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Abstract

High-Energy-Density-Plasma differs from classical plasma in the follow two respects:
(1) The statistical equilibrium become Fermi-Dirac-like instead of Maxwellian; (2)
The quantum nature of single electron, i.e., the wave effect, has to be considered.
The Wigner equation is the quantum version of Vlasov equation, the former is more
general than the latter. However the solution of Wigner equation is non-trivial. Here
we have adopted a hybrid splitting scheme in a Eulerian grid, where the x and v
direction of the phase space are advanced by different methods. The hybrid scheme
shows significant improvements when compared with the typical splitting scheme,
especially when the non-linear interactions become serious. The linear results with
temperature effect is tested, we found that the extra unstable region of two-stream
instability is suppress by kinetic effect except when the quantum parameters are in
a certain range. The quantum nonlinear Landau damping is also presented.
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PROGRAM SUMMARY1

Program Title: QUAKINS2

Programming language: C++3

Nature of problem: Wigner equation describes the behavior of quantum collisionless4

plasmas just like the Vlasov equation describes the classical plasmas. Quakins provide a5

general numerical solution of the Wigner equation efficiently, where a long-time nonlinear6

simulation is also supported.7
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Solution method: Solving the Vlasov/Wigner equation via splitting method.8

Restrictions: Collisional and electromagnetic effects are not included.9

10

11

1. Introduction12

In a kinetic theory, state of plasmas is indicated by a distribution function13

f(x,v, t), which evolves with time according to the famous Vlasov or Boltzmann14

equation. Solving the Vlasov/Boltzmann equation is one of the most important15

tasks for a plasma physicist. However, a nonlinear Boltzmann equation is almost im-16

possible to solve analytically, numerical means are often needed. As a 6-dimension17

phase space fluid (PSF), the numerical methods can be categorized into two types18

analog to computational fluid dynamics: the Lagrangian and Euler method. In La-19

grangian perspective, the PSF is marked by a huge amount of space point travelling20

with corresponding velocity. Those points are called “markers” in magnetic fusion21

literature and “marco-particles” or “clouds of particle” in the field of high density22

plasma. This kind of method is known as the Particle-in-Cell (PIC) method. A ma-23

jor defect of PIC is the inevitable noise caused by the Monte-Carlo process. On the24

contrary, Euler methods are noiseless, but it is computationally unaffordable when25

the dimension of the simulated space is higher than two.26

In the field of High-Energy-Density-Plasmas (HEDP), traditional kinetic meth-27

ods fail for the quantum effects become dominant. Many-body quantum mechanics28

is one of the most popular approaches to deal with quantum plasmas [1], which29

usually requires directly solving the many-body wave-function. However, it could30

not produce dynamical results [2]. An alternative approach is the quantum kinetic31

theory (QKT), which is essentially just a different form of many-body Schrödinger32

equation. The governing equation of QKT is the quantum Vlasov equation, also33

known as the Wigner equation [3]. Numerical methods solving classical phase space34

problem, namely, solving the Vlasov or Boltzmann equation have been vastly in-35

vestigated in the past decades. Hence the quantum effect can be introduced as a36

correction to approximately describe a mesoscopic system. Furthermore, since the37

phase-space-based method is a real time-dependent Hartree mean-field theory, it is38

able to deal with dynamic correlations, i.e., collisions, among distribution functions39

[2]. The collisional process are easily introduced into the phase-space framework by40

simply add a collision term at the right-hand-side of kinetic equation, which can be41

solved by directly solving [4], or Monte-Carlo relaxion method, depending on the42

form of collision term.43
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To solve the nonlinear Wigner equation, Fourier spectrum method (FSM) [3] is44

often needed. However, in the nonlinear stage, the phase space calculated by FSM45

become unphysically chaotic. We thus adopt a combined method in this paper to46

remove this unphysical issues.47

This paper is organized as follows. In section 2, the basic theory and numerical48

algorithms are introduced. We adopted a hybrid splitting scheme in the quakins49

code to solve the Wigner equation. The code structure is briefly introduced in section50

3. Results of quakins are presented in section 4, including both the classical and51

the quantum result of Landau damping and two-stream instability. Some riveting52

nonlinear phenomena are also presented.53

2. Basic Theory and Methods54

2.1. Quantum Kinetic Theory55

In simple terms, the Wigner equation [? ](
∂

∂t
+ v ·∇

)
f(x,v, t) =

1

iQ

∫
dξ

∫
dv′

(2πQ)3

× ei(v′−v)·ξ/Q
[
φ

(
x +

ξ

2

)
− φ

(
x− ξ

2

)]
f(x,v′, t)

(1)

is just the quantum version of the electrostatic Vlasov equation:(
∂

∂t
+ v ·∇−∇φ · ∂

∂v

)
f(x,v, t) = 0. (2)

One can see that they are identical when φ(x) varying slowly in space. Here,

Q =
~ωp

2kBT
(3)

is the normalized Planck’s constant, which, in quantum kinetic theory, measures the
importance of quantum effect. Noticing that there is a intrinsic difference between
Eq. (1) and Eq. (2): the definition of f in Eq. (1) is not a distribution function,
i.e., a probability distribution, but

f(x,v, t) =

∫
dξe−imv·ξ/~

〈
Ψ†
(
x− ξ

2

)
Ψ

(
x +

ξ

2

)〉
, (4)

where Ψ is the quantum field operator, and 〈· · · 〉 stands for ensemble average. Eq.56

(4) is known as the Wigner quasi-distribution function [5]. The Wigner function57
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must not be interpreted as a probability distribution, because it can have negative58

values. In fact, this is the most significant difference between the quantum kinetic59

theory and traditional kinetic theory. Negative values imply the presence of quantum60

coherence in high-density plasmas.61

2.2. Numerical Methods62

The most common method for solving a Vlasov equation in Euler grids is to split63

a single calculating step into two parts [6], which are in x and v direction respectively.64

The flux balance method (FBM) [7] is commonly used when solving the Vlasov, while65

the Wigner equation can only be solved by Fourier spectrum method (FSM) [3] due66

to the cumbersome phase space integral. We adopt a novel scheme that combines67

these two methods, and the advantages of which will be presented in the following68

sections. Along with the Poisson equation solving process, a completed step of the69

main loop of the quakins code is in a leap-frog-like form.70

2.2.1. Flux Balance Method71

To solve a continuity equation

∂f

∂t
+

∂

∂x
(vf) = 0, (5)

one may discretize f(x) into N uniform distributed grid point, and let

fi =
1

∆x

∫ xi+1/2

xi−1/2

f(x)dx. (6)

In light of the nice property of Eq. (5), the integration in Eq. (6) is conserved along
the characteristic curves. Hence,∫ xi+1/2

xi−1/2

f(x, tb)dx =

∫ Xb→a(xi+1/2)

Xb→a(xi−1/2)

f(x, ta)dx, (7)

where Xb→a maps a space location at time tb to its whereabout at time ta along
characteristic curve [7]. In this case Xb→a(x) = x− v(tb − ta). Defining

Φba
k =

∫ xk

Xb→a(xk)

f(x, ta)dx, (8)

which is the total volume that flow through xk point from ta to tb, then we have

fi(t
b)∆x = fi(t

a)∆x+ Φba
i−1/2 − Φba

i+1/2, (9)
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which is a perfect discretization of the continuity equation (5). Noticing that Eq.72

(9) indicate that the change in total volume in a single cell from ta to tb is equal73

to the volume flow in from left boundary(xi−1/2) minus the volume flow out from74

right boundary(xi+1/2). The flux integral of all the boundaries can then be evaluated75

independently:76

Φi+ 1
2

(tn) =

∫
x∈αi+1/2

f(tn, x)dx+



i∑
a=I+1

fna ∆x, while v > 0

−
I−1∑
a=i+1

fna ∆x, while v < 0

. (10)

In quakins code, the first integration term in Eq. 10 can be calculated by interpo-77

lation of any order of accuracy.78

2.2.2. Fourier Spectrum Method79

The flux balance method can easily handle a Vlasov equation but not the Wigner
equation because of the cumbersome phase space integration term. However, it turn
out that this term become more clear in Fourier space [3]:

∂

∂t
fλ(x, t) =

e

i~

[
φ

(
x+

~λ
2m

)
− φ

(
x− ~λ

2m

)]
fλ(x, t). (11)

Here, λ is the Fourier conjugate of velocity v. The solution of Eq. (11) is

fλ(t) = fλ(t−∆t) exp

{
e

i~

[
φ

(
x+

~λ
2m

)
− φ

(
x− ~λ

2m

)]
∆t

}
. (12)

Similarly, the x direction advance equation is in k-Fourier space:

fk(t) = fk(t−∆t)eikv∆t. (13)

This implies that one can solve the Wigner function by means of Fourier spectrum80

method.81

2.2.3. hybrid splitting Method82

In quakins, we adopt a hybrid splitting method, in which, the x-direction is
advance by FBM method while the v-direction the FSM method. Then a full step
of the main loop is

f ∗(x, v) = f

(
x− v∆t

2
, v, t−∆t

)
,

F [f ∗∗] (λ) = F [f ∗] (λ)eiE(x)λ∆t,

f(x, v, t) = f ∗∗
(
x− v∆t

2
, v

)
,

(14)
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where F stands for a Fourier transformation, and

E(x) =

{
−∂φ/∂x, while Q = 0,

[φ (x+Qλ/2)− φ (x−Qλ/2)] /Q, otherwise.
(15)

From Fig. 1 one can see that, the total energy, which equals to the sum of the83

electrostatic wave(ESW) energy (∝ |E|2) and particle energy (∝
∫
v2fdv), calculated84

by the pure FSM and hybrid method are both conserved. And, the linear stage of the85

ESW of these two Methods perfectly coincide, but disagreed in the nonlinear stage.86

Noticing that the two both predicted a sudden collapse of ESW in the nonlinear87

saturation stage, but the collapse time are discrepant. This collapse is actually a88

nonlinear side-band instability caused by mode-mode coupling [8], which indicates89

the broken of a Bernstein-Greene-Kruskal(BGK) equilibrium [9]. To see which mean90

is more reliable, we shall take a look at the phase space. In Fig. 2, where snap-shot91

of a typical BGK holes calculated by the two means respectively are presented, one92

can see that the FSM phase space is quite noisy, while the hybrid is fairly smooth.

Figure 1: Electric field at a random position(left) and the energy of plasma and wave (right) of a
typical two-stream instability.

93

2.2.4. Hypercollision Operator94

As the simulation goes on, the ballistic term(∝ eikvt) create a increasingly high95

wave-number of velocity space. In real world, this term will automatically fade away96

in light of phase mixing. However, in discrete phase space, the velocity space integral97

is replaced by a finite summation. As a result, the Fourier integral degrades to sum98

of Fourier series, hence a physical quantity become periodic in time. This is the99

so-called recurrence problem [6].100
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Figure 2: Snap-shot of two-stream instability at nonlinear phase simulated by pure fft method and
hybrid method respectively, where nx = 200, nv = 201, k = 0.6.

We introduce a hypercollision operator [10]

C(f) = νh
∂4f

∂v4
(16)

to cope with the recurrence problem.101

3. Code Structure102

The quakins (QUAntum KINetic Solver) code is developed in C++ language,103

and used for solving the 1d nonlinear Wigner/Poisson system in Euler grids with104

periodic boundary condition. We adopt the MPI parallelization scheme in order to105

do quick parameter scanning. The algorithm repository of quakins is designed to106

be easily expandable. The Poisson’s equation solver and the free stream solver are107

two pure virtual interfaces, which allow one to enrich the algorithm repository via108

simply adding a subclass of the pure virtual base class (see Fig. 3).109

4. Simulation Results110

4.1. Classical Results(Q = 0)111

Landau damping is one of the most common kinetic phenomenon in plasma
physics. Here we carry out the analytical continuation of the plasma dispersion
function [11]

Z(ζ) = i
√
πe−ζ

2

[1 + erf(iζ)] (17)
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Figure 3: Quakins code as an API.

to calculate the exact solution of classical Landau damping (solid lines in Fig. 4(a)).
The initial perturbation of the numerical result is of the form

f(x, v, 0) = f0(v) [1 + A cos(k0x)] . (18)

To minimize unwanted nonlinear effects, we set A = 10−3 for Landau damping. One
can see from Fig. 4(a) that the numerical results perfectly coincide with the exact
solution. Fig. 4(a) also shows the analytic solution obtained from Landau integral
(the dash-lines), which is only valid in a very limited region (kλD � 1). Fig. 4(b)
present the result of a typical two-stream instability. To the linear limit, the two-
stream instability is not a kinetic effect, and the solid-lines in Fig. 4(b) is the solution
to the reactive-type dispersion relation:

1−
ω2

p

(ω − kvd/2)
−

ω2
p

(ω + kvd/2)
= 0. (19)

In simulation, we initialized two nearly cold beams (vth/vd = 0.05) with opposite112

velocity (v/vd = ±0.5), where the kinetic effects should be negligible. When the113

initial perturbation A = 10−6, one can see that the simulation results do coincide114

with the analytical solution.115
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Figure 4: Linear growth rate of (a)Landau damping and (b)two-stream instability, where the solid
lines are calculated by analytical equation, and the dash-lines are from Landau’s approach.

4.2. Quantum Results(Q > 0)116

4.2.1. Landau Damping117

When it comes to wave-particle interaction in kinetic theory, one needs to only
consider the velocity component that parallel to the wave vector. Hence, after the
integration over other two dimension, one obtain the one-dimensional Fermi-Dirac
distribution

f(v) =
3

4

n0

vF

Θ ln

{
1 + exp

[
1

Θ

(
1− v2

v2
F

)]}
, (20)

where Θ = kBT/εF is the degeneracy of a Fermi-Dirac system. Noticing that the
degeneracy is related to the normalized Planck’s constant Q by

Θ = 1.6813× 104n−
1
6Q−1. (21)

Hence, for a fixed electron density n, the shape of Fermi-Dirac distribution function118

varies with Q.119

The dispersion relation presented in Fig. 5 is calculated under Maxwellian dis-
tribution, thus the degenerate effect is ignored. The dash-lines in the left panel of
Fig. 5 stand for quantum fluid approximation [12], i.e.,

ω2 = ω2
p + k〈v〉2 +

~2k4

4m2
e

, (22)

which, just like in the classical case, overestimated the real frequency. In Fig. 6, the120

effect of Fermi-Dirac statistics are included. We calculated the dispersion relation121

with Θ = 0.2, 0.5 and 2 respectively. As can be seen, the shape of the distribution122

function has a significant effect on the dispersion relation.123
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Figure 5: quantum Landau Damping with varying Q.

Figure 6: Quantum Landau Damping with varying Theta. The first panel is the shape of 1d
Fermi-Dirac distribution, where the dashed-line represents the Maxwellian distribution.

4.2.2. Two-stream Instability124

In quantum degenerate plasma, two-stream instability behave differently because
of the Fermi pressure and the quantum wave effect [13, 14, 15, 16]. When the
relative drift velocity of the two streams vd is much larger than the Fermi velocity vF

or the thermal velocity vth in non-degenerate plasma, it is reasonable to replace the
distribution function by two counter-streaming δ-functions with velocity difference
vd. Since the kinetic effect is ignored, a reactive-type dispersion relation is obtained:

1−
ω2

p1

(ω − kv1)2 − ω2
k

−
ω2

p2

(ω − kv2)2 − ω2
k

= 0, (23)
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where ωk = ~k2/2me is the quantum shift caused by diffraction and refraction of
electrons. Let vd = v1 − v2, ω2

1 = ω2
2 = ω2

p/2, and v1 + v2 = 0, we have

ω2 =
ω2

p

2

(
1 + 2k̃2 + 2H2k̃4 ±

√
1 + 8k̃2 + 16H2k̃6

)
, (24)

where H = 2~ωp/mv
2
d, and k̃ = kvd/2ωp is the normalized wave number. The plus125

sign gives a trivial solution since the frequency is always real. The imaginary part126

of roots with minus sign are plotted in Fig. 7, from which one can see that as H127

increases, there is an additional unstable bubble emerges at high-k and then merges128

with the original bubble as H further increases. When H = 0, the bubble is located129

at infinite-k. This additional unstable bubble would be better understood if the130

electromagnetic effect were considered [13]. Generally, an instability with such high131

value of wave number often suffers very strong Landau damping and being difficult132

to really grow up.133

We thus conducted a simulation at H ' 0.5, while the two instability bubble are134

at the edge of merging. The temperature of the two beams are both 0.05vd, which135

corresponds to a low temperature system. The results are presented in right panel136

of Fig. 7. When H = 0.48, the unstable mode in the outer bubble is suppress by137

Landau damping albeit with such low temperature. When H = 0.52, where the138

outer bubble is attached to the main unstable bubble, and a larger unstable region is139

formed. The numerical result coincide with the theoretical result up to k = 4ωp/vd140

while the remaining part is again suppressed by Landau damping. Be that as it may,141

the unstable region of QTS is still almost doubled when compared to the CTS (see142

Fig. 4).143

Figure 7: quantum two-stream instability.
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4.3. Nonlinear Effects144

In classical plasmas, a strong electrostatic perturbation can not be completely
removed by Landau damping because of nonlinear effect, i.e., the particle trapping
process. However, in a high-density-plasma, quantum tunneling effect prevent par-
ticles from being trapped by an electrostatic trough when the relation [17]

~k
m

&
ωp

k

√
A (25)

is satisfied. More specifically, as is pointed out by the author of Ref. [18], there145

exists two time scales that determine the nonlinear behavior: the bounce period146

tB = 2π/ωB, where ωB is the bounce frequency of electrons, and the quantum time147

scale tQ = 2m/~k2. When tQ � tB, the nonlinear trapping is suppressed, and when148

tQ � tB, the quantum result reduce to classical.149

We then set A = 0.06 to initial a Landau damping with Q = 0 and 1 respectively.150

One can see from Fig. 8 that, when kλD ' 0.6, tQ � tB is satisfied, the nonlinear151

trapping does be suppressed with no residue left. However, when kλD ' 0.4, where152

tQ is just slightly less than tB, the quantum result resembles the classical. The153

nonlinear effect is still evident. If we take a look at the snap-shot of phase space154

(additional panel in Fig. 8) at tωp = 52, where the trapped electrons are in their first155

bounce period, we find that the resonant island of the quantum plasma, where the156

negative value indicates the quantum recoil, behaves very differently than its classical157

counterpart, albert the evolution of electric field nearly coincides. This implies that158

the quantum recoil phenomenon may not be as significant as the theoretical analysis159

has predicted.160

5. Summary161

In this paper, we adopt a hybrid splitting method to solve the Wigner equation,162

the accuracy of which is benchmarked by analytical linear theory. We have re-163

investigated the two famous phenomena in plasma physics: Landau damping and164

two-stream instability. The result shows that the Landau damping is much stronger165

in quantum plasmas than in classical plasma for two reasons: the quantum wave166

effect and the Fermi pressure. As to quantum two-stream instability, we find that167

the extra short-wave-length instability resulted by quantum recoil effect is suppress168

by strong Landau damping even with nearly zero temperature. And only exist when169

it is closely located at the original unstable region, which happens when H ' 0.5. In170

the nonlinear region, we conclude that the quantum recoil effect may not be as that171

important as the prediction of theoretical analysis.172
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Figure 8: Nonlinear Landau Damping.
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