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The stability of ion-temperature gradient driven mode (ITG) in the presence of a given radial
electric field is investigated using nonlinear gyrokinetic theory. It is found that, radial electric
field induced poloidal rotation can significantly stabilize ITG, while the radial electric field induced
density perturbation may slightly distort the ITG parallel mode structure, but has little effect on
ITG stability.

I. INTRODUCTION

Drift waves (DWs) turbulence [1], driven by free energy
associated with plasma pressure gradients, are considered
as candidates for inducing anomalous plasma transport
and degradation of confinement in magnetically-confined
fusion (MCF) devices. Ion-temperature gradient driven
mode (ITG) is one of the most intensively studied DWs
due to its potential role in causing anomalous ion ther-
mal transport, which is much concerned in future fusion
reactors. ITG has two branches, i.e., a slab branch by
the coupling of ion parallel compression and diamagnetic
drift, and a toroidal branch by the coupling of diamag-
netic drift with the unfavored curvature in the weak field
side [2, 3]. In-depth understanding of the mechanisms
for ITG linear stability, nonlinear evolution and eventu-
al saturation, is needed for quantitative understanding
of plasma confinement in future tokamaks. Excitation
of zonal flows (ZFs), is considered as an important route
for ITG self-regulation, and the regulation is achieved via
nonlinear excitation of ZFs by ITG via modulation insta-
bility as ITG amplitude exceeds the threshold induced by
frequency mismatch, which in turn, scatters ITG into the
linearly stable short radial wavelength regime [4, 5].

ZFs are typically meso-scale radial corrugations with
toroidally symmetric (n = 0), and predominantly
poloidally symmetric (m ≃ 0) scalar potential fluctua-
tion, and consist of zero-frequency ZF (ZFZF) [6] and
its finite frequency counter-part, geodesic acoustic mod-
e (GAM) [5, 7]. Here, m/n are the poloidal/toroidal
mode numbers of the torus. The nonlinear interaction
of ITG with ZFs are observed in experiments [8–12],
and the nonlinear interactions can be confirmed by bi-
coherence analysis. The suppression of ITG and the as-
sociated transport by self-consistently excited ZFs is ob-
served in large scale simulations [13–16], and it is also
found the threshold on pressure gradient on ITG stability
is up-shifted as nonlinear effects are taken into accoun-
t. Furthermore, the radial electric field Er associated
with large-scale mean flow, as well as its gradient, is al-
so observed to be related to turbulence suppression and
confinement improvement, and possibly related to the
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formation of transport barrier, and transition from low-
to high-confinement regime.

ZFs are linearly stable to plasma expansion free energy.
However, due to its finite frequency, GAM can resonant
with, and be linearly excited by free energy associated
with energetic particles (EPs) velocity space anisotropy.
This EP-induced GAM (EGAM) is observed in DIII-D
experiment with counter-current neutral beam injection
[17], and the theoretical interpretation are given based
on GAM continuum mode excitation by transit resonance
with EPs [18–20]. With the regulation of DW turbulence
by ZFs in mind, excitation of EGAM by externally in-
jecting energetic ions into the DW localization region is
proposed as a potential active control of DW turbulences
[21]. However, recent gyrokinetic simulations show that,
after the excitation of EGAM due to EPs injection, the
ITG turbulence is instead driven unstable from Dimits
shift nonlinearly marginally stable region [22, 23]. These
simulation results seem to be contradictory to the specu-
lation based on DW turbulence suppression by ZFs. One
possible explanation is that, for the marginally stable
ITG in the Dimits shift region, the balanced nonlinear-
ly coupled system [5, 24, 25] will give energy to ITG, as
GAM are strongly driven by EPs. Motivated by these
simulations, in this work, we will study the nonlinear in-
teraction between ITG and given radial electric field [35]
by assuming the time scale separation between ITG and
the oscillating electric field, i.e., assuming the ITG fre-
quency and growth rate are both much larger than the
electric field oscillating frequency, and study the “linear”
stability of ITG in the presence of the radial electric field.
This is achieved by deriving an ITG governing mode e-
quation in the existence of the radial electric field induced
density modulation as well as poloidal rotation, which is
then solved in ballooning space for the ITG local disper-
sion relation. We note that, the present theory, describes
the ITG parallel mode structure and thus, solves for local
dispersion relation along the magnetic field lines. Global
effects such as Er-well, and their competition with dia-
magnetic well in pedestal region of H-mode plasma, will
not be included in this local theory, and will be addressed
in a future publication. Our model may also shed light
on understanding turbulence suppression by mean flow,
whose mechanism is not yet fully understood.

The rest of the paper will be organized as follows. In
section II, the ITG eigenmode equation in the existence
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of given radial electric field will be derived using nonlin-
ear gyrokinetic theory. In section III, the ITG stability
will be investigated assuming a radial electric field with
finite frequency, i.e., that of GAM/EGAM, in both short-
and long-wavelength limit. Summary and discussions are
given in Section IV.

II. GENERAL FORMALISM

For simplicity of discussion while focusing on the main
scope of the present paper, we consider a tokamak with
axisymmetric concentric circular magnetic surface and s-
traight field line, and a left-handed coordinate (r, θ, ϕ) is
adopted, with r, θ and ϕ being the minor radius, poloidal
and toroidal angles of the torus, respectively. The equi-
librium magnetic field is given as B = B0[(1−ϵ cos θ)eϕ+
ϵeθ/q], where ϵ ≡ r/R is the inverse aspect ratio, R is
the on-axis major radius and q ≡ rBϕ/(RBθ) is the safe-
ty factor. ITG generally have ballooning structure with
high mode numbers, and the characteristic scale of equi-
librium profile is generally much larger than distance be-
tween neighbouring mode rational surfaces. Consequent-
ly, the perturbed quantity can be expressed as

δϕ = einϕ−iωt
∑
j

Φ̂ (s− j) e−i(m0+j)θ. (1)

Here, s ≡ (r−r0)/∆r = nq−m0, r0 denotes the reference
rational surface with nq(r0)−m0 = 0, ∆r = 1/(n∂q/∂r)
is the distance between neighboring mode rational sur-
faces, and |j| ≪ m0 is an integer.
The nonlinear gyrokinetic equation [26] is used to in-

vestigate the interaction between ITG turbulence and the
given radial electric field. Following Ref. [3], we take the
flat density gradient limit to focus on effects of ion tem-
perature gradient, i.e., assuming ηi = Lni/LTi → ∞,
with Lni = −ni/(∂ni/∂r) and LTi = −Ti/(∂Ti/∂r) be-
ing the characteristic scale length of ion density and tem-
perature nonuniformity, respectively. Note that the fre-
quency of the radial electric field is generally much lower
than the frequency and growth rate of ITG turbulence,
so the slow time-dependence of Er can be neglected com-
pared to fast ITG time scale. The validity of this assump-
tion will be verified a posteriori. The nonlinear gyroki-
netic equation for ion response to ITG can be written
as (

ω − k∥v∥ + ωD

)
δHI =

e

Ti
J0
(
ω + ωT

∗i
)
F0iδϕI

−ΛJk′δHk′′δϕk′ . (2)

Here, k∥ ≡ (nq −m) / (qR) is the parallel wavenumber,

ωD ≡ 2ωdC
(
x2
⊥/2 + x2

∥

)
is the magnetic drift frequency,

with ωd = kθcTi/(eBR), x⊥ = v⊥/vti and x∥ = v∥/vti
being the ion perpendicular/parallel velocities normal-

ized by thermal velocity vti =
√
2Ti/mi, respectively.

C = cos θ−kr sin θ/kθ is related to the curvature with kr

and kθ = m0/r0 being the radial/poloidal mode number-
s. δHI is the nonadiabatic ion response to ITG, J0 (k⊥ρi)
is the Bessel function of zero-index accounting for Finite
Larmor radius (FLR) effects, ρs = mv⊥,sc/(eB) is the
Larmor radius of species s, F0i is the equilibrium ion dis-

tribution function, and ωT
∗i = ω∗Ti

(
x2
⊥ + x2

∥ − 3/2
)

is

the ion diamagnetic frequency in the flat density limit,
with ω∗Ti = kθcTi/(eBLTi). Furthermore, the second
term on the right hand side of Eq. (2) is the formal non-
linear term, where Λ ≡ i (c/B0)

∑
k=k′ + k′′ b · (k′′ × k′),

and other notations are standard. It is noteworthy that
there are two nonlinear terms, i.e., radial electric field in-
duced poloidal rotation of ITG ∝ δϕEδHI and periodici-
ty along the magnetic field line induced by density pertur-
bation associated with the radial electric field ∝ δϕIδHE .
Here, subscripts “E” and “I” represent quantities associ-
ated with radial electric field and ITG, respectively. The
dispersion equation can be derived from charge quasi-
neutrality condition

eN0δϕ

Te
+ ⟨δHeJ0⟩ = −eN0δϕ

Ti
+ ⟨δHiJ0⟩ , (3)

with eN0δϕ/Te and −eN0δϕ/Ti being adiabatic respons-
es of electron and ion, respectively, and ⟨· · · ⟩ representing
velocity space integration. The derivation follows closely
the procedure of Ref. [27]. For typical ITG fluctuation
with k∥v∥,e ≫ ω ∼ ω∗i ≫ ωd, k∥v∥,i, electrons responde
adiabatically, i.e., δHI,e = 0. The nonadiabatic ion re-
sponse can be derived as

δHI,i ≈
Λ

ω

[
−
(

e

Te
+

e

Ti

)
F0δϕE + δHE

]
δϕI

+
e

Ti
J0F0

(
1 +

ωT
∗i
ω

)(
1 +

k∥v∥

ω
+

k2∥v
2
∥

ω2
− ωD

ω

)
δϕI . (4)

The two terms in first bracket of Eq. (4) are the for-
mal nonlinear terms, and represent the effects associated
with potential and density fluctuation of Er, respectively.
Quasi-neutrality condition of ITG is applied to simplify
the first term. Substituting the ion and electron response
into quasi-neutrality condition (3), one then have the IT-
G WKB dispersion relation{

1

τ (1 + ω∗Ti/ω)
+ b⊥ −

k2∥v
2
ti

2ω2
+

2ωdC

ω
+

Λ

ω + ω∗Ti

×
[(

1 +
1

τ

)
δϕE − Ti

e

⟨
δHE,i

N0

⟩]}
δϕ = 0, (5)

with b⊥ ≡ k2⊥ρ
2
i /2, and k⊥ being the perpendicular

wavenumber. The first four terms of Eq. (5) constitute
the linear ITG dispersion relation, with the first three
terms being respectively, adiabatic electron response, the
FLR effect (polarization) and parallel compressibility,
while the forth term related to magnetic drift peculiar
in toroidal configuration, resulting in coupling of neigh-
bouring poloidal harmonics. The last two terms are non-
linear modifications due to poloidal rotation and density



3

modulation associated with the radial electric field, re-
spectively. Noting k2⊥ = k2θ − ∂2/∂r2, the eigenmode
equation in real space for j-th poloidal harmonics can be
derived as(

bθ ŝ
2 d2

dz2
− 1

τ (1 + ω∗Ti/ω)
− bθ +

k2∥v
2
ti

2ω2

)
Φ̂z

=
ωd

ω

[
Φ̂z+1 + Φ̂z−1 + ŝ

d

dz

(
Φ̂z+1 − Φ̂z−1

)]
+

Λ

(ω + ω∗Ti)

[(
1 +

1

τ

)
δϕE −

⟨
TiδHE,i

eN0

⟩]
Φ̂z. (6)

Here, ŝ ≡ r (∂q/∂r) /q is the magnetic shear, τ ≡ Te/Ti,
bθ ≡ k2θρ

2
ti/2, z ≡ s − j = nq −m is the normalized dis-

tance to the mode rational surface. The first term on the
right-hand side of Eq (6) comes from the curvature drift
induced coupling between neighbouring poloidal harmon-
ics. Moreover, the term proportional to ⟨δHE,i⟩ may also
have poloidal-dependence, and causes additional toroidal
coupling. For instance, GAM with ω ≫ ωtr,i, is charac-
terised by up-down anti-symmetric (∝ sin θ) density fluc-
tuation, while ZFZF with ω ≪ ωtr,i, has cos θ-type den-
sity fluctuation. Here ωtr,i ≡ v∥,i/(qR) is the circulating
ion transit frequency. Eq. (6) can be analyzed using the
ballooning mode formalism framework [28], which is ac-

complished by taking Φ (η) =
´
Φ̂ (z) exp (−iηz) dz, with

η being the extended poloidal angle along the magnetic
field lines. The ITG eigenmode equation in ballooning
space reads

d2Φ(η)

dη2
+ q2Ω2b

(
τΩ

1 + τΩϵ
1/2
Ti

+ b
(
1 + ŝ2η2

)
+

2

Ω
(cos η + ŝη sin η) + (1 + τ)∆EδϕE

−τ∆E

⟨
TiδHE,i

eN0

⟩)
Φ (η) = 0, (7)

where Ω ≡ ω/(τ
√
ω∗Tiωd), b ≡ τbθ/

√
ϵTi, ϵTi ≡ LTi/R

and ∆E ≡ Λ/[ω∗Ti
√
ϵTi

(
1 + τΩ

√
ϵTi

)
]. Eq. (7) is gener-

al and can be applied to study the nonlinear modification
of any given radial electric field to ITG stability, with
the nonlinear modifications accounted for by the last two
terms. In this work, as a proof of principle demonstra-
tion, we will consider GAM/EGAM-like oscillations with
finite frequency, while the effects of ZFZF can be inves-
tigated straightforwardly following the same approach.
Since this is a local model describing the parallel mode
structure along the magnetic field lines, the global radi-
al envelope of EGAM is not taken into account. It is
natural to take the dominant m = 0, 1 components of
nonadiabatic ion response δHE,i [29]

δHE,i =
eF0δϕE

Ti

[
1− ωDr

ωG

(
x2
⊥
2

+ x2
∥ + τ

)]
, (8)

and m = 0 component of δϕE , i.e., δϕE , where (· · ·) ≡´ 2π
0

(· · · )dθ/2π represents surface averaged quantity. The

higher orderm = 1 density perturbation of GAM/EGAM
is included, to account for its unique role in inducing pe-
riodic modification to the ITG eigenmode potential well
along the magnetic field line, that determines the condi-
tion for ITG stability. Here, ωG =

√
7/4 + τvti/R0 is the

real frequency of GAM, ωDr = 2ωdr sin θ is the magnetic
drift frequency associated with geodesic curvature, with
ωdr ≡ krcTi/(eBR).

III. EFFECTS OF Er ON ITG LINEAR
STABILITY

With specified expression of δHE,i presented in Eq.
(8), Eq. (7) can be written as

d2Φ

dη2
+ q2Ω2b

(
τΩ

1 + τΩϵ
1/2
Ti

+ b
(
1 + ŝ2η2

)
+∆EδϕE

+
2

Ω
(cos η + ŝη sin η) + ∆′

EδϕE sin η

)
Φ = 0, (9)

where ∆EδϕE represents modification due to the elec-
trostatic potential, and ∆′

EδϕE sin η is originated from
the m = 1 density perturbation of EGAM, with ∆′

E ≡
(2ωdr/ωG) τ (1 + τ)∆E .

A. Short-wavelength limit

In the short-wavelength limit, i.e., b ∼ O (1), the
eigenfunction is localized in ballooning space [3]. Thus,
strong coupling approximation can be adopted by tak-
ing cos η ≈ 1 − η2/2 and sin η ≈ η [30]. Note that, the
assumption underlying the above strong coupling approx-
imation is that the mode is localized around η = 0, which
is not necessarily the case as clearly shown by the shift
∆η as discussed below in Eq. (10). However, as we show
in Fig. 3, the mode structure shift ∆η is quite small, the
above assumption is still valid. The eigenmode equation
then becomes

d2Φ

dη2
+ q2Ω2b

(
τΩ

1 + τΩϵ
1/2
Ti

+ b+
2

Ω
+∆EδϕE

+

(
bŝ2 +

2ŝ− 1

Ω

)
η2 +∆′

EδϕEη

)
Φ = 0, (10)

which can be rewritten as a standard Weber equation by
taking η′ = η + ∆η, with ∆η = ∆′

EδϕE/(2bŝ
2 + 2(2ŝ −

1)/Ω) representing the mode shift from the unfavourable
curvature region. The most unstable ground eigenmode
is given by δϕ = exp(−σ(η +∆η)2) with

σ =
q2

2

(
τbΩ3

1 + τΩϵ
1/2
Ti

+ 2bΩ+ b2Ω2

)

+
q2Ω2b

2

(
∆EδϕE −

(
∆′

EδϕE

)2
4 (bŝ2 + (2ŝ− 1) /Ω)

)
.
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The half width of the eigenmode in η space is propor-
tional to 1/b. The corresponding dispersion relation is

q2Ω2b

[
τΩ

1 + τΩϵ
1/2
Ti

+
2

Ω
+ b+∆EδϕE

−
(
∆′

EδϕE

)2
4 (bŝ2 + (2ŝ− 1) /Ω)

]2
+

(
bŝ2 +

2ŝ− 1

Ω

)
= 0.(11)

The dispersion relation is similar to corresponding lin-
ear result [3], except the last two terms in the square
bracket from the contribution of radial electric field in-
duced poloidal rotation and density fluctuation, respec-
tively. The dependence of ITG growth rate and real fre-
quency on the radial electric field are solved from the
analytical dispersion relation (11), which are then com-
pared with the numerical solution of Eq. (9), and good
agreement between analytical and numerical results are
obtained, as shown in Fig. 1a and 1b, respectively. The
ITG growth rate decreases significantly with increasing
δϕE . We then analyze the contribution of the radial elec-
tric field induced poloidal rotation and density modula-
tion on ITG stability, by turning off the corresponding
terms in Eq. (9). It is shown in Fig. 2 that, when the
Er induced poloidal rotation is kept while the density
perturbation is turned off, the ITG growth rate is almost
the same as that with both effects properly accounted
for; while as only the Er induced density perturbation is
kept, the ITG growth rate is almost independent of the
scalar potential. We thus conclude that the reduction of
the growth rate is mainly due to the potential fluctuation
(poloidal rotation). In addition, it is found that the ITG
growth rate is of order Cs/LT , which is much larger than
GAM/EGAM frequency ∼ Cs/R, hence our analysis, by
assuming GAM/EGAM frequency is much smaller than
ITG frequency and growth rate, is self-consistent. The
mode structure is also shown in Fig. 3, and it is clear-
ly seen that the peak of the mode structure shifts away
from η = 0 and the even symmetry is slightly broken,
resulting from the odd modification to the potential well
introduced by the density fluctuation of finite frequen-
cy Er (∝ sin θ) as denoted by ∆′

E . We note that, Eq.
(9) can be further simplified, by substituting the quasi-
neutrality condition of GAM/EGAM into Eq. (7) to re-
place the last term proportional to ⟨δHE,i⟩. This process
will introduce O(k2rρ

2
i ) uncertainty since it is ⟨J0δHE,i⟩

in the quasi-neutrality condition instead of the ⟨δHE,i⟩
in Eq. (7). In this case, the obtained ITG eigenmode
equation will be even in η. One can then conclude the
symmetry breaking induced by the density modulation
finite frequency radial electric field cannot be larger than
O(k2rρ

2
i ), and is thus weak, as shown by our numerical

results.

0 0.05 0.1e
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FIG. 1: The dependence of normalized growth rate (a)
and real frequency (b) of ITG, which are normalized by

Cs/LTi, on the normalized EGAM/GAM intensity
eδϕE/Ti. The circles represent the analytical result

given by Eq. (11) while diamonds are numerical result
of Eq. (9). Here, C2

s ≡ 2Te/mi is the sound speed,
ϵTi = 0.2 and b = 1.
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T
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E
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E
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E
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E
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E
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FIG. 2: Analytical result of integrated and separated
effects of potential and density fluctuation of

GAM/EGAM.

B. Long-wavelength limit

For typical tokamak plasmas, strong coupling approx-
imation is usually a crude constraint. In more gen-
eral cases, b ≪ 1 (long-wavelength limit) is satisfied,
and strong coupling approximation no longer holds. In
the long-wavelength limit, there are two branches, i.e.,
toroidal branch and slab branch. We are more con-
cerned about the toroidal branch [3], which is charac-
terized by fast variation over connection length scale
(η ∼ O (1)) and a superimposed slowly varying enve-
lope over secular scale. The self-consistent ordering is
given by balancing parallel compressibility and adiabatic
electron response, which results in Ω = O

(
b−1/3

)
. Tak-

ing Φ (η) = C0 (η1) cos η/2+S0 (η1) sin η/2 with η1 ≡ ϵ̂η,
and ϵ̂ = b1/3 denoting slow variation in η, the eigenmode
equations can be derived from vanishing coefficients of
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FIG. 3: The mode structure of the lowest eigenmode
when eδϕE/Ti = 0.1. Here, ϵTi = 0.2, b = 1.

sin η/2 and cos η/2:

dS0

dη1
+

(
b2/3q2Ω3τ

1 + τΩϵ
1/2
Ti

− 1

4b1/3
+ q2Ω2b2/3∆EδϕE

)
C0

+q2Ωb1/3ŝη1S0 +
1
2q

2Ω2b2/3∆′
EδϕES0 = 0, (12)

dC0

dη1
−

(
b2/3q2Ω3τ

1 + τΩϵ
1/2
Ti

− 1

4b1/3
+ q2Ω2b2/3∆EδϕE

)
S0

−q2Ωb1/3ŝη1C0 − 1
2q

2Ω2b2/3∆′
EδϕEC0 = 0. (13)

Equations (12) and (13) can be cast into a Weber equa-
tion for C0 and S0 by taking η′ = η+b1/3∆EδϕE/2ŝ. The
dispersion relation for the most unstable ground eigen-
state is

Ω3 +
ΛδϕE

τω∗T ϵ
1/2
Ti

Ω2 −
ϵ
1/2
Ti

4bq2
Ω =

1

4bq2τ
. (14)

Here, the second term of Eq. (14) comes from the m = 0
component of radial electric field induced poloidal rota-
tion, and other terms originate from linear dispersion re-
lation [3]. It is noteworthy that the m = 1 component of
density perturbation has no influence on the dispersion
relation, possibly due to the wideness of mode structure
in η space (shown in Fig. 6), and the m = 1 density
fluctuation is averaged out due to its fast variation along
the magnetic field lines. The dependence of ITG growth
rate and real frequency on scalar potential of the radi-
al electric field are solved from the analytical dispersion
relation, which are then compared with the numerical so-
lution of Eq. (9), and good agreement are obtained, as
shown in Fig. 4. An artificially small b = 0.01 is adopt-
ed to separate different scales. As shown in Fig. 5, the
Er induced poloidal rotation is the sole reason for the
reduction of the ITG growth rate, as clarified by our the-
oretical analysis; while its density perturbation has little
effects on ITG stability. There is also angle shift in the
mode structure from the unfavorable curvature region as
shown in Fig. 6, but it is less obvious than that in the
short-wavelength limit.
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FIG. 4: The growth rate (a) and real frequency (b) of
ITG versus the normalized EGAM/GAM intensity
eδϕE/Ti. The circles represent the analytical result

given by Eq. (14) while diamonds represent numerical
result of Eq. (9). Here, ϵTi = 0.2, b = 0.01.
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FIG. 5: Analytical result of integrated and separated
effects of GAM/EGAM potential and density

fluctuation. The result of retaining only potential
fluctuation is exactly the same as that of retaining both

effects.

IV. CONCLUSION AND DISCUSSION

In this paper, a governing equation is formulated to
investigate the ITG “linear” stability in the presence of
a given radial electric field, using nonlinear gyrokinetic e-
quation and ballooning mode representation. The effects
of the radial electric field on ITG linear stability consist
of Er-induced poloidal rotation and density fluctuation,
and their respective contribution to ITG stability are s-
tudied both analytically and numerically.

For typical tokamak parameters, the frequency of
Er is much lower than the time scale of ITG turbu-
lence, and thus, it is treated as static equilibrium. For
the adopted GAM/EGAM-like radial electric field with
ω ≫ ωtr,i, we found that the poloidal rotation is the
main reason for the significant reduction of the ITG
growth rate in short-wavelength limit and the sole rea-
son in the long-wavelength limit. On the contrary, the
up-down anti-symmetric density perturbation have little
suppression effect on ITG turbulence in both short- and
long-wavelength limit, which may be resulted from the
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FIG. 6: The mode structure of the most unstable mode
when eδϕE/Ti = 0.1. Here, ϵTi = 0.2, b = 0.01.

poloidally up-down anti-symmetric (∝ sin θ) density per-
turbation vanishes in the unfavourable curvature region
where ITG localizes. The density perturbation causes the
mode structure shift in the extended poloidal angle, due
to the finite frequency radial electric field induced sin η-
type density modulation that breaks the even symmetry
of the potential well, though this symmetry breaking is
weak byO(k2rρ

2
i ). The extension to the stability of ITG in

the presence of ZFZF or mean flow with frequency much
lower than ion transit frequency, and thus, up-down sym-
metric density perturbation (∝ cos θ), is straightforward.
It is found that, the radial electric field induced poloidal

rotation will significantly stabilize ITG; while the density
perturbation, though overlapping with the ITG localiza-
tion, plays secondary role, as in the GAM/EGAM case
investigated in the present work.

The present work, motivated to understand the numer-
ically observed “excitation” of ITG in the Dimits shift
region by EGAM, found instead that, the radial electric
field always play stabilizing role on ITG. Potential effects
that may modify the present picture based on local ITG
linear stability in the presence of a given radial electric
field, and interpret the numerical results of Ref. [22, 23],
include 1. modification of ITG radial envelope [31] by the
typically radially global mode structure of EGAM and 2.
the transient suppression of the ZF radial electric field
existing in the Dimits shift region as the excited EGAM
has opposite phase. These effects will be investigated in
a future work.
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