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Abstract： 8 

Gyro-average is a crucial operation to capture the essential finite Larmor radius effect 9 

(FLR) in gyrokinetic simulation. In order to simulate strongly shaped plasmas, an 10 

innovative multi-point average method based on non-orthogonal coordinates has been 11 

developed to improve the accuracy of the original multi-point average method in 12 

gyrokinetic particle simulation. This new gyro-average method has been implemented 13 

in the gyrokinetic toroidal code(GTC). Benchmarks has been carried out to prove the 14 

accuracy of this new method. In the limit of concircular tokamak, ion temperature 15 

gradient (ITG) instability is accurately recovered for this new method and consistency 16 

is achieved. The new gyro-average method is also used to solve gyrokinetic Poisson 17 

equation, and its correctness has been confirmed in the long wavelength limit for 18 

realistic shaped plasmas. The improved GTC code with the new gyro-average method 19 

has been used to investigate the ITG instability with EAST magnetic geometry. The 20 

simulation results show that the correction induced by this new method in the linear 21 

growth rate is more significant for short wavelength modes where finite Larmor radius 22 

(FLR) effect becomes important. Due to its simplicity and accuracy, this new gyro-23 

average method can find broader applications in simulating the shaped plasmas in 24 

realistic tokamaks.  25 

  26 

1. Introduction 27 

First-principles gyrokinetic simulation has been widely adopted to study low 28 

frequency micro instabilities and turbulences in magnetic fusion plasmas [1,8]. The 29 

gyro-average transformation, a frequent operation used in the gyrokinetic simulation, 30 



is a procedure to average physical quantities such as electric potential and charge 31 

density along the cyclotron orbit[12-14]. To preserve the finite Larmor radius (FLR) 32 

effect, the gyro-average needs to be accurate enough to achieve high numerical fidelity. 33 

As one of the numerical algorithms for performing gyro-average, the multi-point 34 

average method has been developed and used extensively in the gyrokinetic particle 35 

simulation[1,3].  36 

Simulations with realistic tokamak geometry, which is usually characterized by 37 

features such as up-down asymmetry and non-circularity, is crucial to interpret and 38 

predict various complicated tokamak experimental phenomena[10,15,16]. However, 39 

such geometric characteristics will lead to a large deviation from regular grid 40 

distribution and coordinate orthogonality. These deviations bring significant numerical 41 

challenges to the multi-point average method in the gyrokinetic simulation.  42 

In this article, an innovative multi-point method based on non-orthogonal magnetic 43 

coordinates has been developed and implemented in the global gyrokinetic toroidal 44 

code GTC [8]. This new method modifies the original multi-point average procedure in 45 

GTC to accommodate arbitrary magnetic geometry with sufficient concision and high 46 

accuracy, and capture more precisely the FLR effect that is important in computing 47 

linear eigenmodes and nonlinear turbulence [1]. Due to its simplicity and accuracy, the 48 

new method may be implemented to other gyrokinetic codes for simulating 49 

experimental plasmas.  50 

Let us detail the physical quantities and equations involving gyro-average in the 51 

gyrokinetic particle simulation. Generally, two classes of equations involve this gyro-52 

average procedure, namely the Maxwell’s equations to solve for self-consistent 53 

electromagnetic fields and equations of motion to push gyrocenters in phase space. To 54 

evolve the position and velocity of the gyrocenter, the gyro-averaged magnetic field 55 

and electric field is needed in the equations of motion, e.g., the gyro-averaged 56 

electrostatic potential 𝜙̅ is defined as 57 
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where R  is the gyrocenter position, x  is the particle position, and    stands for 58 



the gyrophase angle. The Larmor radius ˆ /b   ρ v   with ˆ /b BB  and59 

/qB mc . In the electrostatic limit, the Maxwell’s equations can be simplified to be 60 

the gyrokinetic Poisson equation, which is essentially the quasi-neutrality condition 61 

with the validity limit of 2 1dk   : 62 
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where /e iT T   , 2

0/ 4d eT n e   is the electron Debye length, 0n  is the 63 

equilibrium particle density, and the electrostatic potential   is the unknown to be 64 

solved for. In Eq. (2), in  and en  are the gyro-averaged ion and electron density, 65 

respectively, with 𝛿𝑛𝑖̅ defined as 66 
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where  is the magnetic moment, v  is the parallel velocity, and if is the perturbed 67 

ion gyrocenter distribution. In Eq. (2),   is the second gyro-averaged potential or 68 

double gyro-averaged potential, and it is defined as  69 
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where MF  is the Maxwellian distribution of the gyrocenter, And the gyro-averaged 70 

electric potential ( ) R  can be calculated by Eq. (1). 71 

As is discussed, the gyro-average transformation needs be performed on the 72 

electromagnetic fields and charge density to push gyrocenters in the phase space, and 73 

the second gyro-average transformation needs to be performed on the electrostatic 74 

potential to solve for the electromagnetic fields via the Poisson equation. Such gyro-75 

averaged quantities can be calculated in the wave number (𝐤 ) space. However, the 76 

spectral method is mostly conveniently implemented in the flux-tube simulations, 77 

which drops off the background profile effects and is essentially a local 78 



approximation[3]. The multi-point average method (typically four-point) has been 79 

developed to evaluate the gyro-averaged quantities numerically, which is usually more 80 

advantageous in real space for global simulations [1,3]. For the second gyro-average, 81 

there is another approach based on the Pade approximation [9], i.e., evaluating the 82 

second gyro-averaged potential    by 2 2/ (1 )i       . The Pade approximation 83 

can change the double integral operation of   to be a second-order differential form 84 

and thus avoid the complicated multi-point average procedure, which can be used to 85 

solve the gyrokinetic Poisson equation for strongly shaped plasmas [10].  86 

In practice, the multi-point average method could be more accurate than the Pade 87 

approximation for short wavelength modes with 2 2 1ik   [3]. However, the original 88 

multi-point method implemented in the GTC code is designed for orthogonal or weakly 89 

non-orthogonal coordinate systems [3]. It remains a bottleneck for the multi-point 90 

average method to accurately simulate strongly shaped plasmas.  91 

In this paper, we present an innovative multi-point average method based on non-92 

orthogonal magnetic coordinates, which can simulate arbitrary shaped plasmas. This 93 

new method is implemented in the GTC code and then carefully benchmarked. The 94 

GTC simulation results show that the correction induced by this new method does make 95 

a difference on the ITG growth rates for the short wavelength modes where the finite 96 

Larmor radius (FLR) effect becomes important. The remainder of this paper is 97 

organized as follows. The necessity of finding a new gyro-average method for strongly 98 

shaped plasma has been introduced in Section 2. The scheme for new multi-point gyro-99 

average method is illustrated in Section 3. Then we present two examples to benchmark 100 

this new gyro-average method in Section 4. The new gyro-average method has been 101 

applied to study the ITG modes in Sec.5. Section 6 summarizes this paper and discusses 102 

the possible future work.  103 

 104 

2. Original four-point average method 105 

In this section, we review the original four-point average method based on the 106 



magnetic coordinates that is implemented in the GTC code.  107 

The magnetic flux coordinates have been widely used for describing the 108 

equilibrium magnetic field of toroidal confinement systems [5] in the gyrokinetic 109 

simulations. A particular set of magnetic flux coordinates, namely the Boozer 110 

coordinates [6] ( , , )   , is chosen in the GTC code to push particles and solve for 111 

electromagnetic fields, where   is the poloidal flux or radial like variable,   is the 112 

poloidal angle, and   is the toroidal angle. With the Boozer coordinates, we can 113 

conveniently define a field-aligned mesh which captures the essential flute mode 114 

structure of turbulence with k k , and requires only a few dozens of toroidal grids 115 

to accelerate field calculation by a factor varying from several tens to hundreds [10].  116 

The next two approximations have been employed in GTC code without losing 117 

accuracy and facilitates the numerical implementation of the four-point average 118 

procedure for large aspect ratio tokamaks. First, the toroidal angle in the Boozer 119 

coordinates    is approximated to the toroidal angle in the cylindrical coordinates120 

( , , )tR Z  with t    ,  Since the difference function ( , )      t   turns out to 121 

be of  order  2O    for tokamaks with the inverse aspect ratio 0/ 1r R   . 122 

Second, the perpendicular plane is approximated to the poloidal plane, since the 123 

intersection angle   between them  is second order small in   , i.e.  2 2~O / q   , 124 

which comes from evaluating cos / B    B  . For example, it is evaluated 125 

numerically that the intersection angle   is no more than 0.089 for the typical EAST 126 

equilibrium, as is shown in Section 5 127 

The original four-point average method has been widely used and well 128 

benchmarked for weakly shaped plasma [3,10]. However, strong shaping of the 129 

magnetic flux could lead to significant deviation against the implicit assumption in the 130 

original four-point scheme. Here we illustrate this deviation and necessity for 131 

improvement via using a single-null-divertor equilibrium configuration of the EAST 132 

tokamak (Shot # 077741.03500). Fig. 1 shows GTC’s field mesh setting on the toroidal 133 



plane with =0 . The GTC code uses evenly spaced radial grids at =0, as is shown 134 

by the black straight line in Fig.1(b). In the poloidal direction, the grid size   is 135 

uniform on each flux surface while maintaining  r r , as is shown in Fig.1(b). 136 

The corresponding grid setting on the ( , )    plane is shown in Fig. 1(a). The 137 

relatively regular grid distribution on the ( , )   plane offers great convenience for 138 

numerical operations such as field interpolation and particle deposition. 139 

(a) 

 

(b) 

 

Fig.1 Example of mesh grid distribution on (a) the ( , )    plane and (b) the 

(R,Z) plane for a typical EAST shaped plasmas (Shot # 077741.03500).  

To illustrate the original four-point average method, we consider one particular 140 

field point A with the coordinates ( , )   in Fig.1 as the gyrocenter position for gyro-141 

average. In Fig. 1(a), Point B is the poloidal grid next to the field point A along constant142 

 , and Point C is the intersection point on the next flux surface along constant  . In 143 

the original method, the four points selected for gyro-average are located at 144 

( , )    and ( , )   , which are supposed to center at ( , )   with a radius i . 145 

The difference   and   are calculated by the following relationship: 146 
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 
    ，  (5) 

where AC C A    , AB B A    . Using the constructed B-splines in GTC[10], the 147 

( , )R Z coordinates can be calculated for the selected four points. ACl  and ABl  can be 148 

calculated by 2 2( ) ( )A C A CR R Z Z   and 2 2( ) ( )A B A BR R Z Z   , respectively. 149 

After calculating   and  , we present the selected four points ( , )    150 

( , )    in Fig.2 by four red square markers. It can be seen that these four squares 151 

are close to equally spaced points on the circle centered about the field point M, as is 152 

shown in Fig.2(a); but they are far away from equally spaced points on the circle 153 

centered about the field position A, as is shown in Fig.2(b). To figure out why this 154 

inaccuracy arises, we draw two contour lines with constant   and  , respectively. 155 

These two lines intersect at the point M and A respectively, as is shown by Fig.2 (a) & 156 

(b). The constant   line is almost orthogonal to the constant   line in Fig. 2(a) while 157 

far away from orthogonal in Fig. 2(b). It is the non-orthogonality of the Boozer 158 

coordinates ( , )  , or the non-orthogonality of   and  , that causes the uneven 159 

distribution of the selected four points on the gyro-average circle. Actually, we tested 160 

various field points in the whole poloidal plane, and we find that the selected four points 161 

are much more inaccurate for gyro-average in the plasma edge than that in the plasma 162 

core, since the non-orthogonality of the Boozer coordinates are more severe in the 163 

plasma edge.  164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 



(a)

 

(b)

 

Fig.2 Demonstration of the four point average at the field grid point A: the 

black circles are the exact points in the four point average method, the red 

squares are from the original gyro-average method, and the blue crosses are 

produced by the improved gyro-average method. The two solid lines are the 

contour lines for constant   and  , respectively. 

To quantify how much inaccuracy the original four-point method can bring by the 172 

coordinate non-orthogonality, we define    as the intersection angle between   173 

and   ranging from 0  to  and  can be calculated by 174 

cos
 


 

 

 

 (6) 

 175 



 

Fig.3 Contour plot for the intersection angle  on the poloidal plane with the 

contour lines at =2 / 6   and =4 / 6   shown by the dashed black lines. 

Then we show the intersection angle α in the 2D contour plot of Fig. 3. As can be seen, 176 

the angle α is exactly equal to / 2  at =0  where the point M is located.  About 177 

45% of the whole area has a moderate angle deviation (less than 30%) from / 2 . The 178 

derivation is more severe in those areas close to the plasma edge, as is shown by Fig.3. 179 

In some edge areas, the deviation could be even larger than 60%. 180 

 181 

3. Improved gyro-average for shaped plasmas 182 

   A new numerical method is highly in demand to accommodate this coordinate non-183 

orthogonality for the strongly shaped plasmas. The key idea of this new method is to 184 

locate the accurate positions for the gyro-average points by including the non-185 

orthogonality between the radial and poloidal coordinates. The positions of these gyro-186 

average points produced by the new method are given by ( + , )j j       with 187 

2 2
=sin( ) =sin( ) , ( 1,2,..., ),

2 sin( ) 2 sin( )
j j

j j
j N

N N

     
 

 
    ，  (7) 

where the intersection angle is given in Eq. (6),   and   are defined by Eq.(5). 188 



N could be 4,8 and et. al., corresponding to the number of points used for the gyro-189 

average. Assuming that 8N  , the schematic diagram for this new eight-point average 190 

method is shown in Fig.4. Two contour lines for constant   and   are shown by the 191 

two black solid lines. The vectors    and    are marked in Fig.4, which are 192 

perpendicular to their contour lines, respectively. As is shown in Fig.4, the new method 193 

produces eight points systematically by ( + , )     j j , 1,2...8j  . 194 

 195 

 
Fig.4 Illustration of the improved gyro-average method based on non-

orthogonal coordinates.  

The four-point or sixteen-point for average can be produced by the same strategy. For 196 

example, we can select four points from the eight points in Fig. 4, namely the points 197 

with index j =2,4,6,8, to carry out the four-point average procedure, as is shown in Fig. 198 

2 by the blue crosses. By comparison, we also show the exact points by a brutal force 199 

calculation in Fig.2 using black circles. It can be seen that the selected four points from 200 

the improved gyro-average method well match the exact four points. To verify the 201 

accuracy and generality of new method, we tested various field points in different 202 

equilibrium magnetic configurations, such as CFETR (China Fusion Engineering Test 203 

Reator). The correction effect of the new method are similar to that presented in Fig.2. 204 

One may argue that the contour lines for constant   and   may not be straight 205 

lines within the range of one gyro-orbit and thus numerical inaccuracy could arise. 206 



However, for typical fusion plasmas, the ratio between gyro-radius and the curvature 207 

radius of field line is of order 0( / )iO R . Thus, this new method can be used to improve 208 

the original gyro-average operation in GTC within satisfactory accuracy. In addition, 209 

this improved gyro-average method possesses a number of highly desirable features 210 

such as systematic treatment of points and minimal modification to the original GTC 211 

code, which make this new method appealing not only to GTC but also to other 212 

gyrokinetic codes. 213 

 214 

4. Benchmarks for improved gyro-average method 215 

In this section, we implement the improved gyro-average method in the GTC code 216 

and verify its effectiveness with two examples. First of all, the improved four-point 217 

method should conform with the original four-point average method in the limit of 218 

concentric circular tokamak where the original procedure is still accurate. Secondly, it’s 219 

crucial to verify the accuracy of the improved four-point method by solving the classical 220 

Poisson problem 2 n    correctly with realistic geometry.  221 

4.1 Consistency check: Concentric circular geometry 222 

For the concentric circular magnetic field, the magnetic surface is determined by the 223 

following equation, 224 

0 cos gR R r    (8) 

sin gZ r   (9) 

The Boozer coordinates ( , , )     are constructed analytically as the following: the 225 

poloidal magnetic flux   can be determined by  /td d q    with the toroidal 226 

magnetic flux 2= / 2t r  . The Boozer poloidal angle    can be determined by227 

sing gr    , and the Boozer toroidal angle  can be determined by =  t . Now 228 

we can calculate the intersection angle in Eq. (6). This angle turns out to be not far 229 

away from / 2 , with a deviation of less than 5% in most areas and maximum value 230 

of 17% for the large aspect ratio tokamak with / 0.3r R . As we have discussed in 231 



Section 2, the main inaccuracy for the original four-point average method comes from 232 

the non-orthogonality between   and  . Since the non-orthogonality is weak in 233 

this case, the inaccuracy is insignificant according to our analysis. Therefore, the 234 

improved four-point average method should conform with the original scheme.  235 

To confirm our conjecture, we use the Cyclone Base parameters in Ref.[7] to carry 236 

out a global gyrokinetic simulation via the GTC code for ion temperature gradient (ITG) 237 

instability, with the concentric circular geometry defined in Eq. (8) and (9) for the 238 

equilibrium magnetic field. The background temperature and density are set as239 

2.223e iT T kev   and 
19 3= 7.9 10i en n m  , respectively. The inverse aspect ratio is 240 

set as 0/ 0.36a R   with the major radius 0 =0.835 R m , and the simulation domain is 241 

set as  0.1 ,0.9r a a . At / 2r a  flux surface, we have the following local simulation 242 

parameters: 0/ 0.18r R   , safety factor 1.4q   , magnetic shear / 0.78s q r q   , 243 

density gradient 0 / 2.22nR L   , ion or electron temperature gradient 0 / 6.92TR L   , 244 

where TL  and nL  are the temperature and density gradient scale lengths, defined by 245 

1( ln / )TL d T dr    and 1( ln / )nL d n dr    . Here we focus on the ion physics and 246 

plasma shaping effect, and the electrons are assumed adiabatic for simplicity. 247 

The linear simulation results on the ITG dispersion are demonstrated in Fig. 5. The 248 

linear dispersion relation from this improved gyro-average method matches that from 249 

the original gyro-average method in both growth rate and real frequency with a 250 

difference less than 5%. Thus, we confirm that the improved gyro-average method is 251 

consistent with the original gyro-average method in the limit of concentric circular 252 

tokamak, as it should be.  253 

 254 



 

Fig.5 growth rate and real frequency vs wavenumber in concircular geometry.  

 255 

4.2 Gyrokinetic Poisson solver: EAST magnetic geometry 256 

Next, we come to solve the gyrokinetic Poisson equation Eq.(2) in the long 257 

wavelength limit with a typical shaped plasma equilibrium from EAST tokamak 258 

experiments. Note that the gyrokinetic Poisson equation becomes two-dimensional in 259 

the limit of k k   and becomes the standard Poisson problem 2 2

0    i ien T n  260 

since the approximation 2 2

i        holds in the long wavelength limit.   261 

Various benchmarks[3,10] on the four-point average method have been carried out 262 

in the large aspect ratio circular cross section limit since the Poisson problem is 263 

essentially a Bessel problem in this limit and its solutions are known analytically. 264 

However, such experience cannot be easily applied to the realistic shaped geometry 265 

where the new method is expected to make a notable difference. A new numerical 266 

scheme has been designed to verify the accuracy of the Poisson solver with the 267 

improved four-point average by the following procedure : (1) Given a known analytic 268 

function expression ( , )F    ; (2) calculate the charge density n   numerically by 269 



2n F   ; (3) use the resulting n  as the source to the Poisson equation and solve 270 

the Poisson equation 2 n     by employing the four-point average method; (4) 271 

Compare the calculated   with the original function ( , )F   and compute the error 272 

by their difference. If F   or the error is sufficiently small, we can conclude that 273 

this four-point average method is sufficiently accurate. 274 

In this benchmark case, the aforementioned EAST equilibrium  is used for the 275 

shaped plasma. The specific benchmark function is given by: 276 

3 3

0 1( , ) ( ) ( ) cos( )F m           with 6m   , where 0 ( 0.55 )r a     and 277 

1 ( 0.95 )r a    are the poloidal flux at the inner and outer boundary, respectively.  278 

 279 

(a) 

 

(b)  

 

(c)  (d)  



  

Fig.6 (a) density fluctuation n  on poloidal plane. (b) given analytic function 

F   on poloidal plane. (c) numerical solution 𝝓  from original four-average 

method. (d) numerical solution from improved four-average method. 

 280 

 

Fig.7 Comparison of solutions along the black line in Fig.6.  

The resulting charge density n   is shown in Fig.6 (a). The prescribed function 281 

( , )F    is shown in Fig. 6 (b), which is also the analytic solution the Poisson equation282 

2 n   . As can be seen, the difference between n  and ( , )F    is significant. 283 

The numerical solution to the Poisson equation is demonstrated in Fig. 7(c) where the 284 

original four-point average method is used, and in Fig. 7(d) where the improved four-285 

point average method is used. The numerical solution in Fig.7(d) is almost identical to 286 

the analytical solution in Fig.7(b), which proves the accuracy of the improved four-287 

point average method. However, the numerical solution in Fig. 7(c) differs from the 288 



analytical solution in Fig.7(b), and its 2D pattern is more like that of the source term 289 

n  in Fig. 7(a). 290 

For more quantitative comparison, we take out the data along the black solid line 291 

in Fig. 6 (b)(c)(d) and compare them in a one-dimensional plot in Fig.7, where the black 292 

line represents the analytical solution F  , the blue circle stands for the numerical 293 

solution using the improved four-point average method, and the dashed red line 294 

represents the numerical solution using the original four-point average method. As can 295 

be seen in Fig. 7, there is a notable difference between the red dashed line and the black 296 

solid line especially on the left or central side of the figure. We further note that this 297 

difference exists not only on this particular line but also on the whole poloidal plane, 298 

which suggests that original four-point average needs to be improved for better accuracy. 299 

However, the difference is almost indistinguishable between the blue circles and black 300 

solid line, which verifies the high accuracy of the improved four-point average method. 301 

By scanning the whole poloidal plane, we find that the numerical solution using the 302 

improved four-point method matches the exact analytic solution very closely. The slight 303 

difference between them comes from the difference of numerical operator. The operator 304 

for the four-point average method in this benchmark is305 

2 2

0 00.7194 (0.9130 ) 0.2806 (2.2339 ) 1i iJ k J k     , the exact operator we wanted is306 

2( )ik  . In the long wavelength limit 0ik   , the two operators can be considered 307 

as the same. However, there is always a difference between these two operators when 308 

ik   is finite, albeit it is small when ik   is small.  309 

Combine both benchmarks in this section and the verification in section 3, we 310 

conclude that the improved four-point average method can be utilized to significantly 311 

improve the gyro-average procedure to obtain an accurate gyro-averaged potential as 312 

well as ion density, which is crucial for the PIC simulation to simulate shaped plasmas 313 

because the inaccuracy in the gyro-average can accumulate at each time step and may 314 

substantially modify the linear and nonlinear simulation results. 315 

 316 



5. ITG mode for EAST geometry 317 

In this section, we carry out the ITG simulation with adiabatic electrons using the 318 

aforementioned EAST the equilibrium (shot# 077741.03500). The equilibrium data, 319 

such as poloidal flux ( , )R Z , poloidal current I and safety factor q  have been used 320 

to construct the equibrium magnetic field in real space and determine the Boozer 321 

coordinates ( , , )    . This shaped EAST equilibrium has an background magnetic 322 

field with up-down asymmetry and following tokamak parameters: 0 2.46B T  ,323 

0.375a m , 0 1.91R m . On the reference flux surface at the middle of the minor radius: 324 

1500i eT T ev   and 19 34.0 10 /n m  . For simplicity, we choose the Cyclone base 325 

case parameters 0 / 2.22nR L  , 0 / 6.92TR L   for the plasma gradients. 326 

The intersection angle between the Boozer coordinates    and    has been 327 

computed in Fig.3, and the moderate coordinate non-orthogonality suggests that the 328 

improved gyro-average method can play an important role according to the preceding 329 

discussions.  330 

The gyro-average procedure is associated with the finite Larmor radius (FLR) effect, 331 

an essential kinetic effect in magnetized plasmas. The more accurate we treat the gyro-332 

average, the more accurate we calculate the FLR effect. It is known that the FLR effect 333 

plays an important role in determining the ITG growth rate especially for higher n 334 

modes [11]. Therefore, we expect that with the application of the improved gyro-335 

average method, the correction to the gyro-average procedure can make significant 336 

changes for the ITG growth rates, especially for those high n modes.  337 



 

Fig.8 the growth rate and real frequency vs wavenumber in EAST geometry. 

The GTC linear ITG simulation results are shown in Fig. 8, where the linear growth 338 

rate and frequency varies with poloidal wavelength ik  . In this figure, the blue color 339 

represents simulation results using improved four-point average method, while the red 340 

color represent simulation results using original four-point average method; case 1 and 341 

case 2 represent two different radial domains used in the simulation. As is discovered 342 

in Section 2, the coordinate non-orthogonality varies in the poloidal plane. In order to 343 

demonstrate its consequence on the linear instability, we artificially set the radial 344 

simulation domain: [0.55 ,0.95 ]r a a  for case 1, and [0.30 ,0.70 ]r a a  for case 2.  345 

As can be seen in Fig. 8, for either case 1 or case 2, the linear growth rate using the 346 

improved four-point average converges to that using the original four-point average in 347 

the long wavelength limit. With the poloidal/toroidal wavenumber increasing, the FLR 348 

effect becomes more important, and the difference for linear growth rate between the 349 

two gyro-average methods becomes larger. This trend is demonstrated in Fig. 8 as well. 350 

The difference for real frequency is mainly determined by the diamagnetic frequency351 

*  , which has little to do with the FLR effect and thus is the real frequency 352 

indistinguishable between different gyro-average methods. However, the real frequency 353 

for case 1 (outer radial domain) is generally larger than that for case 2 (inner radial 354 



domain). This is due to the fact that the average magnetic field for case 1 is smaller than 355 

that for case 2 and thus the corresponding diamagnetic frequency is larger for case 1 356 

when the most unstable outside middle plane is considered.  357 

 358 

6. Conclusion  359 

In this paper, we have found the main source of inaccuracy introduced by the 360 

original gyrophase-average procedure in a realistic tokamak geometry, i.e., the non-361 

orthogonality of the Boozer coordinates [3,10], and developed an innovative multi-362 

point average method to improve the computing accuracy. The effectiveness and 363 

accuracy of this new method is demonstrated by a number of benchmark cases such as 364 

consistency check and solving gyrokinetic Poisson equation. For the conventional ITG 365 

instability case, we find that the improved four-point average method calculates the 366 

FLR effect more accurately, demonstrated by the difference of the linear growth rates 367 

in the short wavelength range between this new four-point average method and the 368 

original one. Based on the improved multi-point average method, we plan to simulate 369 

turbulence physics in the edge of tokamak, where this new method can find broader 370 

applications for its usefulness. 371 

 372 
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