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Abstract

The two-dimensional global stability and mode structures of high-n beta-induced Alfvén eigen-

modes (BAEs) excited by energetic ions in tokamaks are examined both analytically and numer-

ically, employing the WKB-ballooning mode representation along with the generalized fishbone

like dispersion relation. Here, n � 1 is the toroidal mode number. Our results indicate that

(i) the lowest radial bound state corresponds to the most unstable eigenmode, and (ii) the anti-

Hermitian contributions due to wave-energetic particle resonance give rise to the twisting radial

mode structures.
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I. INTRODUCTION AND MOTIVATION

Understanding Alfvén wave instabilities excited by energetic particles (EPs) is of crucial

importance to the performance of burning tokamak plasmas. Since such instabilities are

typically driven unstable by the finite EP pressure gradient and via wave-EP resonance, the

resultant Alfvén wave electromagnetic fluctuations could often lead to rapid EP losses due

to the breaking of toroidal symmetry [1–10]. One of such Alfvén wave instabilities, which

has received considerable interest, is the beta-induced Alfvén eigenmode (BAE) [11, 12] and

is the focus of the present work.

As BAE instability taps the expansion free energy associated with the EP pressure gra-

dient, it typically has a large toroidal mode number, n� 1, and renders theoretical analysis

based on the WKB-ballooning formalism [13–20] feasible. That is, given the WKB represen-

tation of the radial envelope, one first solve the one-dimensional (1D) eigenmode equation

along the magnetic field. The resultant dispersion relation can then be regarded as the

expression for the WKB radial wave number, kr(r) ≡ nq′θk(r), where q(r) = rBT/RBϑ is

the tokamak safety factor, BT and Bϑ are, respectively, the toroidal and poloidal magnetic

fields, r and R, respectively, the minor and major radii, and q′ = dq/dr. Note that kr

and/or θk depend on r due to the radial variations of the equilibrium parameters; e.g., the

EP pressure. In the next order, the two-dimensional (2D) global eigenvalue problem is then

solved by imposing the appropriate boundary conditions and the corresponding quantization

conditions on the WKB phase integral.

Up to now, most of the theoretical analyses on BAE stability have been carried out in

the lowest order 1D limit; assuming θk = 0 [21–23]. While such analyses do provide the

necessary insights to the stability of BAE, only the complete 2D analysis could answer the

ultimate stability issue and yield the corresponding radially global mode structures. This

is one motivation of the present work. Recent experiment and simulation results have,

furthermore, shown that EP effects can twist the radial mode structure [24–26]. The other

motivation of the present work is, thus, to provide an analytical understanding of this

twisting radial mode structures.

The rest of paper is organized as follows. Section II contains the theoretical model as

well as the derivation of the corresponding generalized linear fishbone dispersion relation

including the finite-θk effects due to the radial envelope variations. The analysis and nu-
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merical results for the next-order global stability and mode structures are then presented in

Sec. III. Final summary and discussion are given in Sec. IV.

II. THEORETICAL MODEL AND THE GENERALIZED LINEAR FISHBONE

DISPERSION RELATION

The theoretical approach of the 2D eigenvalue problem considered here closely follows

that given in Refs. [16, 17, 27, 28]. We consider here a high-n BAE in a large aspect-

ratio ε = r/R0 < 1 axisymmetric low-β (= 8πP/B2 ∼ ε2) tokamak with shifted circular

flux surfaces. To be more specific, we adopt here the (s, α) model equilibrium [29] with

s = rq′/q the magnetic shear and α ≡ −R0q
2β′ the normalized pressure gradient. Here, P is

the plasma pressure and B the equilibrium magnetic field. The plasma is taken to consist of

a core (C) component, providing an isotropic Maxwellian background made of electrons and

ions, and an energetic (E) component with anisotropic slowing down distribution function.

The formal wavelength and frequency orderings for the case of BAEs resonantly excited by

EPs are ω ≈ ω∗pi ≈ ωti ≈ O(ε1/2)ωA, kϑρLi ≈ O(ε), kϑρLE ∼ O(ε1/2). Here, kϑ = nq/r

is the wave vector in the poloidal direction, ρLi and ρLE are, respectively, the thermal and

energetic ion Larmor radii, ω∗pi = (cTi/eiB
2)(k×B) ·∇ lnPi is the thermal ion diamagnetic

frequency, ωti =
√

2Ti/mi/qR0 is the thermal ion transit frequency, ωA = υA/qR0 with υA

being the Alfvén speed, ei and mi are, respectively, the ion electric charge and mass, Pi is

the thermal ion pressure, and k is the wavevector.

Since |k⊥| � |k‖| and β � 1, we can neglect the compressional Alfvén waves and use the

field variables δφ and δA ' δA‖b to describe the electromagnetic fluctuations. As |k⊥ρLi|2 �

1, we also adopt the long wavelength limit and neglect finite thermal ion Larmor radius

effects. This allows us to explicitly solve δA‖ as a function of δφ, using the quasineutrality

condition, and to reduce the description to a single field variable, δφ [19, 20].

With n� 1 assumed here, we may adopt the WKB-ballooning mode representation; δφ

can then be expressed as [14, 27]

δφ(r, ϑ, ζ, t) = A(r)e−iωteinζ
∑
m

e−imϑ
1

2π

∫ +∞

−∞
δφ̂(η)e−iη(nq−m)dη + c.c., (1)

where (r, ϑ, ζ) are a straight field line coordinates [19, 20], −π ≤ ϑ ≤ π, and η is the

coordinate referred to as the extended poloidal angle in the theory of ballooning modes [14].
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δφ̂(η) is the Fourier transform of δφ(nq − m); i.e., of the radial structure of poloidal har-

monics, which is nearly invariant under radial translations by the distance between mode

rational surfaces, ∆rn = (nq′)−1, and multiples of it [18]. The radial envelope function A(r)

has characteristic spatial dependences on meso-scales, intermediate between the perpendic-

ular wave-length and the equilibrium scale-length. Thus, it is possible to employ the WKB

approximation [16, 17], i.e., A(r) =
∑
k

Ake
in

∫ r θk(r)dq, for simplifying the algebra. Here,

θk ≡ kr/nq
′ with kr being the WKB wavenumber of the radial envelope; and θk is, in gen-

eral, complex, with θk = θkr + iθki. Note that the present study differs from that in Ref.

[23] where θk = 0, which, as will be shown later, corresponds to the most unstable mode.

We assume massless electron response and, for the sake of simplicity, one thermal and one

energetic ion species with unit electric charge e that are described by gyrokinetic equation.

Following the theory of 2D eigenmodes [16, 21, 30], the lowest-order vorticity equation for

the BAE in the presence of energetic ions is given by[
∂2

∂η2
+Λ2−V

]
δΨ̂(η)−f−1/2

〈
4πeEq

2R2
0

k2
ϑc

2
J0(λρE)ωωdEδKE

〉
= 0, (2)

where V = (s − α cos η)2/f 2 − α cos η/f , f(η) ∼= 1 + [s(η − θ
(0)
k ) − α sin η]2, α = αC +

αE, αC ≡ −R0q
2β′, αE = −1

2
R0q

2 d
dr

(βE‖ + βE⊥), δΨ̂(η) = f 1/2δφ̂(η), ωdE = kϑΩdEg(η),

ΩdE = (υ2
⊥/2 + υ2

‖)/ωcER0, g(η) ∼= cos η + [s(η − θ
(0)
k ) − α sin η] sin η, θ

(0)
k is the lowest

order WKB phase, and, from now on, we replace θ
(0)
k by θk for simplicity. J0 is the Bessel

function of the first kind and zero index, with argument λρE = k⊥ρLE, k2
⊥ = k2

ϑ + k2
r ,

ρLE = υ⊥E/ωcE, ωcE = qEB/mEc, qE and mE are the electric charge and mass of the

energetic ions, 〈...〉 =
∫
d3υ(...), and the rest of the notations are standard. The inertia

response Λ here, including both thermal ion transit resonances as well as diamagnetic effects,

has been derived explicitly in Ref. 21. Of that analysis, we report only the main results in

Appendix A for reader’s convenience. The ballooning equation, Eq. (2), is an eigenvalue

equation under the boundary condition that δΨ̂(η) vanishes as η → ±∞. The non-adiabatic

EP response δKE is determined by the gyrokinetic equation [31–33]

[
ωtE

∂
∂η
− i(ω − ωdE)

]
δKE = i eE

mE
QF0E

ωdE

ω
J0(λρE)f−1/2δΨ̂(η), (3)

where ωtE = υ‖E/qR0, QF0E = (ω∂ε + ω̂∗E)F0E, ω̂∗EF0E = ω−1
cE (k × b) · ∇F0E, and F0E is

the EP equilibrium distribution function.
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Due to δΨ̂(η) characterized by two distinct scales [21, 30, 34], adopting asymptotic anal-

yses, we can rewrite the dispersion relation generated by the boundary value problem in Eq.

(2) as

D(ω; r, θk) ≡ iΛ− δWf − δWk = 0, (4)

where δWf and δWk are, respectively, the fluid-like and the EP potential energy, and both

of them are the function of θk. Note that θk doesn’t enter into the inertia term Λ since it

comes from η → ∞. Here, we only report the final expressions of δWk and δWf including

finite-θk modifications. Details are given in Appendix B.

For circulating EPs, the non-adiabatic contribution δWk(θk) is given by

δWk(θk) =
π2e2q2R2

0

2mc2

〈
QF0Ω2

d

ω2 − ω2
tE

[
1

∆(1 + ∆2)3/2|s|

−
e−

2(1+∆2)1/2

∆|s|
[
2 + 2∆2 + ∆(1 + ∆2)1/2|s|

]
∆2(1 + ∆2)2s2

(
cos 2θk +

iωtE
ω

sin 2θk

)]〉
.

(5)

Here only the dominant transit resonance is considered and the Padé approximation is

adopted for Bessel functions [30, 34–36], i.e., J2
0 (λρE)J2

1 (λdE)/λ2
dE ≈ 1/[2(1 + ∆2k⊥/k

2
θ)]

2

with ∆2 ≡ k2
ϑ(ρ2

LE + ρ2
dE/2)/4. Our expression can, thus, recover, in the θk = 0 and |s|,

α < 1 limits, the previously obtained result [30, 34]. In the present work, we mainly focus

on ∆� 1, since ε < kϑρdE < 1, which corresponds to the most unstable wavenumber range

[30, 34].

The expression of δWf (θk) is given by

δWf (θk) '
π

4|s|
[
s2 − 3

2
α2|s|+ 9

32
α4 − 5

2
αe−1/|s| cos θk −

5α2

2|s|
e−2/|s| cos 2θk

]
, (6)

where the trial function δΨ̂(η) = 1 + α cos η/f is employed in the δWf calculation to yield

higher accuracy for α ∼ |s| ∼ O(1).

With the explicit form of D(ω; r, θk), we can adopt the standard WKB theory [37] to find

an approximate solution for A(r).

III. THE GLOBAL EIGENMODE ANALYSIS AND NUMERICAL RESULTS

In this section, we investigate the global BAE stability properties and mode struc-

tures. For simplicity, we take F0E to be a single-pitch-angle slowing-down beam ion

distribution; i.e., F0E = N(r)ε−3/2δ(λ − λ0) with the normalization coefficient N(r) =
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√
2(1− λ0B0)B0βE(r)/25π2mEεb. Here, βE(r) ≡ 2µ0PE(r)/B2

0 , δ(x) is the δ-function, λ0 is

the energetic ion birth pitch angle, ε ≤ εb with εb being the EP birth energy per unit mass.

Substituting into Eq. (5) and keeping the leading-order contribution, we have

δWk =
παE(r)

2
√

2
ω̄

[
2− ω̄ ln

(
ω̄ + 1

ω̄ − 1

)]
, (7)

where ω̄ = ω/ωtm and ωtm being the EP transition frequency at the maximum particle

energy. Furthermore, αE(r), the normalized EP pressure gradient, is of the following form:

αE(r)=αE0 exp

[
−(r − r0)2

L2
PE

]
'αE0

[
1− (r − r0)2

L2
PE

]
.

Here, αE0 ≡ q2R0β
′
E(r0), LPE is the characteristic αE scale length and r0 is the reference

mode rational surface; nq(r0) = m0. Note that, consistent with the assumption that the

radial localization is due to EP, the radial dependence of the dispersion function Eq. (4)

enters via αE(r).

Let us assume, |θki/θkr| � 1, to be verified a posteriori. The solution of the dispersion

function Eq. (4) yields the condition of the most unstable BAE excited by EPs. The local

equilibrium parameters are r0 = 0.5, q = 2.0, s = 0.3, ε = 0.3, βi = 0.01, ω∗ni/ωti = 0.1,

ηi = 2.0, LPi = 0.9, ηE = 0.0, λ0B0 = 0.0, LPE = 0.3, υEi = 4.0, nEi = 0.03, and n = 5.

Here, LPi is the pressure gradient scale length of thermal ions. The contour plot of the

growth rate Im(ω/ωti) in (r, θk) plane is presented in Fig. 1. It is obvious that the most

unstable mode occurs around r = r0 and θk = 0.

In this case, we may Taylor expand the dispersion function D(ω; r, θk) for (r, θk) around

(r0, 0), respectively. Keeping the leading-order contributions, Eq. (4) then becomes

θ2
k = Q(ω; r), Q(ω; r) = 2(iΛ− δWf0 − δWk)/δW

(2)
f ; (8)

where

δWf0 = δWf (θk = 0) =
π

4|s|
[
s2 − 3

2
α2s+

9

32
α4 − 5

2
αe−1/|s|],

and

δW
(2)
f =

∂2δWf

∂θ2
k

∣∣∣∣
θk=0

=
5π

8|s|
αe−1/|s|.

Equation (8) defines two branches, θk+ and θk−, which lead to the WKB solutions

A+e
i
∫ r nq′θk+dr

′
and A−e

i
∫ r nq′θk−dr

′
,
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FIG. 1. The contour plot of the growth rate Im(ω/ωti) of D(ω; r, θk) = 0. Fixed parameters are

r0 = 0.5, q = 2.0, s = 0.3, ε = 0.3, βi = 0.01, ω∗ni/ωti = 0.1, ηi = 2.0, LPi = 0.9, ηE = 0.0,

λ0B0 = 0.0, LPE = 0.3, υEi = 4.0, nEi = 0.03, and n = 5.

valid except near the turning points. There, A+ and A− are related via the WKB connection

formula [38]. Defining z ≡ |nq′|(r − r0) and, thus
∫ r
nq′θkdr

′ =
∫ z
θkdz

′. The global

dispersion relation for the BAE excited by EPs is then given by the following quantization

condition; ∫ zT+

zT−

√
Q(ω; z)dz = (L+ 1/2)π L=0, 1, 2, ... , (9)

where zT± are the (complex) two regular WKB turning points, defined by the condition

Q(ω; z) = 0; while the integer L is the radial mode number denoting the different eigenmodes.

Numerical solutions of Eq. (9) have been obtained for the same parameters of Fig. 1.

Results are presented in Fig. 2, which shows that, unlike the frequencies, below the accumu-

lation point ω/ωti = 5.2326 [23], the corresponding growth rates are strongly dependent on

the eigenmode number L. The lower L modes are more unstable due to the sharp localization

of the EPs. In addition, for the most unstable mode, |θki/θkr| ∼ |Im(ω/ωti)/Re(ω/ωti)| ∼

O(10−1); self-consistently verifying Taylor expansion around θk = 0 a posteriori.

Based on above analysis, the complete perturbation δφ(r, ϑ, ζ, t) can then be rewritten

as

δφ(r, ϑ, ζ, t) = e−iωteinζ
∑
m

{
A+e

i
∫ r nq′θk+dr

′
e−imϑ

1

2π

∫ ∞
−∞

dηe−i(nq−m)ηδφ̂+(η)

+ A−e
−i

∫ r nq′θk−dr
′
e−imϑ

1

2π

∫ ∞
−∞

dηe−i(nq−m)ηδφ̂−(η)
}

+ c.c.,

(10)
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FIG. 2. Frequencies (circles) and growth rate (triangles) vs L. Here, the parameters are the same

as those of Fig. 1.

where δφ̂+(η) and δφ̂−(η) are, respectively, the solutions of Eq. (2) corresponding to θk+

and θk−, where θk− = −θk+. Suppressing the time dependence and taking ζ = 0, we can

further reduce Eq. (10) to

δφ(r, ϑ) =
∑
m

e−imϑ
[
A+e

iΘ̃(z)δφ+(z) + A−e
−iΘ̃(z)δφ−(z)

]
+ c.c., (11)

where z ≡ nq(r)−m, A+ = −iA− for |z| ≤ |zT | where the mode is predominantly localized,

δφ±(z) = 1/2π
∫∞
−∞ dηδφ̂±(η)e−izη, and Θ̃(z) ≡

∫ z
zT−

θk+(z′)dz′. Note, for n � 1, we have

formally |θk| ∼ O(n−1/2), |zT | ∼ O(n1/2), |Θ̃(z)| ∼ O(1), and |δφ±(z)| has mode width of

|z| ∼ O(1).

According to Eq. (9), by symmetry considerations, we have
∫ 0

zT−
θk+(z)dz = π/4 for the

most unstable case (L = 0). Thus, Eq. (11) can further be reduced to

δφ(r, ϑ) =
C

θ
1/2
k+ (z)

∑
m

e−imϑ
[
eiΘ(z)δφ+(z) + e−iΘ(z)δφ−(z)

]
+ c.c., (12)

where C is a constant and Θ(z) ≡
∫ z

0
θk+(z′)dz′.

With these results, we can theoretically analyze the global mode structure. In Eq. (12),

neglecting effects due to finite |θk| ∼ O(n−1/2) � 1 in δφ±(z), we have δφ±(z) ' δφ0(z),

which is independent of θk. If the system is purely Hermitian, e.g., in the ideal MHD limit,

both δφ0(z) and Θ(z) are real, i.e., δφ0(z) = δφ0r(z) and Θ(z) = Θr(z). We can then write

Eq. (12) as

δφ(r, ϑ) ∝ 1

θ
1/2
k+ (z)

∑
m

{cos [mϑ−Θr(z)] + cos [mϑ+ Θr(z)]} δφ0r(z). (13)
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Since δφ(r, ϑ) = δφ(r,−ϑ), we see that the poloidal mode structure is up-down symmetric.

For fixed r, the mode amplitude peaks at ∂δφ
∂ϑ

∣∣
ϑ=ϑ∗

= 0, i.e., sin(mϑ∗) cos(Θr(z)) = 0. Thus,

the mode amplitude of the Hermitian system peaks at mϑ∗ = jπ for all z (or r), j being an

integer. In the following analysis, without loss of generality, we just focus on j = 0.

In the general case with finite anti-Hermitian part of D(ω; r, θk), e.g., when the EP

wave-particle resonances are included, we can write δφ0(z) = δφ0r(z) + iδφ0i(z) with

|δφ0i(z)/δφ0(z)| ∼ O(αE) < 1 and Θ(z) = Θr(z) + iΘi(z) with Θi(z) ∼ O(αE). As-

suming 1 > |αE| > θk ∼ O(n−1/2), i.e., concentrating on the wave-particle resonant effect,

we can write Eq. (12) as

δφ(r, ϑ) ∝ e−Θi(z)

θ
1/2
k+ (z)

∑
m

{[
cos(mϑ−Θr(z)) + e2Θi(z) cos

(
mϑ+ Θr(z)

)]
δφ0r(z)

+
[

sin
(
mϑ−Θr(z)

)
+ e2Θi(z) sin

(
mϑ+ Θr(z)

)]
δφ0i(z)

}
.

(14)

Note that |Θi(z)| ∼ O(αE) < 1, Eq. (14) can be further reduced to

δφ(r, ϑ) ∝ e
−Θi(z)

θ
1/2
k+ (z)

∑
m

{[
cos
(
mϑ−Θr(z)

)
+ cos

(
mϑ+ Θr(z)

)]
δφ0r(z)

+ 2Θi(z) cos
(
mϑ+ Θr(z)

)
δφ0r(z)

+
[

sin
(
mϑ−Θr(z)

)
+ sin

(
mϑ+ Θr(z)

)]
δφ0i(z)

}
.

The value of ϑ∗, where the mode amplitude peaks, is then given by[
sin
(
mϑ∗ −Θr(z)

)
+ sin

(
mϑ∗ + Θr(z)

)]
δφ0r(z) + 2Θi(z) sin

(
mϑ∗ + Θr(z)

)
δφ0r(z)

−
[

cos
(
mϑ∗ −Θr(z)

)
+ cos

(
mϑ∗ + Θr(z)

)]
δφ0i(z) = 0.

(15)

Expanding ϑ∗ ' ϑ∗0 + ϑ∗1, we then recover the Hermitian result in the lowest order. In the

next order,

mϑ∗1 cos(ϑ∗0) cos(Θr(z))δφ0r(z) + Θi(z) sin
(
Θr(z)

)
δφ0r(z)− cos

(
Θr(z)

)
δφ0i(z) = 0. (16)

It follows that

mϑ∗1(z) ' −Θi(z) tan
(
Θr(z)

)
+
δφ0i(z)

δφ0r(z)
. (17)

Noting δφ0(−z) = δφ0(z) and Θ(−z) = Θ(z), we then have ϑ∗1(−z) = ϑ∗1(z) and ϑ∗1(z) 6= 0

generally. That is, finite Θi(z) and δφ0i(z), resulting from the wave-particle resonance

contribution to the anti-Hermitian part of D(ω; r, θk), can twist the radial mode structure

away from mϑ∗ = 0; resulting in the loss of up-down symmetry in the global mode structure.
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In order to numerically illustrate the anti-Hermitian component effects, we investigate

numerically the BAE poloidal mode structure in two limits; i.e., (i) the ideal MHD limit in

the absence of EP; (ii) the BAE excited by non-perturbative EP via wave-particle resonance

interaction. In the first case, we assume that the radial dependence of the dispersion function

D(ω, r, θk) comes from the fluid-like term δWf (r, θk) with δWf (r, θk) ' δWf (θk)
[
1− (r−r0)2

L2
Pi

]
.

The inertia term ΛI adopted here corresponds to the MHD limit (ω � ωti) of Eq. (A1)

along with ω � ω∗pi and neglecting damping. We then have Λ2
I = ω2

ω2
A

[
1− q2 ω

2
ti

ω2

(
7
4

+ τ
)]

[12, 21]. In this case, θ2
k is given by

θ2
k =

2

δW
(2)
f

{
iΛI − δWf0

[
1− (r − r0)2

L2
Pi

]}
. (18)

Adopting the trial function δΨ̂±(η) ' eiΛη with Λ = Λr + iΛi and applying the inverse

Fourier transform, Eq. (12) can be expressed as

δφ(r, ϑ) =
C

θ
1/2
k+ (z)sπ

∑
m

e−imϑ
[
eiΘ(z) + e−iΘ(z)

]
K0(

√
−(Λi − iΛr + iz)2/s) + c.c., (19)

where K0(x) is the modified Bessel function of the second kind and zero index.

The poloidal mode structures of δφ(r, ϑ) given by Eq. (19) are plotted in Fig. 3. The

upper panel corresponds to the marginally unstable ideal MHD BAE case and the lower

panel to the BAE excited by EP case. The left column, Figs. 3(a) and (c) are plots in the

(R,Z) plane; while the right column shows the magnified mode structures in (r, ϑ) plane.

The blue dashed lines shown in Fig. 3(b) and (d), meanwhile, represent the locations of the

mode amplitude peaks theoretically predicted by Eq. (17). Here, m = 9, 10, and 11, L = 0,

and other parameters are the same as those of Fig. 1.

Figure 3 shows that the up-down symmetry of the ideal MHD mode structures (Fig. 3(a)

and (b)) is broken by the anti-Hermitian component of the dispersion function due to the

wave-EP resonant interaction, and exhibits the twisting 2D mode structures (Fig. 3(c) and

(d)). The analytically predicted peak agrees well with that of the contour plot. We note

that the present theoretical results are also consistent with the numerical simulations [24, 25]

and experiment [39].

IV. SUMMARY AND DISCUSSION

In this paper we have investigated the global stability properties and mode structures

of the high-n BAEs excited by a radially localized source of energetic ions in tokamaks.
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FIG. 3. Poloidal contour plots of electrostatic potential δφ(r, ϑ) corresponding to the ideal-MHD

limit ((a) and (b)) as well as the BAE excited by EP ((c) and (d)), respectively. Here, m = 9, 10,

and 11, L = 0, and other parameters are the same as those of Fig. 1.

Our analysis employs the 1/n expansion and the radially WKB approximation. The lowest

order expansion corresponds to local stability and mode structure along the field line and is

solved via asymptotic variational analysis. The next order yields global stability and mode

structures via the quantization condition.

Analytical and numerical analyses demonstrate that, when the non-perturbative EP wave-

particle resonant effect is considered, (i) the BAE is radially localized by the EP-pressure-

gradient drive and the lowest bound state is most unstable, and (ii) the BAE exhibits the

typical twisting radial mode structure in contrast to the ideal MHD limit with up-down

symmetry. The present results offer specific theoretical explanations for the experimental

and numerical simulation observations of the asymmetric mode structures in the poloidal

11



plane.

The present work, for the sake of simplicity, focuses on the anti-Hermitian effects due

to wave-particle resonant interactions. Other effects such as equilibria with sheared flow,

Landau damping as well as radial electric field are left out and need to be included in future

studies.

In addition, we note that this work is based on the approximation of |θk| � 1, which,

indeed, greatly simplifies our analysis. However, in some parameter regimes of interest, large

|θk| will be closely related to parallel momentum transport [40–47]. It is, thus, also desirable

to extend the present analysis to the regime of |θk| ∼ 1.

ACKNOWLEDGMENTS

One of authors (Ruirui Ma) would like to acknowledge with gratitude stimulating ex-

changes and discussions with Z. C. Feng and L. Yang. This work is supported by Natural

Magnet Confinement Fusion Energy Research Program under grant Nos. 2013GB104004

and 2013GB111004.

Appendix A: The explicit expression of the generalized inertia term, Λ, appearing

in Eq. (2)

This part closely follows Ref. 21.

Λ2 =
ω2

ω2
A

(
1− ω∗pi

ω

)
+ q2ωωti

ω2
A

[(
1− ω∗ni

ω

)
F (ω/ωti)−

ω∗T i
ω

G(ω/ωti)−
N2(ω/ωti)

D(ω/ωti)

]
, (A1)

with ω∗ni and ω∗T i being, respectively, the thermal ion diamagnetic frequencies due to density

and temperature gradient only. Furthermore, the functions F (x), G(x), N(x) andD(x), with

x = ω/ωti, τ = Te/Ti, and using the plasma dispersion function Z(x), are defined as

Z(x) = π−1/2

∫ ∞
−∞

e−y
2

y − x
dy

F (x) = x(x2 + 3/2) + (x4 + x2 + 1/2)Z(x)

G(x) = x(x4 + x2 + 2) + (x6 + x4/2 + x2 + 3/4)Z(x)

N(x) =
(
1− ω∗ni

ω

)
[x+ (1/2 + x2)Z(x)]− ω∗T i

ω
[x(1/2 + x2) + (1/4 + x4)Z(x)]

D(x) =
(1

x

)(
1 +

1

τ

)
+
(
1− ω∗ni

ω

)
Z(x)− ω∗T i

ω
[x+ (x2 − 1/2)Z(x)].

(A2)
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Appendix B: Detailed derivation of δWk(θk)

δWk represents EPs nonadiabatic contribution; and its the simplest expression for circu-

lating particles is given by [34]

δWk =
2πeq2R2

0

c2
ω

∫ ∞
−∞

dη 〈δS∗dδKd〉E , (B1)

where δSdE = Ωdf
−1/2gJ0(λρE) and δKdE satisfies Eq. (3) in the drift-center representation,

δKdE = δKEe
iηd , ηd = −λdE cos η, and λdE = k⊥ρdE = k⊥ΩdE/ωtE. For convenience, we use

the shifted variable η′ = η − θk. In the η′−Fourier conjugate space, it can be shown that

geodesic curvature is important for |sη′| > 1 (ε < kϑρdE < 1) [17, 28, 30, 34]. Therefore, we

have f−1/2g ' sin(η′ + θk).

Omitting the prime superscript in η′ and using the identity e−iλ cos η =
∞∑

p=−∞
ip(−1)pJp(λ)eipη,

we have

sin(η + θk) · eiηd =
∞∑
p=1

2(−1)pip+1pJp(λdE)

λdE
sin p(η + θk). (B2)

For |s|, |α| < 1 it is then reasonable to adopt the following trial functions

δΨ̂(η) '

 1 η <∼ 1/s

eiΛη η >∼ 1/Λ
.

Then, Eq. (3) can be reduced to

(ωtE∂η − iω)δKdE = i e
m
QF0

ω

∞∑
p=1

δSdp sin p(η + θk), (B3)

where

δSdp = ΩdEJ0(λρE)2(−1)pip+1pJp(λdE)

λdE
.

From Eq. (B3), we obtain

δKdE =
e

m

QF0

ω

∞∑
p=1

δSdp
p2ω2

tE − ω2

[
sin p(η + θk)−

ipωtE
ω

cos p(η + θk)

]
. (B4)

Finally, substituting Eq. (B4) into Eq. (B1), we obtain

δWk(θk) =
2πe2q2R2

0ω

mc2

〈 ∞∑
p=1

QF0

p2ω2
tE − ω2

∫ ∞
−∞

dη |δSdp|2
〉

=
8πe2q2R2

0

mc2

∞∑
p=1

〈
QF0

p2ω2
tE − ω2

∫ ∞
−∞

dη
J2

0 (λρE)p2J2
p (λdE)

λ2
dE

[
sin2 p(η + θk)

− ipωtE
ω

sin p(η + θk) cos p(η + θk)
]〉
.

(B5)

13



Keeping only the p = 1 leading order term and adopting the Padé approximation for Bessel

functions, Eq. (B5) can be reduced to Eq. (5).
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