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A pairwise nuclear fusion algorithm for particle-in-cell simulations for arbitrarily weighted macro-
particles at relativistic energies is proposed. When comparing with a recent work by D. P. Higginson
et al [Journal of Computational Physics 388, 439 (2019)], our method is also fitted with the widely
used Coulomb scattering algorithm by Takizuka and Abe, Nanbu and Yonemura, and Sentoku and
Kemp. As the pairing scheme accounts for the entire macro-particle ensemble, the convergence of
our method is therefore of quite robust. The algorithm is benchmarked in situations with like-
particles, unlike-particles, thermonuclear plasmas, and beam-target fusion. It is shown that only
10 ∼ 100 macro-particle per cell is needed for the repeatability of fusion yields around 1%.

PACS numbers: 52.38.Kd, 41.75.Jv, 52.35.Mw, 52.59.-f

I. INTRODUCTION

The particle-in-cell (PIC) method [1] has established
itself as a state-of-the-art method to understand ki-
netic phenomena in laboratory, astrophysical and fusion-
relevant plasmas. Usually, the ions and electrons devi-
ate from thermal equilibrium distributions. As the nu-
clear fusion cross section depends on the relative veloc-
ity between ions, such deviations from equilibrium can
dramatically alter the emission of neutrons. Especially,
for the neutron sources via intense laser interaction with
pitcher-catcher target [2], intense ion beams at relativis-
tic energies are produced by the non-linear laser plasma
interactions, and their distributions significantly depart
from thermal distributions. For this reason, the PIC
method is currently maybe the only method for probing
the dynamics of fusion reactions, e.g., neutron yield and
spectra, alpha particle heating and self-generated elec-
tromagnetic fields. For computational and problem spe-
cific considerations, PIC simulations are often run with
arbitrarily weighted particles. In a recent work, D. P.
Higginson et al [3] proposed a method applying fusion re-
action to PIC simulations with differing particle weights
at non-relativistic energies. Such a method is based on
a simple pair scheme: particles undergo a collision with
only one pair and multiply by the number of unsampled
pairs. However such a pairing scheme is in contrast to
the series of works considering the entire macro-particle
ensemble, for instance by Takizuka and Abe [4], Nanbu
[5] and Yonemura, and Sentoku and Kemp [6]. Although
significantly much involved, this pairing scheme, that ac-
counting for the entire macro-particle ensemble, could en-
sure convergence of the simulation results by using small
number of macro-particles. Furthermore, in many mod-
ern PIC codes, for example, EPOCH [7], PICLS [6] and

LAPINS [8–11], the pairing scheme by Takizuka and Abe
[4], Nanbu and Yonemura [5], and Sentoku and Kemp [6]
has already been taken for Coulomb scattering simula-
tions. Therefore a pairwise nuclear fusion algorithm that
well fits with Coulomb scattering simulations and appli-
cable for particles at relativistic energies is certainly on
time and of great demand.

In this work, a pairwise nuclear fusion algorithm for
arbitrarily weighted macro-particles at relativistic ener-
gies is proposed and benchmarked in situations with like-
particles, unlike-particles, thermonuclear plasmas, and
beam-target fusion. This method is well fitted with
the widely used Coulomb scattering algorithm by Tak-
izuka and Abe, Nanbu and Yonemura, and Sentoku and
Kemp. As the used pairing scheme accounts for the
entire macro-particle ensemble, the convergence of our
method is therefore of quite robust. It is shown that
only 10 ∼ 100 macro-particle per cell is needed for the
repeatability of neutron yields around 1%.

II. NUCLEAR FUSION BETWEEN WEIGHTED
PARTICLES AT RELATIVISTIC ENERGIES

We begin by introducing a pairwise nuclear fusion
model for weighted particles at relativistic energies. Pairs
of particles undergoing nuclear fusions are determined at
random in each spatial cell. The pairing procedures be-
tween particles are identical to Takizuka and Abe [4],
Nanbu and Yonemura [5], and Sentoku and Kemp [6].
Similar with a recent work by D. P. Higginson et al [3],
energy and momentum exchanges via the nuclear fusion
are calculated for each pair, performed in the center-
of-momentum (CM) frame of the two particles. Here
we revise the calculation by following strictly relativistic
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kinematics in order to make the model applicable to the
ultra-relativistic regime.

A. Center-of-momentum frame

The kinematics of a relativistic nuclear fusion between
two particles with rest masses ma and mb, reduced mo-
menta ua = γava and ub = γbvb is best calculated in
the center-of-momentum frame of reference (CM). Note,
currently it is not affected by the weight of the colliding
particles. The velocity and relativistic factor of CM are

vCM =
maua +mbub

maγa +mbγb
(1)

and

γCM =
1

(1− v2
CM)1/2

. (2)

The reduced momenta ua,b as given in the laboratory
frame of reference (LAB) are transformed into the CM
frame by a Lorentz transformation,

γa,CM = γCM(γa − vCM · ua), (3)

and

ua,CM = ua+
γCM − 1

v2
CM

(vCM ·ua)vCM−γCMγavCM. (4)

It is easy to prove that maua,CM = mbub,CM, and
the velocities in CM frame are va,CM = ua/γa,CM and
vb,CM = ub/γb,CM. The relative velocity between the two
particles in the CM frame, required for the calculation of
the cross section of nuclear fusion, is given by

vrel =
va,CM − vb,CM

1− va,CM · vb,CM
. (5)

For the calculation convenience of the momenta of fu-
sion productions, we rotate the coordinate system of mo-
mentum space to the system in which the ua,z,CM-axis is
aligned with the momentum vector ua,CM. This trans-
formation matrix is represented by

R =

 cos(Θ) cos(Φ) cos(Θ) sin(Φ) − sin(Φ)
− sin(Φ) cos(Φ) 0

sin(Θ) cos(Φ) sin(Θ) sin(Φ) cos(Θ)

 , (6)

and [0, 0, ua,z,CM]T = R · [ua,x,CM, ua,y,CM, ua,z,CM]T.
Here Θ is the polar angle between ua,z,CM -axis and
the vector ua,CM, and Φ is the azimuthal angle between
ua,x,CM-ua,y,CM plane.

B. Fusion probability

The two fusion reactant macro-particles, a and b, have
the potential to undergo fusion and create two products,

c̄ and d̄, with an energy gain, Q. The fusion probability
for this interaction, Pab, is given by

Pab = nminσabvrel∆t, (7)

where nmin is the minimum density between particle
species a and b, σab is the cross section of nuclear fusion,
and ∆t is the time step of simulation. The cross-section
of many fusion reactions have been fitted and simulated
via various methods [12–16]. In general, theoretical and
fitted values of the cross-sections usually present data us-
ing the kinetic energy in the CM frame, Er = mr(γr−1),
where mr = mamb/(ma +mb), and γr = 1/(1− v2

rel)
1/2.

While experimentally, the cross section is usually tabu-
lated as a function of the kinetic energy of the projectile
Ea,lab, with Ea,lab = (ma + mb)Er/mb. Nuclear fusion
yield for each pair of macro-particles is

Yab = wminPab, (8)

where wmin is the minimum weight of macro-particles a
and b. To increase the number of macro-products gen-
erated, D. P. Higginson et al [3] introduced the “fusion
production multiplier”, Fmult; this increases the proba-
bility of fusion events, but decreases the weight of the
products. In actual simulations, Fmult is a varying pa-
rameter, which depends on how many fusion produced
macro-particles are required for data analysis.

C. Energies and momenta of fusion productions

Fusion products are produced in the CM frame, with
the conservation of total energy and momenta. Since all
of the products have the same weight, i.e. wmin/Fmulti,
the fusion process will conserve total energy and momen-
tum perfectly. Here as the total energy includes the rest
mass energy of particles, the kinetic energy, Ek,CM, is
not conserved, when rest mass energy is converted into ki-
netic energy, Ek,a,CM+Ek,b,CM+Q = Ek,c̄,CM+Ek,d̄,CM.
Although the total momenta is fully conversed, calculat-
ing the magnitude of fusion production is not straightfor-
ward at relativistic energies. For non-relativistic energies,
we have

m2
c̄u

2
c̄,CM = m2

d̄u
2
d̄,CM =

2mc̄md̄

mc̄ +md̄

[mr(γr − 1) +Q], (9)

where mr(γr − 1) is the total kinetic energy of a and b
in the CM frame, and here it can be easily proved that
mr(γr − 1) = Ek,a,CM +Ek,b,CM. However, at relativistic
energies, the right part of above equation is changed to
become [2mc̄md̄/(mc̄ +md̄)][mr(γr − 1) +Q+ α], where
α has to be solved numerically. We here would suggest
using golden section method [17] to solve α out, by liter-
ately decreasing the remains, δrem = |mc̄[(1+u2

c̄,CM)1/2−
1] +md̄[(1 + u2

d̄,CM)1/2 − 1]−mr(γr − 1)−Q|.
As for the calculation of emission angles of fusion pro-

ductions, c̄ and d̄, D. P. Higginson et al ]citeHigginson
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suggested an efficient random sampling method. How-
ever such a method only works for differential cross
section fittings using a polynomial expansion in cos(θ),
where θ is the polar angle of the emission for particle c̄.
For a general differential cross section

dσ(Ea,lab, θ)

dΩ
=

dσ(Ea,lab, θ = 0)

dΩ
f(θ), (10)

we would suggest Box-Muller’s algorithm [18] and Hor-
mann and Leydold’s algorithm [19]. When f(θ) is ev-
erywhere integrable, distribution function can be inte-
grated to the cumulative density function F =

∫ θ

0
f(θ)dθ

and the cumulative density function normalised such that
F (0) = 0 and limθ→π F (θ) = 1. The cumulative density
function is inverted:

θ = F−1(u); u ∈ (0, 1), (11)

When distribution function is not integrable, this process
cannot be done analytically, and numerical methods of
calculating the inverse cumulative distribution function
must be used. It requires evaluations of f(θ); integration
F =

∫ θ

0
f(θ)dθ and initial boundary conditions. The do-

main of F−1(θ) is split into equally spaced sub-intervals
and a cubic Hermite polynomial Hi(u) is used to inter-
polate values of θ for given u, with F (θ)i < u < F (θ)i+1.
For the entire interpolation process, the maximal accept-
able error

ϵu = max |F (Hi(u))− u|; u ∈ (ui, ui+1) (12)

can be specified, and intervals are split until this is satis-
fied for every i. For some fusion reactions, currently only
the total cross section as a function of projectile kinetic
energy is measured experimentally. Then we would sug-
gest to treat the emission of particles as isotropic with
respect to the polar angle, θ, in the CM frame. Either
way, the azimuthal angle ϕ is calculated as ϕ = 2πu,
with u uniformly distributed number between 0 and 1.
These angles are applied to the first product, c̄, to get its
velocity in the CM frame,

uc̄,CM
uc̄,CM

= [sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)]T. (13)

From momenta conservation, the velocity of the second
product, d̄, in the CM frame is

ud̄,CM = −mc̄

md̄

uc̄,CM. (14)

Then we invert the Matrix, R−1, which is a transpose of
Matrix Eq. (6),

R−1 =

 cos(Θ) cos(Φ) − sin(Φ) sin(Θ) cos(Φ)
cos(Θ) sin(Φ) cos(Φ) sin(Θ) sin(Φ)

− sin(Φ) 0 cos(Θ)

 ,(15)

to obtain the unrotated momenta in the CM Frame,
uc̄,CM = R−1uc̄,CM and ud̄,CM = R−1ud̄,CM. Finally,
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FIG. 1. (color online) Simulation results: the spectra of pro-
duced macro-neutrons for D(D,n)3He fusion, (a)-(c) corre-
spond to three different cases by placing 30, 60 and 90 macro
D ions initially.
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FIG. 2. (color online) Simulation results: the spectra of pro-
duced macro-neutrons for D(D,n)3He fusion, (a)-(c) corre-
spond to three different cases with initial temperatures, 3
keV, 5 keV, and 8 keV, respectively. In this benchmark, each
cell is placed 90 macro-D-ions initially.

the particle momenta uc̄ and ud̄ in the laboratory frame
are obtained by another Lorentz transformation,

uc̄ = uc̄,CM +
γCM − 1

v2
CM

(vCM · uc̄,CM) + γCMγc̄,CMvCM,

and

ud̄ = ud̄,CM +
γCM − 1

v2
CM

(vCM · ud̄,CM) + γCMγd̄,CMvCM.

These calculations will be done for each binary pair.

TABLE I. Simulation results: the total yield of neutrons for
D(D,n)3He fusion, when changing the number of macro-D-
ions for each cell initially. The initial temperature is 5 keV.

# of particles 10 20 30 40 50 60 70 80 90 100
real neutron yield 112 110 101 97 99 95 96 98 94 95
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TABLE II. Simulation results: the FWHM of neutrons spec-
tra for D(D,n)3He fusion, when changing the initial tempera-
ture of D-ions.
keV 1 2 3 4 5 6 7 8 9 10
FWHM 50 110 120 150 180 200 220 240 255 265

TABLE III. Simulation results: the total yield of neutrons
for D(T,n)4He fusion, when changing the number of macro-D
ions put for each cell initially. The initial temperature is 5
keV.
# of particles 10 20 30 40 50 60 70 80 90 100
real neutron yield 395 375 377 376 366 364 364 365 364 365

D. Paring method for weighted particles

The paring method is identical to the one described in
Takizuka and Abe, Nanbu and Yonemura, and Sentoku
and Kemp. We here approach this as a computational
description and do not dive deep into the physics, as there
are informative works on the subject.

Let wa,i represent the weight of the i-th particle of
species a, and similarly, wb,j is for j-th particle of species
b. The number density of each species in a cell is then
given by

na =

Na∑
i

wa,i, nb =

Nb∑
j

wb,j . (16)

When the number of macro-particle in a cell, Na > Nb,
the number of binary pair is Na, and the total number
of pairs of real particles is

nab =

Na∑
i

wa,iwb,i

max(wa,iwb,i)
. (17)

To make the total number of collision of real particles
equal to the case with uniformly weighted particles, the
time step fusion probability in Eq. (7) is corrected by
multiplying a factor na/nab. This is a common time in-
crement per real particle for each simulation grid at each
simulation step. When Nb > Na, nb/nab is used instead.

In the case of species when a and b are identical, for
example D(D,n)3He, the number of pair is N = Na/2 for
even Na, and Na = (Na + 1)/2 for odd Na. The number
of real particles that have collided is

naa = 2

N∑
i

w2i−1w2i

max(w2i−1w2i)
, (18)

and then the multiplying factor becomes na/naa.

III. BENCHMARKS AND APPLICATIONS

To benchmark the algorithm, we present three cases,
D(D,n)3He thermonuclear fusion, T(D,n)4He thermonu-

clear fusion, and D(D,n)3He beam-target fusion, to illus-
trate the fidelity of the method when using large differ-
ences in weights and numbers of macro-particles per cell.
The method described in this paper has already been im-
plemented in the PIC code LAPINS. All of the tests were
run with Coulomb scattering, particle motion and fields
disabled. Thus the plasmas remained constant over all
time and the fusion products were not able to heat the
plasma.

A. D(D,n)3He thermonuclear fusion

A simulation box with lengths Lx = 1 µm, Ly = 1 µm
and Lz = 10 µm is divided into 10 cells along z directions,
with each cell contains the same number of D-ions. The
density of D-ions is 1024 cm−3.

In the first benchmark, we assume the initial temper-
ature of D-ions is 5 keV. After simulating for 3.3 fs, the
spectra of produced macro-neutrons are displayed in Fig.
1. Here, Fig. 1 (a)-(c) correspond to three different cases
by placing 30, 60 and 90 macro-D-ions initially. As we
can see, the spectra of macro-neutrons are quite similar.
Note, the weight of each macro-neutron shown in Fig.
1 is different, which significantly depends on how many
macro-D-ions is placed initially. We display the total
neutron yield by summarizing each macro-neutron mul-
tiplying its weight in Table. I. As we can see, the repeata-
bility of fusion yields is around 1% when only 10 ∼ 100
macro-particle per cell is placed initially.

In the second benchmark, we fixed 90 macro D ions
for all simulations by varying the initial temperature of
D ions. Fig. 2, the spectra of produced macro-neutrons
are displayed. Here, Fig. 2(a), (b) and (c) correspond
to three cases with initial temperatures of 3 keV, 5 keV
and 8 keV. As we can see, the width of neutron spectra
is increasing when the initial temperature is increased.
In Table. II, we have tabulated the FWHM of neutron
spectra as a function of temperature. When comparing
the benchmark results as reported by D. P. Higginson et
al, great agreement is reached.

B. T(D,n)4He thermonuclear fusion

As for the T(D,n)4He thermonuclear fusion, the simu-
lation setup is quite similar with D(D,n)3He thermonu-
clear fusion, except that the same number of T-ions along
with D-ions is placed in each cell. Here we only bench-
mark the total yield of neutron, with initial temperature
fixed at 5 keV, by varying the initial number of macro-
D- and T-particles per cell. Table. III shows the yield of
neutron as a function of macro-particle numbers. As we
can see, the repeatability of fusion yields is also around
1% when only 10 ∼ 100 macro-particle per cell is placed
initially.
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FIG. 3. (color online) Simulation results: the spectra of pro-
duced macro-neutrons for D(D,n)3He fusion. Black, red and
blue lines represent the cases when the initial projected (re-
duced) momentum is 0.05, 0.1 and 0.2, respectively.

(a)

(b)

(c)

FIG. 4. (color online) Simulation results and analytical for-
mula: the θ-En phase space plot of produced macro-neutrons
for D(D,n)3He fusion. Figure (a), (b) and (c) represent the
cases when the initial projected (reduced) momentum is 0.05,
0.1 and 0.2, respectively. Here, Eq. (19) is plotted as the
black curve on each figure.

C. D(D,n)3He beam-target fusion

For beam-target fusion benchmark, the simulation
setup is also similar as with the D(D,n)3He thermonu-
clear fusion. Here, one group of D-ions is treated as
stationary background with density 1024 cm−3, and the
other one with the same density is treated as projec-

tiles. Three simulation cases, with projected (reduced)
momentum of 0.05, 0.1 and 0.2, respectively, are run. In
Fig. 3, we have displayed the spectra of produced neu-
tron as a function of projectile momentum. Black, red
and blue lines represent different cases when the initial
projected (reduced) momentum is 0.05, 0.1 and 0.2, re-
spectively. In Fig. 4, we also display the θ-En phase-
space plot of produced macro-neutrons. Fig. 4 (a), (b)
and (c) correspond to different cases when the initial
projected momentum is 0.05, 0.1 and 0.2, respectively.
The production of high-energy neutrons relies critically
on two parameters: the energy of projectiles and Q-value
of the reaction. Under non-relativistic limit, the energy
of the emitted neutrons can be determined kinetically if
these parameters and the angle of the emitted neutron
are known, as long as there are no nuclear states excited
in the resultant nuclei,

Ec̄ = [
mamc̄

(mc̄ +md̄)
2
+

mbmd̄

(ma +mb)(mc̄ +md̄)
]Ea +

md̄Q

mc̄ +md̄

+

√
4 cos2(θ)mambmc̄md̄

(ma +mb)(mc̄ +md̄)
3
(E2

a +
ma +mb

mb
QEa). (19)

For D(D,n)3He beam-target fusion, we have ma = 3672,
mb = 3672, mc̄ = 1836, md̄ = 5508. Ea = 2.34, 9.34,
and 37.08 when the momentum of projectile is 0.05, 0.1
and 0.2 respectively. The black curve on Fig. 4 (a), (b)
and (c) is the plot of Eq. 19. As we can see, under non-
relativistic cases, our simulation results and analytical
solution agree quite well. For relativistic velocities, as the
analytical solution is not legible, numerical simulation is
therefore is of great value.

IV. DISCUSSIONS AND CONCLUSIONS

To summarize, a pairwise nuclear fusion algorithm
for particle-in-cell simulations for arbitrarily weighted
macro-particles at relativistic energies is proposed. When
comparing with a recent work by D. P. Higginson et al,
our method is also fitted with the widely used Coulomb
scattering algorithm by Takizuka and Abe, Nanbu and
Yonemura, and Sentoku and Kemp. As the pairing
scheme accounts for the entire macro-particle ensemble,
the convergence of our method is therefore of quite ro-
bust. The algorithm is benchmarked in situations with
like-particles, unlike-particles, thermonuclear plasmas,
and beam-target fusion. It is shown that only 10 ∼ 100
macro-particle per cell is needed for the repeatability of
fusion yields around 1%.
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