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Abstract. Nonlinear electromagnetic gyrokinetic equations have been con-
structed without expanding the field variables into background and finite but
small-amplitude fluctuating components. In the long-wavelength limit, these ful-
ly (un-expanded) nonlinear gyrokinetic equations recover the well-known drift-
kinetic equations. In the expanded limit, they recover the usual nonlinear gyroki-
netic equations. These equations, thus, can be applied toward long-time simula-
tions covering from microscopic to macroscopic spatial scales.
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1. Introduction

In magnetized plasmas, reduced kinetic equations are
often employed to study low-frequency electromagnetic
fluctuations either analytically or by direct numerical
simulations. Such reduced kinetic equations are
derived via systematic expansions of the original
complete kinetic equations in terms of the small ratio
between the short gyroperiod and the long fluctuation
time scales. Two well-known reduced kinetic equations
are the drift-kinetic equation [1, 2], and the gyrokinetic
equation [3, 4, 5, 6, 7, 8].

More specifically, let ǫ ≡ ρ/L be the small
expansion parameter. Here, ρ = vt/Ω and L are,
respectively, the Larmor radius and the scale length of
the magnetic field B; vt is the characteristic (thermal)
speed, and Ω is the cyclotron frequency. Furthermore,
since the electromagnetic fields consist, typically, of
background and fluctuating components, let us take
ω and k = k⊥+k‖b be, respectively, the characteristic
frequency and wave vector of the electromagnetic
fluctuations. Here, b = B/B is the unit vector
along the field line, ⊥ and ‖ denote the components
perpendicular and parallel to B, respectively. The
drift-kinetic orderings and the corresponding drift-
kinetic equation are then [1]

|ω
Ω
| ∼ |kρ| ∼ O(ǫ), (1)

and

[∂t + Ṙ · ∇+ V̇‖∂V‖
]Fd(R, V‖, µ, t) = 0. (2)

Here, R denotes the guiding-center position, and the
guiding-center phase space motion (Ṙ, V̇‖) will be
described by the guiding-center velocity

Ṙ = V‖b+VE +Vd, (3)

with

VE =
cE× b

B
, (4)

Vd =
1

Ω
b× (µ∇B + V 2

‖ κ), (5)

and the parallel force equation

V̇‖ =
B∗

B∗
‖

· ( q
m
E− µ∇B), (6)

with the modified magnetic field

B∗ = B+
V‖B

Ω
∇× b, (7)

the magnetic curvature κ = (b · ∇)b and the magnetic
moment µ = V 2

⊥/(2B). In deriving Eq. (2), we
have assumed, to simplify this presentation, that Fd is
nearly isotropic and only relevant lowest-order terms
are kept.

As noted by Hazeltine [1], the ω ordering in
Eq. (2) represents a maximal ordering. That is, ω
corresponds to both linear and nonlinear frequencies.
In other words, if we decompose the fields into the
background and fluctuating components, for example,
B = B0 + δB, we correspondingly have Ṙ = Ṙ0 + δṘ
and Eq. (1) implies that

|ω| ≡ |∂t ln |δB|| ∼ |ωnl| ≡ |δṘ·∇ ln |δB|| ∼ O(ǫ)|Ω|.(8)
Equation (8), thus, establishes an upper bound on the
fluctuation amplitude (e.g., |δB|/|B|). In the case of
drift-kinetic equation, the background and fluctuating
components could have comparable magnitudes. Con-
sequently, as emphasized by Hazeltine [1], Eq. (2) does
not involve the expansion in the distribution function
or electromagnetic fields and thus facilitates, in princi-
ple, simulations on long time scales.

As to the nonlinear gyrokinetic equation, its main
focus is on drift-type instabilities which, typically,
peak at perpendicular wavelengths of the order of
the thermal Larmor radius. Thus, the nonlinear
gyrokinetic orderings are referred as [3, 4, 5, 6]

|ω
Ω
| ∼ |k‖ρ| ∼ | k‖

k⊥
| ∼ O(ǫ), |k⊥ρ| ∼ O(1), (9)

and

|δf
f
| ∼ |δB

B
| ∼ O(ǫ). (10)

It is worth emphasizing that the |δB|/|B| ∼ O(ǫ)
ordering enters to ensure the validation of Eq. (8) even
at |k⊥ρ| ∼ O(1); i.e.,

|ωnl

Ω
| ∼ |δṘ|

vt
|k⊥ρ| ∼ |δB

B
||k⊥ρ| ∼ O(ǫ). (11)

Nonlinear gyrokinetic equation, thus, involves expand-
ing physical quantities into background and finite but
small fluctuating components.

For example, recently, nonlinear gyrokinetic equa-
tions have been derived in terms of electromagnetic
fields [9, 10]. There, the distribution function is given
by [10]

〈f(x,v, t)〉 = 〈δfpol〉+ 〈T−1
g Fg〉, (12)
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where 〈A〉 represents gyrophase averaging of A,
the polarization contribution 〈δfpol〉 satisfies, by
employing the Padé approximation,

(1− ρ2∇2
⊥

2
)〈δfpol〉 =

q

m
∇⊥ · ρ

2

B0

∂F0

∂µ
δE⊥, (13)

F0 = F0(X, µ, U, t) is the background gyrocenter
distribution function, Tg = exp(ρ · ∇⊥), ρ = b0 × v/Ω
such that x = X+ ρ, and b0 = B0/B0 with B0 being
the backgroundmagnetic field. Fg, meanwhile, satisfies
the following nonlinear gyrokinetic equation

(∂t + Ẋ · ∇+ U̇∂U )Fg(X, µ, U, t) = 0, (14)

where the gyrocenter equations of motion are given by

Ẋ = Ub0 +
1

Ω
b0 × (µ∇B0 +U2b0 · ∇b0) + 〈δUg〉,(15)

including the perturbed gyrocenter velocity

〈δUg〉 = [
c

B0

〈δE⊥〉 −
µ

Ω
∇〈δB‖〉∗]×b0 +U

〈δB⊥〉
B0

,(16)

and

U̇ =
B∗

B0

· [ q
m
〈δE〉 − µ∇(B0 + 〈δB‖〉∗)], (17)

with the approximate modified magnetic field as

B∗ = B0 + 〈δB⊥〉+
UB0

Ω
b0 × (b0 · ∇)b0, (18)

and 〈A〉∗ denoting the gyrophase average at the
effective Larmor radius ρ/

√
2 [11]. Again, note that

this set of nonlinear gyrokinetic equations corresponds
to the expansions in terms of finite but small
fluctuation amplitudes, i.e., f = f0 + δf + · · · and
B = B0 + δB + · · ·. That the background physical
variables are evolving at slow nonlinear time scales
implies that, over a long time scale, the background
could deviate significantly from the initial state. This
further indicates that an additional set of equations is
needed to evolve the background variables [6, 12]; and,
therefore, makes long-time simulations rather complex
and difficult. It is then obviously desirable to derive a
set of un-expanded nonlinear gyrokinetic equation, and
this is the main goal and contribution of the present
work.

2. Construction of Fully Nonlinear

Gyrokinetic Model

To derive the un-expanded (or fully) nonlinear
gyrokinetic equations, it is instructive to take the
|k2⊥ρ2| → 0+ limit of the expanded nonlinear
gyrokinetic equations discussed above. We then have
|〈δfpol〉| = 0+, 〈A〉 = 〈A〉∗ = A and 〈f(x,v, t)〉 = Fg.
The gyrocenter phase space motion, correspondingly,
reduces to

Ẋ = U [b0 +
δB⊥

B0

+
1

Ω
b0 × (Ub0 · ∇b0)]

+
1

Ω
b0 × µ∇(B0 + δB‖) +

c

B0

δE⊥ × b0, (19)

and

U̇ = [b0 +
δB⊥

B0

+
U

Ω
b0 × (b0 · ∇)b0]

· [ q
m
δE− µ∇(B0 + δB‖)]. (20)

On the other hand, if we expand the drift-kinetic
equations, Eqs. (2–7), by letting E = δE and B =
B0+ δB, it can be readily shown that the lowest-order
relevant terms recover Eqs. (19–20), and the resultant
Fd recovers Fg in the k2⊥ρ

2 → 0+ limit, as one would
expect.

That the gyrokinetic Fg in the k2⊥ρ
2 → 0+ limit re-

covers the drift-kinetic Fd in its expanded form suggest-
s the interesting possibility of constructing nonlinear
electromagnetic gyrokinetic equations without expand-
ing the physical quantities into background and finite
but small-amplitude fluctuating components. More
specifically, examining the unexpanded drift-kinetic e-
quations, Eqs. (2–7), and the expanded nonlinear gy-
rokinetic equations, Eqs. (14–18), readily suggests the
following unexpanded (fully) nonlinear electromagnet-
ic gyrokinetic equations:

〈F 〉 = 〈Fpol〉+ 〈T−1
g Fg〉, (21)

where the polarization contribution

Fpol =
q

m
[φ− T−1

g 〈φ〉] ∂

B∂µ
T−1
g Fg (22)

can be conveniently expressed, using the Padé
approximation and E⊥ = −∇⊥φ, as the reduced form
more suitable for numerical implementation

(1− ρ2∇2
⊥

2
)〈Fpol〉 =

q

m
∇⊥ · [ρ

2

B

∂

∂µ
〈T−1

g Fg〉E⊥]. (23)

Thus, the Padé approximation has the scope of ren-
dering an integral equation into an approximated par-
tial differential equation (PDE). Being this procedure
based on an approximation, other choices of Eq. (23)
are possible if the intended application is focused on
a specific physics problem. Meanwhile, the gyrocenter
response is determined by

(∂t + Ẋ · ∇+ U̇∂U )Fg(X, µ, U, t) = 0, (24)

with the gyrocenter phase space motion

Ẋ = U
B∗

g

B∗
g‖

+UB +UE , (25)

UB =
µB

ΩB∗
g‖

bg ×∇〈Bg〉∗, (26)

UE =
c〈E⊥〉 × bg

B∗
g‖

(27)

and

U̇ =
B∗

g

B∗
g‖

· [ q
m
〈E〉 − µ∇〈Bg〉∗]. (28)
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In the unexpanded gyrokinetic formulation, the
modified magnetic field has the form

B∗
g = Bg +

UB

Ω
∇× bg, (29)

where Bg = 〈B〉 ≡ Bgbg and B∗
g‖ = Bg · bg.

We emphasize, again, that the above fully nonlinear
electromagnetic gyrokinetic equations, as constructed,
contain the complete finite-Larmor-radius effects and
are un-expanded; and, therefore, remain valid,
in principle, for fluctuating amplitudes comparable
to the background ones. Furthermore, as noted
earlier, without expanding variables into background
and fluctuating components, no separate background
and fluctuation equations are needed; which could
significantly expedite simulations over long-time scales.
In addition, since these equations reduce to the proper
drift-kinetic equations in the long-wavelength limit,
they are applicable to simulations covering the entire
microscopic to macroscopic spatial scales.

It is certainly desirable to generalize these
equations to include terms due to velocity-space
anisotropy. Taking the expanded nonlinear gyrokinetic
equations [6] and follow the approaches of [10] and
above, we can readily construct that, with anisotropy,
Eq. (21) is modified to

〈F 〉 = 〈Fpol〉+ 〈T−1
g Fg〉+ 〈Fmm〉+ 〈Ffh〉, (30)

where

〈Fmm〉 = −〈T−1
g [µ〈Bg〉∗(

∂

Bg∂µ
− ∂

U∂U
)Fg ]〉,

and, with the Padé approximation,

(1− ρ2∇2
⊥

2
)〈Ffh〉

= − q

m
b · ∇⊥ × [

ρ2

2
(

∂

B∂µ
− ∂

U∂U
)〈T−1

g Fg〉
UB

c
].

〈Fpol〉 and Fg, meanwhile, remain the same as given by
Eqs. (23) and (24). Anisotropy, thus, contributes to,
respectively, the additional mirror-mode 〈Fmm〉, and
fire-hose 〈Ffh〉 terms, as we shall anticipate. Also, from
the above derivation, we note that, in the drift-kinetic
equations [1], the anisotropy terms ∝ [∂/(B∂µ) −
∂/(U∂U)]Fd are, typically, negligible.

3. Conclusions

In conclusion, we have constructed a set of fully
(un-expanded) nonlinear electromagnetic gyrokinetic
equations. These equations asymptotically agree
with the drift-kinetic equation in the long-wavelength
limit, and the usual nonlinear gyrokinetic equation
in the expanded short-wavelength limit. They are,
thus, applicable to simulations covering the wide
range of macroscopic to microscopic scales. In the
long wavelength limit, for example, they recover

various forms of collisionless MHD equations as
insightfully discussed in Ref [2]. In addition, since
these equations are constructed without expanding
into background and small-amplitude fluctuating
component, we submit that they are suitable for
long-time stimulations where the background plasma
state could evolve sufficiently away from the initial
state. Finally, we note that, as these equations
are constructed ad hoc via asymptotic matching with
the various limiting cases, it will be interesting to
derive/improve these fully nonlinear electromagnetic
gyrokinetic equations based on fundamental analytical
approaches. A more thorough derivation should also
include any additional higher order terms to ensure
proper conservation theorems, which can be crucial
in long-time simulations. Such an analysis should be
pursued in the future.
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