. Gates, J. E. Rice, M. L. Reinke, M. Bitter, E. Fredrickson,

C. Gao, M. Greenwald, K. Hill, A. Hubbard, J. W. Hughes, E. Marmar, N. Pablant, Y. Podpaly, S. Scott, R.

Wilson, S. Wolfe, and S. Wukitch, Phys. Rev. Lett. 110, 065006 (2013).

19



[6] H. Reimerdes, I. Furno, F. Hofmann, An Martynov, A. Pochelon, and O. Sauter, Plasma Phys. Control. Fusion

48, 1621 (2006).

[7] Y. Camenen, F. Hofmann, A. Pochelon, A. Scarabosio, S. Alberti, G. Arnoux, P. Blanchard, S. Coda, T. P.

Goodman, M. A. Henderson, E. Nelson-Melby, L. Porte, and O. Sauter, Nucl. Fusion 47, 586 (2007).

[8] I. T. Chapman, M.-D. Hua, S. D. Pinches, R. J. Akers, A. R. Field, J. P. Graves, R. J. Hastie, C. A. Michael,

and the MAST Team, Nucl. Fusion 50, 045007 (2010).

[9] J. E. Menard, R. E. Bell, E. D. Fredrickson, D. A. Gates, S. M. Kaye, B. P. LeBlanc, R. Maingi, S. S. Medley,

W. Park, S. A. Sabbagh, A. Sontag, D. Stutman, K. Tritz, W. Zhu, and the NSTX Research Team, Nucl. Fusion

45, 539 (2005).

[10] J. A. Breslau, M. S. Chance, J. Chen, G. Y. Fu, S. Gerhardt, N. Gorelenkov, S. C. Jardin, and J. Manickam,

Nucl. Fusion 51, 063027 (2011).

[11] S. P. Gerhardt, D. P. Brennan, R. Buttery, R. J. La Haye, S. Sabbagh, E. Strait, M. Bell, R. Bell, E. Fredrickson,

D. Gates, B. LeBlanc, J. Menard, D. Stutman, K. Tritz, and H. Yuh, Nucl. Fusion 49, 032003 (2009).

[12] F. Wang, G. Y. Fu, J. A. Breslau, K. Tritz, and J. Y. Liu, Phys. Plasmas 20, 072506 (2013).

[13] F. Wang, G. Y. Fu, J. A. Breslau, and J. Y. Liu, Phys. Plasmas 20, 102506 (2013).

[14] R. Lorenzini, E. Martines, P. Piovesan, D. Terranova, P. Zanca, M. Zuin, A. Al�er, D. Bon�glio, F. Bonomo, A.

Canton, S. Cappello, L. Carraro, R. Cavazzana, D. F. Escande, A. Fassina, P. Franz, M. Gobbin, P. Innocente,

L. Marrelli, R. Pasqualotto, M. E. Puiatti, M. Spolaore, M. Valisa, N. Vianello, P. Martin, and RFX-mod Team

and Collaborators, Nat. Phys. 5, 570 (2009).

[15] W. A. Cooper, J. P. Graves, A. Pochelon, O. Sauter, and L. Villard, Phys. Rev. Lett. 105, 035003 (2010).

[16] W. A. Cooper, J. P. Graves, O. Sauter, I. T. Chapman, M. Gobbin, L. Marrelli, P. Martin, I. Predebon, and D.

Terranova, Plasma Phys. Control. Fusion 53, 074008 (2011).

[17] W. A. Cooper, I. T. Chapman, O. Schmitz, A. D. Turnbull, B. J. Tobias, E. A. Lazarus, F. Turco, M. J. Lanctot,

T. E. Evans, J. P. Graves, D. Brunetti, D. Pfe�erlé, H. Reimerdes, O. Sauter, F. D. Halpern, T. M. Tran, S.

Coda, B. P. Duval, B. Labit, A. Pochelon, M. R. Turnyanskiy, L. Lao, T. C. Luce, R. Buttery, J. R. Ferron, E.

M. Hollmann, C. C. Petty, M. van Zeeland, M. E. Fenstermacher, J. M. Hanson, and H. Lütjens, Nucl. Fusion

53, 073021 (2013).

[18] J. E. Menard, R. E. Bell, D. A. Gates, S. M. Kaye, B. P. LeBlanc, F. M. Levinton, S. S. Medley, S. A. Sabbagh,

D. Stutman, K. Tritz, and H. Yuh, Phys. Rev. Lett. 97, 095002 (2006).

20



[19] S. P. Gerhardt, D. A. Gates, S. M. Kaye, R. Maingi, J. E. Menard, S. A. Sabbagh, V. Soukhanovskii, M. G.

Bell, R. E. Bell, J. M. Canik, E. Fredrickson, R. Kaita, E. Kolemen, H. Kugel, B. P. Le Blanc, D. Mastrovito,

D. Mueller, and H. Yuh, Nuclear Fusion 51, 073031 (2011).

[20] Avinash, R. J. Hastie, J. B. Taylor, and S. C. Cowley, Phys. Rev. Lett. 59, 2647 (1987).

[21] M. N. Bussac and R. Pellat, Phys. Rev. Lett. 59, 2650 (1987).

[22] F. L. Waelbroeck, Phys. Fluids B 1, 499(1989).

[23] L. A. Charlton, R. J. Hastie, and T. C. Hender, Phys. Fluids B 1, 798 (1989).

[24] H. Lütjens and J. F. Luciani, J. Comput. Phys. 227, 6944 (2008).

[25] F. D. Halpern, D. Leblond, H. Lütjens, and J.-F. Luciani, Plasma Phys. Controlled Fusion 53, 015011 (2011).

[26] S. P. Hirshman and O. Betancourt, J. Comput. Phys. 96, 99 (1991).

[27] W. A. Cooper, S. P. Hirshman, P. Merkel, J. P. Graves, J. Kisslinger, H. F. G. Wobig, Y. Narushima, S.

Okamura, K. Y. Watanabe, Comput. Phys. Commun. 180, 1524 (2009).

[28] W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, and L. E. Sugiyama, Phys. Plasmas 6, 1796 (1999).

[29] G. Y. Fu, W. Park, H. R. Strauss, J. Breslau, J. Chen, S. Jardin, and L. E. Sugiyama, Phys. Plasmas 13, 052517

(2006).

[30] G. Y. Fu and W. Park, Phys. Rev. Lett. 74, 1594 (1995).

[31] J. A. Breslau, S. C. Jardin, and W. Park, Phys. Plasmas 14, 056105 (2007).

[32] J. Lang, G. Y. Fu, and Y. Chen, Phys. Plasmas 17, 042309 (2010).

[33] H. Cai and G. Y. Fu, Phys. Plasmas 19, 072506 (2012).

[34] W. Shen, G. Y. Fu, Z. M. Sheng, J. A. Breslau, and F. Wang, Phys. Plasmas 21, 092514 (2014).

[35] L. Chen, R. B. White, and M. N. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984).

[36] Y. I. Kolesnichenko, and Y. V. Yakovenko, Nucl. Fusion 36, 159 (1996).

[37] Y. I. Kolesnichenko, V. V. Lutsenko, Y. V. Yakovenko, and G. Kamelander, Phys. Plasmas 4, 2544 (1997).

[38] Y. I. Kolesnichenko, V. V. Lutsenko, R. B. White, and Y. V. Yakovenko, Nucl. Fusion 40, 1325 (2000).

21


