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Global first-principle study of kinetic ballooning mode (KBM) is crucial to understand the toka-
mak edge physics in high-confinement mode (H-mode). Contrast to ion temperature gradient mode
and trapped electron mode, KBM is found to be very sensitive to the equilibrium implementations
in gyrokinetic codes. In this brief communication, we show that, a second order difference for
magnetic equilibrium, or switch between the local and global profile implementations will bring a
factor of two or more difference in real frequency and growth rate. This suggests that an accurate
global equilibrium should be required for gyrokinetic simulation to verify codes and validate H-mode
experiments with KBM. [2015-03-26 17:10 rev]

Ballooning mode[1] is an electromagnetic instability
driven mainly by pressure gradient, and is considered to
be one of the most important instabilities in the high-
confinement mode (H-mode) stage of tokamaks. The H-
mode is important for tokamaks since it can improve the
plasmas confinement to make fusion economically more
feasible. The ideal peeling-ballooning mode and kinetic
ballooning mode are invoked to predict the formation of
the H-mode pedestal[2]. The linear and nonlinear physics
of the peeling-ballooning modes have been recently stud-
ied intensively by fluid codes, such as the eigenvalue
code ELITE[3] and initial value code BOUT++[4], which
have helped explain several important aspects (e.g., mode
numbers) of the H-mode experiments (cf. [5]). However,
the fluid models lack many important kinetic physics con-
tents, such as the wave-particle resonance and finite Lar-
mor radius effect, which may play a critical role in the
formation of the H-mode pedesdal. A complete under-
standing of the electromagnetic instabilities in the toka-
mak edge is still in progress. Especially, first principle
electromagnetic kinetic simulations have not been well
verified after around one decade of efforts.

For the electrostatic tokamak plasmas, the equilibrium
magnetic geometry is critical for quantitative study of
the nonlinear physics[6–8]. It is found that ignoring
the difference of the poloidal angle between the torus
coordinates (r, θ0, ζ0) and flux coordinates (rf , θf , ζf )
could lead to significant differences in the turbulent
transport simulated by various gyrokinetic codes[6, 7].
For the finite-beta plasmas, the electromagnetic effect
may dominate and the implementation of magnetic equi-
librium is found by global gyrokinetic simulation code
GTC[11, 12] to be important for the linear physics. The
semi-analytical global Shafranov equilibrium to second
order is implemented[9, 10] in the GTC code to study
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FIG. 1: Scanning βe to benchmark GTC with other gyroki-
netic codes GYRO, GENE and GS2 for different equilibrium
field models. The transition from ITG to TEM, and to KBM
is clear shown with βe increasing. The equilibrium implemen-
tations do not affect ITG and TEM too much, but affect the
KBM branch largely. Data are partly taken from Refs.[15–
18]. ES means electrostatic simulation; The simulation codes
except GTC are using Model-a equilibrium by default.

the magnetic equilibrium effects for the electromagnetic
KBM. It is found that a slight difference in the equilib-
rium can cause a large difference in the linear frequency
and growth rate, let alone the nonlinear physics. The lo-
cal and global profiles also provide rather different linear
frequencies and growth rates.

We consider a low β model equilibrium with β ∼ ε2,
where ε = r/R0 � 1 is the inverse aspect ratio. Under
the boundary condition given by a circular conducting
wall, the equilibrium flux surfaces are concentric circles
to lowest order. To the second order, the flux surfaces
are shifted circles, which can be defined in terms of the
usual cylindrical coordinates (R,φc, Z) by the following
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FIG. 2: GTC vs. GYRO for different equilibrium implemen-
tations. GYRO (s-α, α = 0) is Model-a; GYRO (Miller,
α = 0) is Model-b; GYRO (Miller, α 6= 0) is Model-c.

equations:

R = R0 + rs cos θs −∆(rs), (1a)
φc = −ζs, (1b)
Z = rs sin θs, (1c)

where R0 is the major radius and the Shafranov shift
∆(0) = 0 (note: some authors use ∆|rs=a = 0 but what
really matters is the derivative of the Shafranov shift,
where a is the minor radius). The relations between
Boozer flux coordinates (rf , θf , ζf ) and geometry coor-
dinates (rs, θs, ζs) are r = rs, ζf = ζs and θf = θs − (ε+
∆′) sin θs[13], with ∆′ being the radial derivative of the
Shafranov shift ∆(r) =

∫ r

0
q2dr
r3R0

∫ r

0

[
r2

q2 − 2R2
0

B2
0
rp′

]
rdr[14],

where q is the safety factor, B0 is the on-axis magnetic
field and p is the normalized pressure. In the gyrokinetic
community, three types of so called s-α models are gen-
erally used, with Model-a: lowest order approximation
θ = θs, Model-b: first order approximation without the
Shafranov shift, ∆ = 0 and θ = θs−ε sin θs, and Model-c:
∆ 6= 0 and θ = θs − (ε+ ∆′) sin θs.

Fig.1 shows the βe scanning for the linear frequency
and growth rate and compare the GTC results with
those from other gyrokinetic codes GYRO, GENE and
GS2, where the Cyclone base case parameters[19] are
employed, i.e., s = 0.78, q = 1.4, κT = R0/LT = 6.9,
κn = R0/Ln = 2.2 and Ti = Te, where Ln = −d lnn/dr
and LT = −d lnT/dr. The transition from ITG to
TEM and to KBM is clearly shown with βe increas-
ing. The GTC (Model-b) electromagnetic[12, 16] sim-
ulation at βe → 0 limit can recover the GTC (Model-b,
ES) electrostatic[11] result, which confirms that the GTC
electromagnetic model should be correct. The equilib-
rium implemented in other gyrokinetic codes is generally
the above Model-a by default. In the GTC code, both
Model-a and Model-b are implemented. As can been seen
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FIG. 3: Local and global profiles of κn used in GTC.

in Fig.1, the equilibrium implementation does not affect
ITG, TEM and their transition much, but it affects the
linear growth rate of KBM a lot. The GTC code gives
real frequency for the KBM branch similar to other gy-
rokinetic codes, but a smaller growth rate, e.g., for the
case with βe = 1.75% and Model-a, γGYRO ' 1.5γGTC.
We note that this difference could come from the differ-
ence of the equilibrium profiles, as is shown in the latter
part of this paper. That is, other gyrokinetic codes like
GYRO use local flux-tube equilibrium, whereas the GTC
code uses a global equilibrium. A linear electromagnetic
gyrokinetic study has been carried out for the DIII-D H-
mode pedestal[20], which shows that the frequency and
growth rate can have 50% deviation among several gy-
rokinetic codes with local equilibrium settings. We also
note that the gyrokinetic code GEM with the flux-tube
equilibrium shows good agreement with the aforemen-
tioned gyrokinetic codes such as GYRO for the ITG and
TEM instabilities[22].

To further identify the effect of the equilibrium imple-
mentation, Fig.2 shows a more detailed scanning of the βe

and kθρi for the KBM branch. We find a large discrep-
ancy in both frequency and growth rate if the Shafra-
nov shift is considered in the GTC’s KBM simulation.
Both ωr and γ become much smaller with the Shafranov
shift included. We have also compared the Shafranov
shift effect on the ITG instability. In the GTC simula-
tion, the differences of ω and γ between the equilibriums
with and without Shafranov shift are less than 5%[10]
and thus the shift effect is negligibly small. A study
by GEM[21] predicts a dominant high frequency electro-
magnetic mode whose frequency has not been found in
experiments. It is possible that the disagreement is from
the local Miller equilibrium used in GEM, which would
predict a much higher frequency for KBM. These findings
suggest that an accurate global instead of local equilib-
rium model would be crucial to validate experiments with
the gyrokinetic simulation.

To identify that the local equilibrium may not be suit-
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TABLE I: Influence of the radial width of the local profiles
to KBM and ITG.

ω ∆r = 0.4 ∆r = 0.3 ∆r = 0.2 global
KBM 1.67+1.09i 1.77+1.02i 1.90+0.93i 2.06+0.51i
ITG 0.47+0.16i 0.47+0.15i 0.48+0.14i 0.49+0.15i

able for validating experiments with KBM, we compare
the results from different local and global equilibriums us-
ing the GTC code. In Figs.1&2, the following global pro-
file for GTC is used: q = 0.82+1.1(ψ/ψw)+1.0(ψ/ψw)2,
ni = ne = 1.0+0.205{tanh[(0.3−(ψ/ψw))/0.4]−1.0} and
ti = te = 1.0 + 0.415{tanh[(0.18 − (ψ/ψw))/0.4] − 1.0},
where ψ is the poloidal flux and ψw = ψ(r = a) =
0.0375B0R

2
0, which gives a/R0 = 0.36 and the local pa-

rameters in r = 0.5a (where is also the peaking gra-
dient position for density and temperature) as the Cy-
clone based case. To model the local equilibrium profile,
we use the following gradients to calculate the density
and temperature profiles: κn = 2.22e−[

(r/a−0.5)
∆r ]6 and

κT = 6.92e−[
(r/a−0.5)

∆r ]6 , where ∆r determine the radial
width of the local profile. Fig.3 shows the κn used in
GTC to model local equilibriums. In the electrostatic
simulation for ITG and TEM, the linear frequency and

growth rate are not sensitive to ∆r. Table I shows the
electromagnetic simulation results for ITG and KBM
with different local profile widths ∆r, which are com-
pared with global profile. We see that the frequency and
growth rate for ITG change little for different equilibrium
implementations. However, the frequency and growth
rate for KBM are very sensitive to the equilibrium imple-
mentation. To ensure that this difference comes from the
equilibrium, the adiabatic electron and Model-a equilib-
rium are used in the simulation to exclude other factors.
The only difference between the ITG and KBM is the
βe, i.e., βITG

e = 0.25% and βKBM
e = 1.75%. The results

confirm that the KBM is very sensitive to the equilib-
rium and global profile. In addition, this suggests that
an accurate global equilibrium should be required for gy-
rokinetic simulation to verify codes and validate H-mode
experiments with KBM.
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