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Abstract: In the present paper, we systematically investigate the nonlinear evolution 
of the resistive kink mode in the low resistivity plasma in Tokamak geometry. We find 
that the aspect ratio of the initial equilibrium can significantly influence the critical 
resistivity for plasmoid formation. In Tokamaks with the aspect ratio of 3/1, the critical 
resistivity can be one magnitude larger than that in cylindrical geometry with the 
development of high n modes due to the strong mode-mode coupling. We also find that 
several initial parameters can largely influence the formation of plasmoids, i.e., the 

critical resistivity for plasmoid formation critη   decreases with increasing plasma 

viscosity, or the magnetic shear on the q=1 resonant surface, or the decreasing radial 
location of the q=1 resonant surface. 
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I. Introduction 

It is widely accepted that a thin current sheet forms during magnetic reconnection 
and may be unstable to the secondary tearing instability when the plasma resistivity is 
sufficiently low.[1-8] The secondary tearing instability in the thin current sheets might 
lead to fast reconnection phenomena both in space[2, 4, 9-18] and Tokamak plasma[19-
27]. During the development of the secondary tearing instability, the current sheet 
breaks up, and multiple X-point reconnection takes place, [28] which results in the 
formation of multiple secondary islands or the so-called ‘plasmoids’.  

These multiple secondary islands often merge into a larger secondary island finally. 
The formation of large secondary islands sometimes can significantly influence the 
nonlinear behavior of the non-ideal MHD instabilities in Tokamak, especially the 
resistive-kink mode.[29, 30] As shown by Q. Yu et al., [31] the nonlinear behavior of 
the resistive kink mode can be qualitatively different from the well-known Kadomtsev’s 
reconnection model[32]. With a sufficient low plasma resistivity, a thin current sheet 
forms along with the development of the resistive kink mode, and eventually becomes 
unstable to the secondary tearing instability when the width of the current sheet is 
thinner than a critical value. The current sheet then breaks up, and several secondary 
islands form and later merge into a large secondary island. If the width of this secondary 
island is large enough, it can stop the further development of the resistive kink mode, 
and the main m/n=1/1 magnetic island cannot expand to occupy the whole central core 
region as it does in Kadomtsev’s reconnection model. As a result, incomplete 
reconnection occurs.     

Yu’s incomplete reconnection model is important for understanding the incomplete 
reconnection process observed in Tokamaks[33-38]. But, they carried out the 
simulation studies using the cylindrical geometry reduced MHD code.[31] In our 
previous studies, we have focused on the symmetry breaking introduced by the two-
fluids effect, the shear flows, and the asymmetric initial perturbations. [waiting for the 
link of our previous work] However, the threshold of the plasmoids formation has not 
been solved yet. In the present paper, we will focus on this problem and systematically 
investigate the influence of aspect ratio, the plasma viscosity, the radial location, and 
the local magnetic shear of the q=1 resonant surface on the critical resistivity for the 
plasmoid formation through the 3D toroidal nonlinear full-MHD code CLT.[39, 40] 

The remainder of the paper is organized as follows: in Section II, we briefly 
introduce the physical model used in our simulations. In Section III. A, we investigate 
the influence of the plasma resistivity on the nonlinear evolution of the resistive kink 
mode and find that there is a critical resistivity for plasmoid formation. After that, we 
systematically investigate the influence of the aspect ratio, the plasma viscosity, the 
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magnetic shear, and the radial location of the q=1 resonant surface on the critical 
resistivity for plasmoid formation in Section III. B, C, and D, E. A detailed discussion 
has been given in Section IV.  

 
II. Numerical model  

The 3D toroidal full-MHD equations used in CLT code are given as follows: 
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where ρ , p, v , B , E  and J  are the plasma density, the plasma pressure, the fluid 

velocity, the magnetic field, the electric field and, the current density, respectively. The 

subscript “0” indicates their initial values. The ratio of specific heat is 5 / 3Γ = . η , 

D, κ⊥  , κ


 , and υ   are the plasma resistivity, the diffusion coefficient, the 

perpendicular, and parallel thermal conductivities, and the plasma viscosity, 
respectively.  

In CLT code, all the variables are normalized as follows: / a →x x  , / At t t→  ,

00/ρ ρ ρ→  , 2
00 0/ ( / )p B pµ →   , / Av →v v  , 00/ B →B B  , 00/ ( )Av B →E E  , 

00 0/ ( / )B aµ →J J  , 2
0/ ( / )Aa tη µ η→  , 2/ ( / )AD a t D→  , 2/ ( / )Aa tκ κ⊥ ⊥→ ，

2/ ( / )Aa tκ κ→
 

  , and 2/ ( / )Aa tν ν→  , respectively. a  is the minor radius, 

00 0 00/Av B µ ρ=  is the Alfvén speed, and /A At a v=  is the Alfvén time, where 00B  

and 00ρ  are the initial magnetic field and the plasma density at the magnetic axis, 

respectively. 
In CLT, the electric field is chosen to be an intermediate variable for the sake of 

keeping divergence B free. CLT’s numerical scheme is the 4th order finite difference 
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method for the spatial derivatives and the 4th order Runge–Kutta scheme for the time 
integration. We choose the cut-cell method to handle the boundary problems since the 
physical boundary is not located at the grids [41]. In the present paper, the fixed 
boundary condition is used for all the variables. The uniform meshes with 

( 400 64 400× ×  ) in ( , , )R Zϕ   are used in all the simulations. A systematical 

benchmark between the CLT code and the M3D-C1 code is given in Ref. [39]. 
 
III. Simulation results 

A. The influence of plasma resistivity on the nonlinear behavior of the 
resistive-kink mode 

In this subsection, we choose the same initial equilibrium with our previous 
studies[waiting for the link of our previous work], which is shown in Figure 1. The q 
profile function is given in Equation (7): 

2 2

1

0 1(1 ( / ) )q qq q qψ= × +   (7) 

where 0 0.9q =  , 1 1.0q =  , and 2 1.0q =  , respectively. For simplification, the plasma 

beta used in the simulations is assumed to be ~0β . The initial equilibrium is derived by 

the Qsolver included in the NOVA code [42]. When deriving the equilibrium, we chose 

a Tokamak configuration with the aspect ratio of 0 / 3 /1R a =  , which is close to 

ASDEX-U. [43] 

 
Figure 1 Profiles of the initial safety factor q and the corresponding magnetic shear 
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( r dqs
q dr

= ). The radial position and the local magnetic shear of the q=1 resonant surface 

are 1 0.34r =  and 1 0.2s = , respectively. 

 

 
Figure 2 Four snapshots of Poincare plots of the magnetic field with a relatively high 

resistivity ( -6=3.0 10η × ). 

 
To investigate the influence of the plasma resistivity on the nonlinear behavior of 

the resistive-kink mode, we scan the resistivity from -5=1.0 10η × to -7=1.0 10η × , and 

other parameters are chosen to be 41.0 10D −= × , 63.0 10κ −
⊥ = × , 2

|| 5.0 10κ −= × , and 
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-7=3.0 10ν ×  . (It should be noted that since the plasma beta ~0β  , the thermal 

conductivities κ⊥ and ||κ  has no influence on the simulation results.) We find that the 

nonlinear evolutions of the resistive kink mode can be qualitatively different with 
different resistivities. 
 

 
Figure 3 Four snapshots of Poincare plots of the magnetic field for the case with a 

relatively low resistivity ( -7=5.0 10η × ). 

 

Poincare plots of the magnetic field with a relatively high resistivity ( -6=3.0 10η × ) 

are shown in Figure 2. The m/n=1/1 magnetic island continues to grow up and finally 
occupies the whole core region, which is consistent with the process proposed by 
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Kadomtsev.[32] However, with a sufficiently low resistivity (i.e., -7=5.0 10η ×  ), the 

nonlinear behavior significantly differs from that predicted the Kadomtsev’s theory. As 
shown in Figure 3, a large secondary island forms at the nonlinear stage. The formation 
of the large secondary island is due to the secondary tearing instability inside the thin 
current sheet. During the nonlinear evolution of the resistive-kink mode, the current 
sheet becomes thinner and thinner. When the ratio of the length and the thickness of the 
current sheet exceeds a critical value (typically ~60[31]), the current sheet will be 
unstable to the secondary island instability and multiple X-line reconnection occur.[28] 
During the multiple X-line reconnection, secondary islands form and the current sheet 
breaks into several parts. The contour plots of toroidal current density at four typical 
moments are shown in Figure 4, which tells the same story as Figure 3. Finally, these 
small secondary islands merge into a large secondary island, and finally prevent the 
further development of the resistive-kink mode, leading to the incomplete reconnection. 
It is clear that the nonlinear behavior is qualitatively different from the complete 

reconnection model.[32] With an intermediate resistivity (i.e., -6=1.0 10η × ), we find 

that the secondary tearing instability can also be unstable. But the ratio of the length 
and the thickness of the current sheet is not as large as it is in the case with the low 
resistivity, and the secondary island is rather small as shown in Figure 5. In this case, 
the secondary island is too small to prevent the further development of the main 
m/n=1/1 island, and the m/n=1/1 island finally occupies the whole core region and 
causes complete reconnection. 



 8 / 23 
 

 
Figure 4 The contour plots of the toroidal current density at the four typical moments 

((a) 3327 At t= when a thin current forms, (b) 3708 At t= when the current sheet is thin 

enough to become unstable to the secondary tearing instability, (c) 4088 At t= when 

multiple X-line reconnection occurs and the current sheet breaks into several parts, and 

(d) 4278 At t= when a large secondary island forms). 
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Figure 5 Four snapshots of Poincare plots of the magnetic field for the case with an 

intermediate resistivity ( -6=1.0 10η × ). 

  

 The maximum ( Mw  ) and saturated width ( Sw  ) of the main m/n=1/1 magnetic 

island as a function of η  are shown in Figure 6. For the case with -63.0 10η ≥ × , the 

maximum width of the main m/n=1/1 island is the radial width of the mix region 

( 0.37M mixw r= =  ), which is slightly larger than 1 0.34r =   (the radial width of the 

1.0q <   region). Since a part of magnetic flux inside the mix region has been 

reconnected during the formation of the secondary island, the maximum width of the 

main 1/1 island will be larger than mixr ( for the case with -6=1.0 10η × , the maximum 

width is 0.41Mw = ). 
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Figure 6 The maximum or saturated width of the main m/n=1/1 magnetic island as a 

function of η . 

  

 
Figure 7 The influence of the plasma resistivity and the aspect ratio on plasmoid 
formation. The red square/the black diamond represents with/without large secondary 
island. 
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B. The influence of the aspect ratio of Tokamaks on the critical resistivity for 
plasmoid formation 

As shown in Section III. A, plasmoids can form during the nonlinear evolution of 
the resistive kink mode if the plasma resistivity is smaller than the critical resistivity 

63 10critη −= ×  . It should be noted that 63 10critη −= ×  in Section III. A is at least one 

magnitude larger than that from Yu’s previous work, in which the critical resistivity is
73 10critη −= × (Figure 4 in Ref. [31]). The large difference implies that there must be 

some physical parameters that can largely influence the plasmoid formation. Note that, 
Yu’s work is carried out under a periodic cylindrical geometry, in which the large aspect 
ratio assumption is adopted; while the aspect ratio of the initial equilibrium is only 3 /1  
in Section III. A. This might be the reason for the large difference in the critical 
resistivity for plasmoid formation.   

 

 

Figure 8.  (a) The Fourier components of the perturbed toroidal electric field Eϕ  and 

(b) the corresponding Poincare plots of the magnetic field lines with the aspect ratio 

0 / 2 /1R a =  and 61 10η −= × . (c) The Fourier components of the perturbed toroidal 

electric field Eϕ  and (d) the corresponding Poincare plots of the magnetic field lines 
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with the aspect ratio 0 / 12 /1R a =  and 61 10η −= × . (e) The Fourier components of 

the perturbed toroidal electric field Eϕ  and (f) the corresponding Poincare plots of the 

magnetic field lines with the aspect ratio 0 / 12 /1R a =  and 71 10η −= × . 

 

 In this subsection, we scan the aspect ratio to investigate its influence on the 
critical resistivity for plasmoid formation. A series of Tokamak equilibriums with 
different aspect ratios 2/1, 3/1, 6/1, 9/1, and 12/1 from the NOVA[42] code is chosen to 
be the initial conditions and other parameters are chosen to be 41.0 10D −= × ,

63.0 10κ −
⊥ = × , 2

|| 5.0 10κ −= × , and -7=1.0 10ν ×  . The influence of the plasma 

resistivity and the aspect ratio on plasmoid formation is shown in Figure 7. As we can 

see, the critical resistivity critη decrease with increasing aspect ratio. For a large aspect 

ratio (~12), the critical resistivity is about 7~ 5 10critη −×  , which is close to Yu’s 

simulation results in the periodic cylindrical geometry. 
 The large difference in the critical resistivity with different aspect ratios of 
Tokamaks indicates that the toroidal effect plays an important role in the formation of 
plasmoids. Since the toroidal effect mainly affects the strength of the mode-mode 
coupling, we can analyze the perturbations through the Fourier transform method to see 
how the toroidal effect works. The Fourier components of the perturbed toroidal electric 

field Eϕ   and the corresponding Poincare plots of the magnetic field lines with the 

aspect ratio 0 / 2 /1R a =  and 61 10η −= ×  (with a large secondary island) are shown 

in Figure 8 (a) and (b). For comparison, the Fourier components of the perturbed 

toroidal electric field Eϕ  and the corresponding Poincare plots of the magnetic field 

lines with the aspect ratio 0 / 12 /1R a =   and 61 10η −= ×  (without a large secondary 

island) are shown in Figure 8 (c) and (d). Without large secondary island formation, the 
m/n=1/1 resistive-kink mode remains dominant throughout the simulations. In the 
meanwhile, other visible modes are only the harmonics of the m/n=1/1 mode: the 
m/n=2/2 and m/n=3/3 modes and their amplitudes are much smaller than that of the 
m/n=1/1 mode. However, with large secondary island formation, the amplitude of the 
m/n=2/2 and m/n=3/3 modes can be as large as the m/n=1/1 mode. The Fourier 

components of the perturbed toroidal electric field Eϕ  and the corresponding Poincare 
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plots of the magnetic field lines with the aspect ratio 0 / 12 /1R a =  and 71 10η −= ×

( with a large secondary island) are shown in Figure 8 (e) and (f). Figure 8 (e) and (f) 
also confirm that the amplitude of the m/n=2/2 and m/n=3/3 modes can be larger than 
or at least comparable to the m/n=1/1 mode, but other non-harmonic modes are not 
present as the small aspect ratio shown in Figure 8(a). This is because, with a small 

aspect ratio 0 / 2 /1R a = , the toroidal effect is strong and the mode with ( 1, )m n± will 

be generated by the ( , )m n .[44] However, with a large aspect ratio, the toroidal effect 

is weak and the ( 1, )m n±  cannot be generated. It is clear that the toroidal effect is 

helpful for the development of high n modes. This is why the large secondary island 
can be more easily to form with a small aspect ratio. 
 

C. The influence of the plasma viscosity on the critical resistivity for plasmoid 
formation 

As we all know, the spatial scale of the secondary tearing instability is much smaller 
than the kink instability, and the secondary tearing instability should be more sensitive 
to the plasma viscosity. In this subsection, we scan the plasma viscosity from

-7=1.0 10ν × to -5=1.0 10ν ×  and investigate the influence of plasma viscosities on critη  

for plasmoid formation. The influence of the plasma resistivity and viscosity on 

plasmoid formation is shown in Figure 9. The critical resistivity critη  decreases with 

increasing ν , which indicates that plasmoids is much difficult to form with a larger 
viscosity. Note that the formation of plasmoid results from the secondary tearing 
instability, and the secondary tearing instability is sensitive to the plasma viscosity. 
With a larger viscosity, the secondary tearing instability is more difficult to develop, 

which is why critη  decreases with increasing ν . The influence of the Prandtl number 

Pr /ν η=   on critη   for plasmoid formation is shown in Figure 10. Similarly, it 

indicates that the critical resistivity critη   decreases with increasing Pr. However, if 

Pr 0.1<  (i.e., the system approaches the low viscosity limit), the Prandtl number does 
not influence the critical resistivity for plasmoid formation. In this subsection, the 
Prandtl number is kept from 0.01 Pr 100< <  that covers the parameter regime for 
Tokamak plasma. 
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Figure 9  The influence of the plasma resistivity and viscosity on plasmoid formation. 
The red square/the black diamond represents with/without large secondary island 
formation in this simulation. 
 

Similar to what we have done in Section III. B, we use the Fourier transform 
method to analyze the modes. The Fourier components of the perturbed toroidal electric 

field Eϕ   and the corresponding Poincare plots of the magnetic field lines with 

71 10ν −= ×   and 61 10η −= ×   (with large secondary island formation) are shown in 

Figure 11 (a) and (b). For comparison, the case with viscosity 63 10ν −= ×   and 
61 10η −= × is shown in Figure 11 (c) and (d), in which no large secondary island has 

been observed. The case with viscosity 63 10ν −= ×  and 71 10η −= × is shown in Figure 

11 (e) and (f). With much lower resistivity, the current sheet can be much thinner, and 
the secondary tearing instability can be much unstable. As a result, the secondary 
tearing instability can grow up in high viscosity system, and then the large secondary 
island forms. The plasmoids are much easier to form in the low viscosity system and 
harder to form in the high viscosity system. 
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Figure 10 The influence of the Prandtl number and the resistivity on plasmoid formation. 
The red square/the black diamond represents with/without large secondary island 
formation in this simulation. 
 

 

Figure 11 (a) and (b): the Fourier components of the perturbed toroidal electric field 
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Eϕ  and the corresponding Poincare plots of the magnetic field lines with aspect ratio

71 10ν −= ×   and 61 10η −= ×  . (c) and (d): the Fourier components of the perturbed 

toroidal electric field Eϕ  and the corresponding Poincare plots of the magnetic field 

lines with aspect ratio 63 10ν −= ×  and 61 10η −= × . (e) and (f): the Fourier components 

of the perturbed toroidal electric field Eϕ  and the corresponding Poincare plots of the 

magnetic field lines with aspect ratio 63 10ν −= ×  and 71 10η −= × . 

 
D. The influence of local magnetic shear on the critical resistivity for plasmoid 

formation 
In this subsection, we investigate the influence of the magnetic shear on the q=1 

resonant surface ( 1s ) on the critical resistivity for plasmoid formation. Through Eq. (7), 

we can set up a series of the equilibria with 1 0.34r = , 0 0.9q = , but different 1s , i.e., 

1 0.2s = , 1 0.3s = , and 1 0.4s = , respectively. The initial q profiles are shown in Figure 

12. 
 

 

Figure 12 The initial q profiles with 1 0.34r = , 0 0.9q = , but 1 0.2s = , 1 0.3s = , and 
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1 0.4s = . 

With these initial equilibria, we scan the resistivity from -5=1.0 10η ×  to 

-7=1.0 10η ×  , and other parameters are chosen to be 41.0 10D −= × , 63.0 10κ −
⊥ = × , 

2
|| 5.0 10κ −= × , and -7=3.0 10ν ×  . The influence of the local magnetic shear and the 

resistivity on the plasmoid formation is shown in Figure 13. It is found that the critical 

resistivity critη  decreases with increasing the local magnetic shear 1s . Note that, the 

growth rate of the resistive kink mode increases with increasing 1s . It means the larger 

1s   is, the faster the resistive kink mode develops, the shorter time duration the 

secondary tearing instability develops, and the harder a visible secondary island forms 
in the simulations. 
 

 
Figure 13 The influence of the local magnetic shear and the resistivity on plasmoid 
formation. The red square/the black diamond represents with/without large secondary 
island formation in this simulation. 
 

E. The influence of the radial location of the q=1 resonant surface on the 
critical resistivity for plasmoid formation 

Following the procedure in Section III. D, we investigate the influence of the radial 



 18 / 23 
 

location of the q=1 resonant surface ( 1r  ) on the critical resistivity for plasmoid 

formation. Through Eq. (7), we can set up a series of equilibrium with 0 0.9q =  ,

1 0.2s =  , but different 1r  , i.e., 1 0.237r =  , 1 0.284r =  , 1 0.336r =  , and 1 0.39r =  , 

respectively. The initial q profiles and the corresponding magnetic shear profiles are 
shown in Figure 14. 

 
Figure 14 The initial q profiles and the corresponding magnetic shear profiles with 

0 0.9q =  , 1 0.2s =  , but different 1r  , i.e., 1 0.237r =  , 1 0.284r =  , 1 0.336r =  , and 

1 0.39r = . The red square in the right figure indicates the magnetic shear on the q=1 

resonant surface for each equilibrium.  
 

With these initial equilibria, we scan the resistivity from -5=1.0 10η ×  to 

-7=1.0 10η ×  , and other parameters are chosen to be 41.0 10D −= × , 63.0 10κ −
⊥ = × , 

2
|| 5.0 10κ −= × , and -7=3.0 10ν ×  . The influence of the location of the q=1 resonant 

surface and the resistivity on plasmoid formation is shown in Figure 15. The critical 

resistivity critη  increase with increasing 1r . 
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Figure 15 The influence of the location of the q=1 resonant surface and the resistivity 
on plasmoid formation. The red square/the black diamond represents with/without large 
secondary island formation in this simulation. 
 
IV. Discussions and conclusions 

Through the 3D toroidal nonlinear full-MHD simulations, we find that, with a 
relatively low resistivity, the secondary tearing instability can occur inside the thin 
current sheet and finally leads to the formation of a large secondary island. If the 
secondary island is sufficiently large, it can prevent the further development of the 
resistive kink mode and causes that the kink-driven reconnection ceases before the 
whole flux inside the mix region has been reconnected, i.e., the so-called incomplete 
reconnection occurs. If the secondary island is small, the main m/n=1/1 magnetic island 
can still grow up to occupy the whole core region and leads to complete reconnection. 
The maximum width of the secondary island increases with decreasing plasma 
resistivity.  

Although these results are qualitatively the same as those in Ref. [31], the critical 
resistivity for plasmoid formation is largely different. We find that this is mainly due to 
the large aspect ratio assumptions adopted in the periodic cylindrical geometry. With 
large aspect ratios, our results can convergence to Yu’s results. However, with the aspect 
ratio of real Tokamaks, the critical resistivity can be one magnitude larger than that with 
large aspect ratio assumptions. By using the Fourier transform method, we find that the 
high n modes are harder to develop in Tokamaks with large aspect ratios. This is why 
the critical resistivity for large secondary island formation decreases with increasing 
aspect ratios. 
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We have also found that the plasma viscosity, the radial location, and the local 
magnetic shear of the q=1 resonant surface can significantly influence the critical 

resistivity critη for plasmoid formation. The critical resistivity can change more than 

one magnitude in the scanning range of these parameters. For example, the critical 

resistivity is 63 10critη −= ×  for the case with -7=1.0 10ν ×   while 75 10critη −= ×   with 

-6=3.0 10ν × . The critical resistivity decreases with increasing plasma viscosity, and the 
magnetic shear on the q=1 resonant surface, or with decreasing radial locations of the 
q=1 resonant surface. 
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