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We demonstrate that, in a nonuniform plasma, the parametric decay instabilities of kinetic Alfvén
waves could be quantitatively and qualitatively different from that in a uniform plasma. Specifically,
for the decay via nonlinear ion Landau damping, the bare-ion Compton scattering is found to
dominate over the shielded-ion scattering, and is, typically, an order of magnitude larger than that
in a uniform plasma. Furthermore, the parity of the decay kinetic Alfvén waves is broken; leading
to finite net wave momentum transfer and, consequently, additional convective plasma transport.
Excitations of unstable eigenmodes due to a localized pump wave are also presented.
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Shear Alfvén wave (SAW) is a fundamental electro-
magnetic wave in magnetized plasmas existing in both
nature and laboratories [1]. Due to intrinsic plasma
nonuniformities, SAW frequency ω = k‖VA is spatially
dependent and constitutes, thus, a continuous spectrum
[2]. Here, k‖ is the wavenumber parallel to the back-
ground magnetic field, B0, and VA = B0/

√
4πρm is the

Aflvén velocity with ρm ' Nimi being the mass density,
Ni being the ion density and mi being the ion mass. As
a consequence of spatial phase mixing, SAW is shown to
mode convert into short-wavelength kinetic Alfvén waves
(KAWs) [3, 4]. Since there is a significant component
of parallel electric field, KAWs are expected to play im-
portant dynamic roles; such as acceleration, heating and
transport of charged particles [5–8]. Noting that the
wave-induced phase-space dynamics depend crucially on
the detailed wave spectrum, nonlinear wave-wave interac-
tions such as the important three-wave parametric decay
instability (PDI) has been investigated since the early
discovery days of KAW [4, 9]. Previous theoretical stud-
ies have, however, been limited to the case of a uniform
plasma [4, 9–11]. In this Letter, we employ the nonlinear
gyrokinetic theory [12] and demonstrate that, in a realis-
tic plasma with nonuniformities, the PDI of KAW could
be both quantitatively and qualitatively modified from
that in a uniform plasma.

Let us consider, for the present analysis, the simplified
slab model with a density profile N(x), constant temper-
atures, τ ≡ Te/Ti ∼ O(1), and the thermal to magnetic
pressure ratio β � 1. The equilibrium magnetic field
B0 ≡ B0b̂ can, thus, also be approximated as being uni-
form. Meanwhile, the equilibrium distribution function
is taken to be a local Maxwellian FM . With the com-
pressional Alfvén waves being suppressed due to the fre-
quency separation and β � 1, we then have δ(B2/2) ' 0
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and the suitable field variables are δφ and δA ' δA‖b̂.
Here, δφ and δA are, respectively, the scalar and vector
potentials, along with the Coulomb gauge ∇ · δA = 0
and b̂ = ẑ. The perturbed distribution function, δfj for
species j = e, i, then is given by [12]

δfj = −(q/T )jFMjδφ+ exp(−ρj · ∇)δgj , (1)

with ρj = v×b/Ωj , Ωj being the jth− species cyclotron
frequency, and δg satisfying the nonlinear gyrokinetic
equation [12] (

∂t + v‖b · ∇+ 〈δug〉α · ∇
)
δgj

= (q/T )jFMj (∂t + iω∗j) 〈δLg,j〉α. (2)

Here, δLg,j ≡ exp(ρj · ∇)(δφ − v‖δA‖/c) with 〈A〉α de-

notes gyro-phase averaging of A, 〈δug〉α = (c/B0)b̂ ×
∇〈δLg,j〉α and ω∗j = −i(cT/qB)jb̂ × ∇ lnN · ∇. From
now on, we will drop the subscripts “j” when possi-
ble in order to simplify the notations. In the present
analysis of finite small-amplitude fluctuations, we let
δg = δg(1) + δg(2) with superscripts “(1)” and “(2)” de-
noting, respectively, the linear and nonlinear responses,
and solve δg via successive expansions. The governing
field equations, meanwhile, are the quasi-neutrality con-
dition

∑
j qj〈δfj〉 = 0 with 〈(· · ·)〉 ≡

∫
d3v(· · ·) denoting

the velocity-space integration; i.e.,∑
j=e,i

(N0q
2/T )jδφk =

∑
j=e,i

qj 〈(J0δg)j〉 , (3)

and the nonlinear gyrokinetic vorticity equation [13, 14]

ik‖δJ‖,k + (N0e
2/Ti)(1− Γk)(∂t + iω∗i)δφk

= b̂ · k′′ × k′
(
δA‖,k′δJ‖,k′′ − δA‖,k′′δJ‖,k′

)
/B0

− (ec/B0)b̂ · k′′ × k′ 〈[(JkJk′ − Jk′′)δLk′δgk′′,i
−(JkJk′′ − Jk′)δLk′′δgk′,i]〉 . (4)

In Eqs. (3) and (4), J0(k⊥ρ) = 〈exp(ρ · ∇)〉α with
k2⊥ = −∇2

⊥ being an operator, δJ‖ = −(c/4π)∇2
⊥δA‖,
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Γk = 〈J2
0 (k⊥ρi)FMi/N0〉 = I0(bi) exp(−bi), bi = k2⊥ρ

2
ti

with ρti = vti/Ωi being the Larmor radius defined with
ion thermal velocity, I0 being the modified Bessel func-
tion, and J0(k⊥ρe) ' 1 since |k2⊥ρ2e| � 1. The two
terms on the right hand side of Eq. (4) are respectively,
the Maxwell and generalized gyrokinetic ion Reynold
stresses.

We now consider the nonlinear couplings between three
waves, Ω0, Ω− and Ωs. Here, Ω0 ≡ [ω0,k0(x)] is the
pump KAW wave, Ω− = [ω−,k−(x)] is the decay KAW,
and Ωs = [ωs,ks(x)] is the electrostatic drift-sound wave
(DSW). Note the frequency and wave vector matching
conditions dictate ωs = ω0 + ω− and ks(x) = k0(x) +
k−(x). As Ω0 and Ω− are KAW normal modes, k0(x)
and k−(x) are WKB wave vectors determined by the
local linear KAW dispersion relation to be shown later.
In particular, we take Ω0 to be a mode-converted KAW
and, hence, k⊥,0 ' kx,0(x)x̂. Since τ ∼ O(1) and our
current focus is on the quasi-mode decay via nonlinear
ion Landau damping, we have, as in the uniform case,
|ωs| ' |k‖,svti| � |ω0| ∼ |ω−|.

The rest of the theoretical analysis is then straightfor-
ward and follows that of Ref. 10 for the uniform case.
We, therefore, will omit the details and present only the
major results. For the Ωs mode, we have, from Eq. (2),

δg
(1)
s,i = −

( q
T

)
i
FMi

[
ω − ω∗i
k‖v‖ − ω

]
s

Jsδφs, (5)

and

δg
(2)
s,i ' i

Λ−0
ω0

( q
T

)
i
FMi

[
k‖v‖ − ω∗i
k‖v‖ − ω

]
s

J0J−δφ0δφ−. (6)

Here, Jk ≡ J0(k⊥ρ), Λk
′

k′′ ≡ (c/B0)b·k′′×k′, and we have
assumed, in deriving Eq. (6), |k‖v‖,i/ω| � 1 for the Ω0

and Ω− KAW modes. Meanwhile, since |ω/(k‖vte)| � 1

for all the three modes, one readily finds δg
(1)
s,e ' 0, and

δg(2)s,e ' −i
Λs0
ω0

e

Te
FMe

[
1−

k‖,0

k‖,s

(ω∗e
ω

)
−

]
δψ−δψ0. (7)

Here, δψk ≡ (ωδA‖/(ck‖))k is the effective potential due
to the induced parallel electric field −∂tδA‖,k/c. The
quasi-neutrality condition, Eq. (3), then yields, for the
Ωs mode,

ε̂s∗δφs = i(Λs0/ω0)β̂1δφ0δφ−, (8)

where ε̂s∗ is the linear DSW dielectric constant

ε̂s∗ = 1 + τ + τΓs(1− ω∗i/ω)sξsZs, (9)

with ξs ≡ ωs/|k‖,svti|, Zs ≡ Z(ξs) is the plasma disper-
sion function,

β̂1 = σ̂0σ̂1[1− (k‖,0/k‖,s)(ω∗e/ω)−]

+τF1 [1 + (1− ω∗i/ω)sξsZs] , (10)

F1 ≡ 〈J0JsJ−FMi/N0〉, σ̂k ≡ [1 + τ − τΓk(1 −
ω∗i/ω)k]/(1 − ω∗e/ω)k. In deriving Eqs. (8) and (10),
we have noted δψk ' σ̂kδφk from the linear KAW wave
properties.

Next we consider the decay KAW Ω− mode; including
nonlinear couplings between Ω0 and Ωs. Noting that Ωs

is a quasimode, hence, both δg
(1)
s and δg

(2)
s need be kept

on the same footing. For electrons, one can then straight-

forwardly derive δg
(1)
−,e ' (−e/Te)FMe(1 − ω∗e/ω)−δψ−

and

δg
(2)
−,e ' −

(
Λ−0
ω0

)2
e

Te
FMe

k‖,0

k‖,−

×
[
1−

k‖,0

k‖,s

(ω∗e
ω

)
−

]
|δψ0|2δψ−. (11)

Meanwhile, for ions, we have δg
(1)
−,i ' (q/T )iFMi(1 −

ω∗i/ω)−J−δφ−, and

δg
(2)
−,i ' −iΛ

−
0

ω0

[( q
T

)
i
FMi

(
k‖v‖ − ω∗i
k‖v‖ − ω

)
s

J0Jsδφ
∗
0δφs

−J0δφ∗0δg
(2)
s,i

]
. (12)

Here, δg
(2)
s,i is given by Eq. (6). The corresponding quasi-

neutrality condition, Eq. (3), then yields

δψ− =
(
σ̂− + σ̂

(2)
− |δφ0|2

)
δφ− + i(Λ−0 /ω0)D̂1δφsδφ

∗
0;(13)

here, σ̂
(2)
− = (Λ−0 /ω0)2{τ [1 + (1 − ω∗i/ω)sξsZs]F2 −

(k‖,0/k‖,−)[1− (k‖,0/k‖,s)(ω∗e/ω)−]σ̂2
0 σ̂−}/(1−ω∗e/ω)−,

F2 ≡ 〈J2
0J

2
−FMi/N0〉, and D̂1 = τF1[1 + (1 −

ω∗i/ω)sξsZs]/(1− ω∗e/ω)−.
The gyrokinetic vorticity equation, Eq. (4), mean-

while, becomes

τb−
[
(1− ω∗i/ω)− (1− Γ−)δφ−/b− − (k‖VA/ω)2−δψ−

+α̂
(2)
− |δφ0|2δφ−

]
= −i(Λ−0 /ω0)γ̂(2)δφsδφ

∗
s. (14)

Here, α̂(2) = (Λ−0 /ω0)2(F2−F1)[1+(1−ω∗i/ω)sξsZs]/b−,
and γ̂2 = τ{F1[1 + (1 − ω∗i/ω)sξsZs] − Γ0 − Γs(1 −
ω∗i/ω)sξsZs}. In deriving Eq. (14), we note that, since
Ωs is an electrostatic mode, the Maxwell stress, i.e., the
first term on the right hand side of Eq. (4), makes negli-
gible contribution. Substituting Eq. (13) into (14) then
yield the following equation describing Ω− generation by
Ω0 and Ωs;

τb−

(
ε̂A− + ε̂

(2)
A−|δφ0|

2
)
δφ− = −i(Λ−0 /ω0)β̂2δφsδφ

∗
0;(15)

where ε̂A− = (1 − ω∗i/ω)−(1 − Γ−)/b− − (k‖VA/ω)2−σ̂−

is the linear local KAW dielectric constant, ε̂
(2)
A− = α̂

(2)
− −

(k‖VA/ω)2−σ̂
(2)
− , and β̂2 = γ̂2 − τb−(k‖VA/ω)2−D̂1.
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Equations (8) and (15) are the coupled equations be-
tween Ωs and Ω−, and yield the desired WKB dispersion
relation for KAW PDI;

ε̂s∗[ε̂A− + ε̂s∗χ̂A−|δφ0|2] = Ĉ−|δφ0|2, (16)

where ε̂s∗ is given by Eq. (9),

χ̂A− = (Λ−0 /ω0)2(F2 − F 2
1 /Γs)/(τΓsb−σ̂−), (17)

and

Ĉ− = (Λ−0 /ω0)2 (σ̂0σ̂− − F1σs/Γs)

×
[
σ̂0σ̂−

(
1−

k‖,0

k‖,s

ω∗e,−
ω−

)
− F1σs

Γs

]
, (18)

with σs ≡ 1 + τ − τΓs.
In deriving Eq. (16), we have ignored terms contribut-

ing to nonlinear frequency shift in order to concentrate
on the stability properties, and noting Ω− being a normal
mode, letting (k‖VA/ω)2− ' (1−ω∗i/ω)−(1−Γ−)/(b−σ̂−)
in the nonlinear terms.

Focusing on the quasi-mode decay via nonlinear ion
Landau damping, we then obtain, from Eq. (16), the
following stability condition

(γ + γd−)

∣∣∣∣∂ε̂A−,R∂ω−

∣∣∣∣ =

[
χ̂A− +

Ĉ−
|ε̂s∗|2

]
|δφ0|2Im(ε̂s∗).(19)

In Eq. (19), γ is the PDI growth rate, γd− is the lin-
ear damping rate of Ω− normal mode, and the sub-
script “R” denotes the real part. Meanwhile, χ̂A− and
Ĉ− correspond, respectively, to the bare-ion (Comp-
ton) and shielded-ion scatterings. Noting that χ̂A− and
Ĉ− are generally positive, instability thus sets in when
Im(ε̂s∗) > 0, i.e., noting Eq. (9),

(ωs,R − ω∗i,s)Im[Z(ξs)] > 0. (20)

The nonlinear ion Landau damping (or ion-induced scat-
tering), thus, maximizes when |ξs| = |ωs/(k‖,svti)| ' 1
for maximized Im(Zs), ωs,R > 0, and ω∗i,s < 0. ωs,R > 0
and ω∗i,s < 0 correspond, respectively, to downward
frequency cascading and Ωs propagating in the elec-
tron diamagnetic drift direction (or ky,s > 0 in the
present slab model). Noting that while ωs,R > 0 is
the same as in a uniform plasma considered previously
[4, 9–11], ω∗i,s < 0 (ky,s > 0) is solely due to the
plasma nonuniformity (∇N 6= 0) in the present nonuni-
form model. Furthermore, noting that both χ̂A− and
Ĉ− peak around k⊥,sρi ∼ O(1), we have, typically,
|ω∗i,s/ωs| ∼ |k‖,sLN |−1 � 1 with L−1N = |∇N/N | and
|ε̂s∗| ∼ |ω∗i,s/ωs| � 1. That is, in Eq. (19), the bare-ion
Compton scattering dominates over the shielded-ion scat-
tering and the PDI growth rate is O(|k‖,sLN |−1) larger
than that in a uniform plasma.

In addition to enhancing the PDI growth rate, that
the decay instability maximizes for ω∗i,s < 0 (ky,s > 0)

also has a significant implication to the plasma trans-
port processes. Considering the particle flux induced by
the Ω− decay KAW, we have Γx = Γxc + Γxd [8, 15],
where Γxc and Γxd are, respectively, the convective and
diffusive components in the nonuniformity x-direction.
We note, furthermore, Γxc ∝

∑
k kyωk|δφk|2 and Γxd ∝∑

k k
2
y|δφk|2, where the ky dependence indicates that the

guiding-center transport is due to the symmetry-breaking
of the Py = mvy + eAy/c generalized momentum. In a
uniform plasma, with k⊥,0 = kx,0x̂, the decay process
possesses parity in ky; i.e., the PDI growth rates are the
same for ±ky; which implies |δφ−(ky)|2 = |δφ−(−ky)|2.
This ky-parity then dictates that there is no net ky wave
momentum transfer, and from total momentum conser-
vation, Γxc ' 0; i.e., the transport is mainly due to Γxd.
On the other hand, in a nonuniform plasma, Ω− decay
KAW maximizes for ky,− ' ky,s > 0; i.e., Ω− propagates
in the ion diamagnetic drift direction, and the ky-parity
is broken. Γxc is, therefore, finite and generally compa-
rable to Γxd.

Finally, we remark that while the WKB analysis sug-
gests that the Ω− decay KAW is convectively unstable,
the nature of nonlinear coupling and the localization of
Ω0 pump intensity, as will be shown below, could ren-
der Ω− as an absolutely unstable eigenmode. Let |δφ0|2
peak at x = 0 with a localization width ∆0. For a mode-
converted pump KAW Ω0, we have ∆0 ' O(ρ2iLN )1/3;
i.e., the Airy scale length [4]. With, typically, ρi/LN ∼
O(10−3), then |∆0/LN | ∼ 10−2 � 1. Furthermore, since
the nonlinear coupling maximizes for k⊥,− ⊥ k⊥,0 via
|Λ−0 | ∝ |k⊥,−×k⊥,0| and |ε̂s∗| ∼ O(|k‖,sLN |−1)� 1, Eq.
(16) then yields the following wave equation for Ω−[

ρ2i

∣∣∣∣∂ε̂A−,R∂b−

∣∣∣∣ ∂2∂x2 − (δω + iγd−)

∣∣∣∣∂ε̂A−,R∂ω−0

∣∣∣∣
+ε̂s∗(0)χ̂A−(0)|A0|2

(
1− x2

∆2
0

)]
A−(x) = 0; (21)

where we have noted δφ− = A−(x) exp[iky,−y +
ik‖,−z], k2y,− � |∂2/∂x2|, ω− = ω−0 + δω,
ε̂A−,R(ω−0, ky,−, k‖,−, x = 0) = 0, and approximated
|δφ0|2(x) = |A0|2(1 − x2/∆2

0). Also, the equilibrium pa-
rameters can be approximated by the values at x = 0.
Eq. (21) then readily gives the condition for the absolute
unstable eigenmode as

(γ + γd−)

∣∣∣∣∂ε̂A−,R∂ω−0

∣∣∣∣ =
γp
ω0
−
(
γp
ω0

)
th

, (22)

where γp/ω0 = |A0|2χ̂A−(0)Im[ε̂s∗(0)], and (γp/ω0)th =

|A0|(ρi/∆0)
√
|∂ε̂A−,R/∂b−|χ̂A−(0)Im[

√
ε̂s∗(0)]. Physi-

cally, that instability sets in when γp > γp,th means
that Ω− wave packet gets sufficiently amplified when
it reaches the turning point xT located at x2T =
(∆0ρi)[|∂ε̂A−,R/∂b−|/|ε̂s∗χ̂A−|]1/2/|A0|. Taking, as typ-
ical tokamak parameters, |Ωi/ω0| ∼ O(102), β ∼
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O(10−2), |ω∗i,s/k‖,svti| ∼ O(10) for |ky,−ρi| ' ky,sρi ∼
O(1), |γd−/ω0| ∼ O(10−2) and ρi/∆0 ∼ O(10−1),
the threshold amplitude in terms of |δB⊥,0/B0| is
|δB⊥,0/B0|th ' O(10−4); which is compatible with fluc-
tuation amplitudes observed in tokamak experiments
[16].

In summary, it is found that, in a nonuniform plasma,
the parametric decay instability of kinetic Alfvén waves
via nonlinear ion Landau damping could be quantita-
tively and qualitatively different from that in a uniform
plasma. Not only the ion Compton scattering rate is en-
hanced by, typically, an order of magnitude, but also the
parity of the decay waves is broken; leading to, in ad-
dition to the usual diffusive component, a finite convec-
tive component of the transport flux. We, furthermore,
demonstrate that, due to the radial localization of the
pump, the decay KAW forms an absolute unstable eigen-
mode and the required pump threshold amplitude is con-
sistent with experimental observed fluctuations. Noting
that, while the present analysis adopts a slab model with
only density nonuniformity in order to simplify the anal-
ysis and illuminate the underlying physics processes, the
results obtained here can be expected to be also applica-
ble in realistic plasmas; such as tokamaks. It will be inter-
esting and, in fact, desirable to explore how these physics
effects affect the nonlinear evolution and eventual satu-
ration of Alfvén eigenmodes; e.g., toroidal Alfvén eigen-
mode [17–19] excited by energetic particles in tokamak
fusion plasmas.
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