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 6 
Abstract: 7 

Beta induced Alfvén eigenmode (BAE) can be an important candidate for ion 8 
loss in burning plasmas. Elongation effect on BAE has been investigated by the 9 
gyrokinetic eigenvalue code DAEPS in this work. We construct a shaped 10 
equilibrium model by modifying local 𝑠𝑠 − 𝛼𝛼 model with which the capability of the 11 
DAEPS code has been extended to study the elongation effect. It is discovered that 12 
the BAE growth rate first increases with elongation factor 𝜅𝜅, reaches a maximum 13 
and then decreases. This trend occurs for many different values of 𝜂𝜂𝑖𝑖 . We find that, 14 
in the weak or moderate elongation region, the BAE instability is reactive type and 15 
mainly determined by the fluid/MHD effects, namely the combination of stablizing 16 
field line bending term and destablizing interchange drive in the vorticity equation. 17 
However, in the strong elongation region, the BAE instability becomes dissipative 18 
and is mainly driven by the wave-particle resonance effect embeded in 𝛿𝛿𝑊𝑊𝑘𝑘 since 19 
the fluid driving damps away. It is also discovered that the wave-particle resonance 20 
decreases with elongation in this region, which is due to the decrease of the 21 
geodesic curvature with elongation and leads to the decrease in the growth rate of 22 
BAE. 23 
.  24 
 25 
Ⅰ. INTRODUCTION 26 

Energetic particles (EPs) can destabilize various Alfvén eigenmodes (AEs), 27 
which in turn can substantially degrade the confinement for the energetic particles. 28 
The common Alfvén eigenmodes include toroidicity induced Alfvén Eigenmode 29 
(TAE)[1–3], beta induced Alfvén Eigenmode (BAE)[4–6], energetic particle mode 30 
(EPM)[7], reversed shear Alfvén eigenmode (RSAE)[8,9], etc. Among them, BAE 31 
has a low characteristic frequency in the beta-induced gap in the shear Alfvén 32 
continuous spectrum, which is caused by the coupling between the toroidal Alfven 33 
wave and ion sound wave. BAE could lead to a major ion loss in fusion device, and 34 
it can be destabilized by either energetic particles or thermal ions. The BAE mode 35 
has been observed by DⅢ-D tokamak experiments, where an Alfvénic instability 36 
with the BAE frequency is excited by neutral beam injection only in high beta 37 
plasmas[10]. Progress has been made in theory and simulation of the BAE mode 38 
during the last two decades[6,11]. For example, with the asymptotic matching 39 
method, an analytic theory has been developed to investigate the BAE linear 40 
instability based the 𝑠𝑠 − 𝛼𝛼 model with concircular magnetic fluxes[12]. Recently 41 
both fluid-kinetic hybrid simulation and gyrokinetic simulation have been 42 



developed to looked into the linear and nonlinear BAE physics[4,13–15]. Here we 43 
employ a newly developed non-perturbative linear eigenvalue code named 44 
DAEPS[16] (drift Alfvén energetic particle stability) to investigate the plasma 45 
shaping effect on the BAE instability. 46 

The DAEPS code is based on the general fishbone-like dispersion relation 47 
(GFLDR) theoretical framework and uses the numerical method of finite element 48 
to calculate various unstable or stable drift Afvénic eigenmodes in toroidal 49 
plasmas[16]. This code uses an iteration method to solve the vorticity equation, as 50 
well as to obtain the complex frequency 𝜔𝜔  and asymptotic behaviour Λ  with 51 
high precision. In addition, it has used the Neumann boundary condition for 52 
accurate asymptotic wave behaviour in the inertial region of the Ballooning space, 53 
i.e., 𝜕𝜕𝜃𝜃Ψ = 𝑖𝑖ΛΨ. Many numerical codes have investigated the AE physics by setting 54 
the perturbed magnetic potential Ψ = 0  as the boundary condition[17,18], 55 
which cannot accurately compute the asymptotic mode behaviour and then the 56 
eigen frequency on many occasions, especially for those damped modes or 57 
marginally unstable modes.  58 

Most previous studies on the AEs are based on a model equilibrium with 59 
concircular magnetic flux surface[16,19]. However, the cross section of magnetic 60 
flux surface is generally not circular in modern tokamaks. The plasma shaping 61 
factors could be crucial for determining linear instability and nonlinear 62 
transport[20]. Therefore, it is important to take plasma shaping factors such as 63 
elongation and triangularity into account, which could be a difficult task for the 64 
conventional theory. For the model equilibrium, Miller and et al have used nine 65 
parameters to establish an analytic equilibrium for the D-shaped plasma[21]. Here 66 
we develop a shaped equilibrium model by following Miller’s approach but only 67 
focus on the elongation factor. In this equilibrium, an analytical constrain has been 68 
found for important physical quantities such as Shafranov shift 𝛥𝛥 , elongation 69 
factor 𝜅𝜅 and normalized pressure gradient 𝛼𝛼. Then we implement this model in 70 
the DAEPS code to investigate the elongation effect on the BAE instability. It is 71 
discovered that the linear growth rate of BAE first increases and then decreases 72 
with elongation factor 𝜅𝜅. And then how the MHD and kinetic effects together affect 73 
the instability of BAE has also been analyzed and discussed in detail. 74 

This paper is organized as follows. In Sec.Ⅱ, we show the governing equations 75 
in the ballooning representation for the most general magnetic equilibrium. Then 76 
we introduce a new equilibrium model with elongation factor 𝜅𝜅 and demonstrate 77 
how the governing equations for drift Alfvénic instabilities are modified by the 78 
elongation, where it is crucial to calculate the specific forms for the factors of 𝜅𝜅 79 
and 𝑔𝑔 in governing equations and implement them in the DAEPS code. Next, Sec. 80 
Ⅲ presents numerical results by the DAEPS code, where we exhibit the 81 
relationship between the elongation and the growth rate of BAE in various 82 
situations. In Sec. Ⅳ, we analyze how the elongation affects the BAE instability 83 
and make physics interpretations for the numerical results. In Sec. Ⅴ, we give a 84 
summary of the elongation effect on BAE mode and discuss the future work. 85 
 86 



Ⅱ.Theoretical model and equations 87 
A. Vorticity equation and gyrokinetic equation 88 

It has been known that the high-n drift-Alfvénic modes are most relevant for 89 
electromagnetic turbulence in large size fusion devices such as ITER. Ballooning 90 
representation is conveniently employed here to reduce the complexity of 91 
calculating these high-n modes. In order to accurately address the complex 92 
magnetic geometry in a tokamak, a particular set of magnetic coordinates, i.e., the 93 
Boozer coordinates (𝜓𝜓𝑝𝑝,𝜃𝜃𝐵𝐵 , 𝜁𝜁𝐵𝐵) are used in the theoretical modelling and numeric 94 

calculation in this paper. The vorticity equation using the ballooning 95 
representation and the Boozer coordinates can be written as[16,22]  96 

 
𝜕𝜕𝜃𝜃𝜅𝜅⊥2𝜕𝜕𝜃𝜃𝛿𝛿𝜓𝜓 +

1
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(1) 

In the preceding equation, 𝜕𝜕∥ = 𝑃𝑃∥
𝑞𝑞𝑞𝑞
𝜕𝜕𝜃𝜃, 𝑃𝑃∥ = 𝜅𝜅𝐵𝐵𝑎𝑎𝑟𝑟𝑞𝑞

𝐽𝐽𝐵𝐵𝐵𝐵
, and 𝜃𝜃 is the extended poloidal 97 

angle in the ballooning representation, 𝜅𝜅⊥ = 𝑘𝑘⊥
𝑘𝑘𝜃𝜃

 with 𝑘𝑘𝜃𝜃 = 𝑛𝑛𝑞𝑞
𝑟𝑟

, 𝜔𝜔𝐴𝐴 = 𝑣𝑣𝐴𝐴
𝑞𝑞𝑞𝑞

 is Alfvén 98 

frequency, 𝜔𝜔∗𝑝𝑝𝑖𝑖 = 𝒌𝒌×𝒃𝒃
𝛺𝛺𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐

⋅ 𝛻𝛻𝑝𝑝𝑖𝑖 is the ion diamagnetic frequency with Ω𝑐𝑐𝑖𝑖 the ion 99 

cyclotron frequency, 𝛼𝛼 = −𝑅𝑅𝑞𝑞2𝛽𝛽′  with 𝛽𝛽 = 8𝜋𝜋𝑝𝑝𝑖𝑖/𝐵𝐵2 , 〈⋯ 〉𝑣𝑣 ≡ ∫ ⋯𝑑𝑑3𝑣𝑣  is the 100 
integration over velocity space, 𝑞𝑞𝑗𝑗   is the charge for the particle species 𝑗𝑗 , 101 

𝐽𝐽0(𝑘𝑘⊥𝜌𝜌𝑖𝑖) is the zeroth order first kind Bessel function with 𝜌𝜌𝑗𝑗 = 𝑣𝑣𝑗𝑗
Ω𝑐𝑐𝑗𝑗

 the Larmor 102 

radius, and 𝜔𝜔𝑑𝑑𝑗𝑗 = 𝒌𝒌 ∙ 𝒃𝒃 × (𝜇𝜇𝐵𝐵 + 𝑣𝑣∥2)∇𝐵𝐵/Ω𝑐𝑐𝑗𝑗  is the drift frequency for the particle 103 

species 𝑗𝑗. We further note that the left-hand side of the preceding equation is due 104 
to fluid contribution, including field line bending term 𝜕𝜕𝜃𝜃𝜅𝜅⊥2𝜕𝜕𝜃𝜃𝛿𝛿𝜓𝜓, inertial term 105 
1
𝑃𝑃∥2

𝜔𝜔(𝜔𝜔−𝜔𝜔⋆𝑝𝑝𝑐𝑐)
𝜔𝜔𝐴𝐴
2 𝜅𝜅⊥2𝛿𝛿𝜓𝜓  and ballooning interchange term 1

𝑃𝑃∥2
𝛼𝛼𝑔𝑔𝛿𝛿𝜓𝜓 . The right-hand 106 

side is due to kinetic compression (KC) of plasmas, which could come from 107 
energetic particles or thermal particles. 108 

The gyrocenter distribution function 𝛿𝛿𝐾𝐾𝑗𝑗   could be acquired by solving the 109 

linearized collisionless electromagnetic gyrokinetic equation: 110 
 �𝑃𝑃∥

𝑞𝑞𝑞𝑞
 𝜕𝜕𝜃𝜃 − 𝑖𝑖𝜔𝜔 + 𝑖𝑖𝜔𝜔𝑑𝑑� 𝛿𝛿𝐾𝐾𝑗𝑗 = 𝑖𝑖 𝑞𝑞𝑗𝑗

𝑚𝑚𝑗𝑗
𝑄𝑄𝐹𝐹0𝑗𝑗

𝜔𝜔𝑑𝑑𝑗𝑗

𝜔𝜔
𝐽𝐽0�𝑘𝑘⊥𝜌𝜌𝑗𝑗�𝛿𝛿𝜓𝜓, (2) 

where 𝑄𝑄𝐹𝐹0𝑗𝑗 = �𝜔𝜔𝜕𝜕𝐸𝐸 + 𝜔𝜔�⋆𝑗𝑗�𝐹𝐹0𝑗𝑗   is free energy provided by the phase space 111 

gradient of the equilibrium distribution function 𝐹𝐹0𝑗𝑗 , with 𝐸𝐸 = 1
2
𝑣𝑣2 and 𝜔𝜔�⋆𝑗𝑗 =112 

𝒌𝒌×𝒃𝒃
Ω𝑐𝑐𝑗𝑗

⋅ 𝛻𝛻𝑙𝑙𝑙𝑙𝐹𝐹0𝑗𝑗 . 113 



In the ballooning representation, the vorticity equation of Eq. (1) can be 114 
further organized as a Schrödinger-like form 115 

 �𝜕𝜕𝜃𝜃2 + 1
𝑃𝑃∥
2
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where 𝑉𝑉(𝜃𝜃) = 1
𝑃𝑃∥
2
𝛼𝛼𝛼𝛼
𝜅𝜅⊥2
− 1

𝜅𝜅⊥

𝜕𝜕2𝜅𝜅⊥
𝜕𝜕𝜃𝜃2

  is the effective potential well and Ψ = 𝜅𝜅⊥𝛿𝛿𝜓𝜓 . To 116 

calculate accurately the eigen frequency 𝜔𝜔 of the preceding equation, we need to 117 
properly deal with the asymptotic boundary condition in the inertial regime where 118 
the parallel coordinate 𝜃𝜃 ≫ 1. The generalized form of the asymptotic vorticity 119 
equation can be written as  120 

 �𝜕𝜕𝜃𝜃2 + Λ2�Ψ = 0 (4) 

The asymptotic behaviour of Ψ can be derived by the Floquet theory as 𝜃𝜃 ≫121 
1: 122 

 lim
𝜃𝜃→∞

Ψ = 𝑃𝑃(𝜃𝜃)𝑒𝑒𝑖𝑖ν|𝜃𝜃|, (5) 

where 𝑃𝑃(𝜃𝜃) is a fast oscillating function with 2𝜋𝜋 periodicity and Λ = −𝑖𝑖 1
𝑃𝑃
𝜕𝜕𝑃𝑃
𝜕𝜕𝜃𝜃

+123 

𝜈𝜈 is the inertial term in the GFLDR theory.[23,24] 124 
 The kinetic compression term of Eq. (3) involves a multi-dimensional integral 125 
for 𝛿𝛿𝐾𝐾𝑗𝑗 , which can be solved by the gyrokinetic equation Eq. (2). For studying BAE 126 

instability, we need only consider circulating particle contribution, and thus the 127 
gyrokinetic equation can be integrated directly in the ballooning space: 128 
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(6) 

where 𝜎𝜎� = 𝒗𝒗∥
�𝑣𝑣∥�

= ±1  represents co- and counter- direction for the parallel 129 

velocity, 𝜆𝜆 = 𝜇𝜇𝐵𝐵0
𝐸𝐸

 is the pitch angle variable. Hence, the kinetic compression term 130 

has the following integral form 131 
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(7) 

The computational model for the DAEPS code consists of Eqs. (3), (5) & (7) for 132 
the purpose of calculating BAE, which is suitable for arbitrary equilibrium 133 
magnetic field. The original DAEPS code is based on a simplify equilibrium field 134 
model with concircular cross section. In this paper, we modify the original 135 
equilibrium to incorporate the important shaping factor of elongation by updating 136 
geometric coefficients such as 𝜅𝜅⊥ and 𝑔𝑔 functions in the model equations. The 137 
shaped equilibrium magnetic field model is introduced in the following section. 138 

 139 
B. Equilibrium Model with Elongation 140 

In order to study the elongation effect on the BAE instability in a tokamak, a 141 
local large aspect-ratio plasma equilibrium with shifted elongated flux surfaces is 142 
used in this paper. These elongated flux surfaces can be defined by the following 143 
equations for their (𝑅𝑅,𝑍𝑍) coordinates:  144 

 
�
𝑅𝑅 = 1 + 𝑟𝑟 cos 𝜃𝜃𝛼𝛼 − Δ(𝑟𝑟)

𝑍𝑍 = 𝜅𝜅𝑟𝑟 sin𝜃𝜃𝛼𝛼
 

 
(8) 

where 𝜅𝜅 is the elongation factor, 𝜃𝜃𝛼𝛼 is the geometric poloidal angle, 𝑟𝑟 is a radial 145 

variable and a flux label and the length are normalized by major radius 𝑅𝑅0. This 146 
model equilibrium is similar to the Miller equilibrium, and includes Shafranov 147 
shift 𝛥𝛥(𝑟𝑟). In this model, the flux surface is defined by the radial variable 𝑟𝑟 and 148 
the magnetic flux surfaces for different values of elongation are exhibited in Fig .1.  149 

The magnetic field associated with this equilibrium model is of the form 150 
 𝑩𝑩 = 𝐵𝐵𝑎𝑎𝛻𝛻𝜁𝜁𝛼𝛼 + 𝐵𝐵𝑎𝑎

𝜅𝜅𝑟𝑟
𝑞𝑞
𝛻𝛻𝜁𝜁𝛼𝛼 × 𝛻𝛻𝑟𝑟 (9) 

where 𝜁𝜁𝛼𝛼 is the geometric toroidal angle, 𝐵𝐵𝑎𝑎 is the on-axis magnetic field.  151 



  
(c) (d) 

Fig. 1. Cross-sections of equilibrium configuration for different elongations: (a) 
𝜅𝜅 = 1.5; (b) 𝜅𝜅 = 2. 

To the order of 𝑂𝑂(𝑟𝑟), the Jacobian 𝐽𝐽𝛼𝛼 = �∇𝑟𝑟𝛼𝛼 ⋅ ∇𝜃𝜃𝛼𝛼 × ∇𝜁𝜁𝛼𝛼�
−1

 could be calculated 152 

as  153 
 𝐽𝐽𝛼𝛼 = 𝜅𝜅𝑟𝑟𝑅𝑅(1 − Δ′ cos 𝜃𝜃𝛼𝛼) (10) 

 In the DAEPS code, the normalized pressure gradient 𝛼𝛼 = −𝑞𝑞2 2𝜇𝜇0𝑝𝑝′
𝐵𝐵02

  are 154 

actually used to calculate linear instability instead of the Shafranov shift Δ(r) . 155 
Thus, we proceed to discuss the relationship between the physical quantities 156 
(𝛼𝛼,Δ)  and the physical quantities (𝑠𝑠,𝛼𝛼)  in the conventional s − α  model. For 157 
this purpose, we resort to the original Grad-Shafranov (G-S) equation.  158 
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∇𝜓𝜓𝑝𝑝
𝑅𝑅2

� = −𝜇𝜇0
𝑑𝑑𝑃𝑃
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−
𝐹𝐹
𝑅𝑅2

𝑑𝑑𝐹𝐹
𝑑𝑑𝜓𝜓𝑝𝑝

 ,  (11) 

where 𝐹𝐹 = 𝐵𝐵𝜙𝜙𝑅𝑅 represents the poloidal current. In the 𝑠𝑠 − 𝛼𝛼 model for circular 159 

flux surfaces, we can solve this preceding equation by perturbation method 160 
according to the smallness of r/R0 . To the lowest order, the preceding G-S 161 
equation can be turned into the following radial force balance equation[25]: 162 

 
2𝜇𝜇0

𝑃𝑃′
𝐵𝐵02

+ 
1
𝑞𝑞2

[�3 − 2
𝑞𝑞′𝑟𝑟
𝑞𝑞
�Δ′ − 𝑟𝑟 + 𝑟𝑟Δ′′] = 0   

 
(12) 

 From Eq. (13), ignoring the 𝑂𝑂(𝑟𝑟) term, we can find the relationship between 163 
the normalized pressure gradient 𝛼𝛼  and Shafranov shift 𝛥𝛥(𝑟𝑟) : 𝑟𝑟(Δ′ + 𝑟𝑟) = 𝛼𝛼 . 164 
However, when the elongation effect is considered, there will be extra shaping 165 
factors in the G-S equation. Thus, it is not feasible to obtain a pure radial force 166 
balance equation.  167 

In the magnetic coordinates (𝑟𝑟,𝜃𝜃𝛼𝛼, 𝜁𝜁𝛼𝛼), Eq. (11) can be rewritten as    168 

r=0.3

r=0.2

r=0.1

r=0.3

r=0.2

r=0.1



 𝜕𝜕
𝜕𝜕𝑟𝑟

𝐽𝐽𝛼𝛼
𝑅𝑅2

𝑔𝑔𝑟𝑟𝑟𝑟
𝜕𝜕𝜓𝜓𝑝𝑝
𝜕𝜕𝑟𝑟

+
𝜕𝜕
𝜕𝜕𝑟𝑟

𝐽𝐽𝛼𝛼
𝑅𝑅2

𝑔𝑔𝑟𝑟𝜃𝜃𝑔𝑔
𝜕𝜕𝜓𝜓𝑝𝑝
𝜕𝜕𝜃𝜃𝛼𝛼

+
𝜕𝜕
𝜕𝜕𝜃𝜃𝛼𝛼

𝐽𝐽𝛼𝛼
𝑅𝑅2

𝑔𝑔𝜃𝜃𝑔𝑔𝑟𝑟
𝜕𝜕𝜓𝜓𝑝𝑝
𝜕𝜕𝑟𝑟

+
𝜕𝜕
𝜕𝜕𝜃𝜃𝛼𝛼

𝐽𝐽𝛼𝛼
𝑅𝑅2

𝑔𝑔𝜃𝜃𝑔𝑔𝑟𝑟
𝜕𝜕𝜓𝜓𝑝𝑝
𝜕𝜕𝜃𝜃𝛼𝛼

=
𝐽𝐽
𝑅𝑅2

[−𝜇𝜇0𝑅𝑅2𝑃𝑃′�𝜓𝜓𝑝𝑝� − 𝐹𝐹𝐹𝐹′(𝜓𝜓𝑝𝑝)] 

(13) 

where the geometric tensor coefficients can be found as: 𝑔𝑔𝑟𝑟𝑟𝑟 = 𝜅𝜅2 cos2 𝜃𝜃𝑔𝑔+sin2 𝜃𝜃𝑔𝑔
𝜅𝜅2�1−Δ′ cos𝜃𝜃𝑔𝑔�

2 ,169 

𝑔𝑔𝑟𝑟𝜃𝜃𝑔𝑔 = �−𝜅𝜅2+1� sin𝜃𝜃𝑔𝑔 cos𝜃𝜃𝑔𝑔−Δ′ sin𝜃𝜃𝑔𝑔
𝜅𝜅2�1−Δ′ cos𝜃𝜃𝑔𝑔�

2 , 𝑔𝑔𝜃𝜃𝑔𝑔𝜃𝜃𝑔𝑔 = 𝜅𝜅2 sin2 𝜃𝜃𝑔𝑔+cos2 𝜃𝜃𝑔𝑔
𝜅𝜅2�1−Δ′ cos𝜃𝜃𝑔𝑔�

2 . The poloidal magnetic 170 

flux 𝜓𝜓𝑝𝑝 can be expanded as 171 

 𝜓𝜓𝑝𝑝 = 𝜓𝜓0 + 𝜓𝜓1(𝑟𝑟 − 𝑟𝑟0) + 𝜓𝜓2(𝑟𝑟 − 𝑟𝑟0)2 + ⋯ (14) 
Substituting Eq. (11) in the Eq. (13), we can obtain 𝜓𝜓2 as 172 

 𝜓𝜓2 = 𝐷𝐷2

2𝑟𝑟2𝐴𝐴
�−𝜇𝜇0𝑅𝑅2𝑃𝑃′(𝜓𝜓𝑃𝑃) − 𝐹𝐹𝐹𝐹′(𝜓𝜓𝑝𝑝)� − 𝜕𝜕

𝜕𝜕𝜃𝜃𝑔𝑔
� 𝐶𝐶
𝐷𝐷𝑞𝑞
� × 𝐷𝐷𝑞𝑞𝜓𝜓1

2𝑟𝑟𝐴𝐴
−

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟

2𝐴𝐴
𝐷𝐷𝑞𝑞
�× 𝜓𝜓1𝐷𝐷𝑞𝑞

2𝑟𝑟2𝐴𝐴
, 

(15) 

where the constants are defined as: 𝐴𝐴 = 𝜅𝜅2 cos2 𝜃𝜃𝛼𝛼 + sin2 𝜃𝜃𝛼𝛼 , 𝐷𝐷 = 𝜅𝜅𝑟𝑟(1 −173 

Δ′ cos 𝜃𝜃𝛼𝛼) , 𝐾𝐾 = (1 − 𝜅𝜅2) sin𝜃𝜃𝛼𝛼 cos 𝜃𝜃𝛼𝛼 − Δ′ sin𝜃𝜃𝛼𝛼 , and the first order of the flux 174 

surface expansion is found to be 𝜓𝜓1 = 𝜅𝜅𝐵𝐵𝑎𝑎𝑟𝑟
𝑞𝑞

.  175 

Then we make the following choice: 𝜓𝜓𝑝𝑝�𝑟𝑟,𝜃𝜃𝛼𝛼 = 0� = 𝜓𝜓𝑝𝑝(𝑟𝑟,𝜃𝜃𝛼𝛼 = 𝜋𝜋) , which 176 

means, for a particular magnetic surface, the same radial coordinate 𝜓𝜓𝑝𝑝 can be 177 

shifted horizontally to be tangent to this specific magnetic surface on both high 178 
and low field sides [26]. Then the relationship between Δ′′ and 𝛼𝛼 can be found 179 
by using the expansion in Eq. (14): 180 

 𝑟𝑟(Δ′ + 𝑟𝑟)′ =
𝛼𝛼
𝜅𝜅2

 (16) 

So far, we have finished adding elongation factor in the 𝑠𝑠 − 𝛼𝛼 equilibrium field 181 
model. 182 
C. Geometric Modifications with Boozer Coordinates in Ballooning Space 183 

Next we show the key geometric modifications to the gyrokinetic equation and 184 
vorticity equation when considering elongation in the equilibrium model. As is 185 
shown in Eq. (5) & (7), the Boozer coordinates are used for the gyrokinetic model 186 
and ballooning representation are used for the electromagnetic perturbations. The 187 
Boozer coordinate is not only a straight field line coordinate, but also satisfies 188 

𝐽𝐽𝐵𝐵 = 𝑓𝑓�𝜓𝜓𝑝𝑝�/𝐵𝐵2. Accurate to 𝑂𝑂(𝑟𝑟), the Jacobian of the Boozer coordinates 𝐽𝐽𝐵𝐵 can 189 

be obtained from Eq. (17) 190 
 

𝐽𝐽𝐵𝐵 = �𝛻𝛻𝜓𝜓𝑝𝑝 × 𝛻𝛻𝜃𝜃𝐵𝐵 ∙ 𝛻𝛻𝜁𝜁𝐵𝐵�
−1

= 𝜅𝜅𝑟𝑟𝑅𝑅0(1 + 2𝑟𝑟 cos 𝜃𝜃𝛼𝛼) (17) 



Using this Boozer Jacobian, the relationship between the Boozer coordinates 191 

(𝑟𝑟,𝜃𝜃𝐵𝐵 , 𝜁𝜁𝐵𝐵) and magnetic coordinates �𝑟𝑟,𝜃𝜃𝛼𝛼, 𝜁𝜁𝛼𝛼� used in the preceding section can 192 

be obtained: 193 
 𝜃𝜃𝐵𝐵 = 𝜃𝜃𝛼𝛼 − (Δ′ + 𝑟𝑟) sin𝜃𝜃𝛼𝛼, (18) 

and 194 
 𝜁𝜁𝐵𝐵 = 𝜁𝜁𝛼𝛼 − 𝜈𝜈(𝑟𝑟,𝜃𝜃𝛼𝛼) (19) 

where 𝜈𝜈 is a function of 𝑂𝑂(𝑟𝑟2), which could be ignored in our model. In order to 195 
implement the shaping factor in the gyrokinetic equation and vorticity equation, 196 
we need to examine how the differential operators in these equations change with 197 
the shaping factor in the Boozer coordinates. The gradient operator in the Boozer 198 

coordinates can be written as 𝛻𝛻𝑓𝑓 = ∇𝑟𝑟𝜕𝜕𝑟𝑟𝑓𝑓 + ∇𝜃𝜃𝐵𝐵𝜕𝜕𝜃𝜃𝐵𝐵𝑓𝑓 + ∇𝜁𝜁𝜕𝜕𝜁𝜁𝑓𝑓 , which can be 199 

further expressed in the ballooning representation:[27]  200 
 𝛻𝛻𝑓𝑓(𝑟𝑟,𝜃𝜃𝐵𝐵 , 𝜁𝜁) → [𝛻𝛻𝜃𝜃 (−𝑖𝑖𝑙𝑙𝑞𝑞 + 𝜕𝜕𝜃𝜃  ) + 𝛻𝛻𝑟𝑟(−𝑖𝑖𝑙𝑙𝑞𝑞′𝜃𝜃 + 𝜕𝜕𝑟𝑟) + 𝑖𝑖𝑙𝑙𝛻𝛻𝜁𝜁 ]𝑓𝑓(𝜗𝜗)  (20) 

With the preceding gradient operator and the equilibrium constraint in Eq. 201 

(16), we can find the quotient �𝑘𝑘⊥
𝑘𝑘𝜃𝜃
�
2

 and magnetic drift term 𝐵𝐵
�⃗

𝐵𝐵
× ∇𝑙𝑙𝑙𝑙𝐵𝐵 ⋅ 𝒌𝒌 in the 202 

ballooning representation: 203 
 

𝜅𝜅⊥2 = �
𝑘𝑘⊥
𝑘𝑘𝜃𝜃
�
2

→ 1 + �𝑠𝑠𝜃𝜃 −
𝛼𝛼
𝜅𝜅2

sin 𝜃𝜃�
2

+
1 − 𝜅𝜅2

𝜅𝜅2
�cos𝜃𝜃 + �𝑠𝑠𝜃𝜃 −

𝛼𝛼
𝜅𝜅2

sin 𝜃𝜃� sin𝜃𝜃�
2

 

(21) 

 204 
 

𝐵𝐵�⃗
𝐵𝐵

× ∇𝑙𝑙𝑙𝑙𝐵𝐵 ⋅ 𝒌𝒌 →
𝑘𝑘𝜃𝜃 �cos𝜃𝜃 + �𝑠𝑠𝜃𝜃 − 𝛼𝛼

𝜅𝜅2 sin𝜃𝜃� sin𝜃𝜃�

𝜅𝜅
 (22) 

 205 
 𝑃𝑃∥ = 1 → 𝜕𝜕∥ =

1
𝑞𝑞𝑅𝑅

𝜕𝜕𝜃𝜃 (23) 

 206 
Using these expressions, the forms of 𝑔𝑔 , 𝜅𝜅⊥  and other relevant physical 207 

quantities in Eqs. (3) & (7) can be calculated for the shaped plasma defined in Eq. 208 
(11) and implemented in the GTC code, as will be shown in next section. 209 
 210 
Ⅲ. DAEPS calculation of BAE instability with elongation  211 

The coupling between shear Alfvén waves (SAW) and sound wave (SW) caused 212 
by the plasma compressibility could induce a gap for Alfvén continuum spectrum, 213 
where the Beta induced Alfvén Eigenmode (BAE) is located. Generally speaking, 214 
BAE can be excited either by thermal ions or by energetic particles through wave-215 
particle resonance. In this paper, we focus our study on the BAE mode excited by 216 
the thermal ions. The parallel mode structure of BAE is rather smooth, i.e., the 217 
BAE’s mode structure in the ballooning representation changes slowly with the 218 



extended poloidal angle 𝜃𝜃, which makes the ideal MHD assumption applicable, i.e., 219 
the parallel electric field 𝛿𝛿𝐸𝐸∥ ≈ 0.  220 

The DAEPS code can calculate the BAE/KBM instability by invoking either a 221 
simple semi-analytic method or a more complex numerical method to integrate 222 
kinetic compression (KC) term: the simple method or reduced kinetic compression 223 
(rkC) method is based on a drift center transformation to integrate the KC term, 224 
which is fast computationally but less accurate; and the more complex method or 225 
complete kinetic compression (cKC) method is based on a brute force numerical 226 
integration of the KC term, which is more accurate but computationally much more 227 
expensive. Thus, the rKC method could be used not only to compute the linear 228 
eigenvalues in a semi-quantitative sense, but also to provide an initial guess for the 229 
eigen frequency 𝜔𝜔 , asymptotic behavior Λ , and help set up simulation domain 230 
and grid size for the cKC method. Moreover, the rKC method can also be used to 231 
analyze the physical mechanism because of its simplicity. 232 

In the rKC method, the following drift center transformation is used to simplify 233 
the process of solving the gyrokinetic equation [16,22,28]. Firstly we make the 234 
following forward transformation to change the gyrocenter distribution 𝛿𝛿𝐾𝐾𝑗𝑗   to 235 
the drift center distribution 𝛿𝛿𝐾𝐾𝑑𝑑𝑗𝑗[28]:  236 

 𝛿𝛿𝐾𝐾𝑑𝑑𝑗𝑗 = 𝛿𝛿𝐾𝐾𝑗𝑗exp (∫ 𝑖𝑖 𝜔𝜔𝑑𝑑𝑗𝑗

𝜔𝜔𝑡𝑡𝑗𝑗
𝑑𝑑𝜃𝜃𝜃𝜃 ). (24) 

Then the drift center distribution function 𝛿𝛿𝐾𝐾𝑑𝑑𝑗𝑗  satisfies the following 237 

kinetic equation: 238 
 

�𝜎𝜎�𝜔𝜔𝑡𝑡𝑗𝑗𝜕𝜕𝜃𝜃 − 𝑖𝑖𝜔𝜔�𝛿𝛿𝐾𝐾𝑑𝑑𝑗𝑗 = 𝑖𝑖
𝑞𝑞𝑗𝑗
𝐼𝐼𝑗𝑗

𝑄𝑄𝐹𝐹0𝑗𝑗
Ω𝑑𝑑𝑗𝑗
𝜔𝜔

𝐽𝐽0
𝑔𝑔
𝜅𝜅⊥

𝛿𝛿Ψexp (� 𝑖𝑖𝑘𝑘⊥𝜌𝜌𝑑𝑑𝑗𝑗
𝜃𝜃 𝑔𝑔

𝜅𝜅⊥
𝑑𝑑𝜃𝜃) (25) 

where 𝜌𝜌𝑑𝑑𝑗𝑗 = 𝑞𝑞𝑣𝑣/𝜔𝜔𝑐𝑐𝑖𝑖, Ω𝑑𝑑𝑗𝑗 = 𝜔𝜔𝑑𝑑𝑗𝑗

𝛼𝛼
. As we have derived for shaped equilibrium, the 239 

geometric function 𝑔𝑔/𝜅𝜅⊥ in the preceding equation has the following form in the 240 
Ballooning space: 241 

 𝑔𝑔
𝜅𝜅⊥

=

�cos𝜃𝜃 + �𝑠𝑠𝜃𝜃 − 𝛼𝛼
𝜅𝜅2 sin𝜃𝜃� sin 𝜃𝜃�
𝜅𝜅

�1 + �𝑠𝑠𝜃𝜃 − 𝛼𝛼
𝜅𝜅2 sin𝜃𝜃�

2
+ 1 − 𝜅𝜅2

𝜅𝜅2 �𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 + �𝑠𝑠𝜃𝜃 − 𝛼𝛼
𝜅𝜅2 𝑠𝑠𝑖𝑖𝑙𝑙 𝜃𝜃� sin𝜃𝜃�

2
 

(26) 

 242 
This expression is too complex to be integrated analytically over 𝜃𝜃. However, in 243 
the inertial region (𝜃𝜃 ≫ 1)  where the kinetic response is non-negligible, the 244 

ballooning angle integration in Eq. (25) can be carried out approximately. Since 𝛼𝛼
𝜅𝜅⊥

 245 

is an odd function of 𝜃𝜃 as 𝜃𝜃 ≫ 1, the expression in Eq. (26) can be expanded in 246 
the following Fourier series:  247 



 𝑔𝑔
𝜅𝜅⊥

= 𝐺𝐺1 sin𝜃𝜃 + 𝐺𝐺3 sin 3𝜃𝜃 + ⋯ (27) 

where 𝐺𝐺1 represents the first Fourier component in the poloidal angle expansion 248 
for the geodesic curvature coupled with the elongation effect.  It is found that the 249 
𝐺𝐺1 term should be just sufficient to the requisite accuracy because 𝐺𝐺1 is much 250 
larger than the rest expansion coefficients such as 𝐺𝐺3. And then it is calculated 251 
that 𝐺𝐺1 takes the following form: 252 

 
𝐺𝐺1 =

1
𝜋𝜋
�

sin2 𝜃𝜃
√𝜅𝜅2 cos2 𝜃𝜃 + sin2 𝜃𝜃

𝑑𝑑𝜃𝜃 =
2

𝜋𝜋(𝜅𝜅2 − 1)

2𝜋𝜋

0
{𝜅𝜅2𝐾𝐾(1 − 𝜅𝜅2)

− 𝐸𝐸(1 − 𝜅𝜅2) + 𝜅𝜅 �𝐾𝐾 �1 −
1
𝜅𝜅2
� − 𝐸𝐸 �1 −

1
𝜅𝜅2
��} 

(28) 

Therefore, the gyrokinetic equation for drift centre distribution becomes 253 
 �𝜎𝜎�𝜔𝜔𝑡𝑡𝑗𝑗𝜕𝜕𝜃𝜃 − 𝑖𝑖𝜔𝜔�𝛿𝛿𝐾𝐾𝑑𝑑𝑗𝑗

= 𝑖𝑖
𝑞𝑞𝑗𝑗
𝐼𝐼𝑗𝑗

𝑄𝑄𝐹𝐹0𝑗𝑗
Ω𝑑𝑑𝑗𝑗
𝜔𝜔

𝐽𝐽0𝐺𝐺1 sin𝜃𝜃 𝛿𝛿Ψexp (−𝑖𝑖𝑘𝑘⊥𝜌𝜌𝑑𝑑𝑗𝑗𝐺𝐺1 cos 𝜃𝜃) 
(29) 

The exponential function in the preceding equation can be expanded in the Bessel 254 

series, 𝑒𝑒𝑖𝑖𝑥𝑥 cos𝜃𝜃 = ∑ 𝑖𝑖𝑛𝑛𝐽𝐽𝑛𝑛(𝑑𝑑)𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃𝑛𝑛  . In general, only the 𝑙𝑙 = 1  term needs to be 255 
considered, thus the kinetic drift centre response can be found as 256 

 
𝛿𝛿𝐾𝐾𝑑𝑑𝑗𝑗 = 𝑖𝑖

𝑞𝑞𝑗𝑗
𝐼𝐼𝑗𝑗

𝑄𝑄𝐹𝐹0𝑗𝑗
Ω𝑑𝑑𝑗𝑗
𝜔𝜔

𝐽𝐽0𝑗𝑗𝛿𝛿Ψ
𝐽𝐽1(𝐺𝐺1𝑘𝑘⊥𝜌𝜌𝑑𝑑𝑖𝑖)

𝑘𝑘⊥𝜌𝜌𝑑𝑑𝑖𝑖
(
𝑒𝑒𝑖𝑖𝜃𝜃 − 𝑒𝑒−𝑖𝑖𝜃𝜃

𝜔𝜔 − 𝜔𝜔𝑡𝑡𝑖𝑖  
)  (30) 

Use the pull-back transformation for the drift motion and insert the proceeding 257 
expression in Eq. (7), we can obtain the following form for the kinetic compression: 258 

 
𝐾𝐾𝐾𝐾 = 〈

4𝜋𝜋𝑞𝑞𝑗𝑗2𝑞𝑞2𝑅𝑅2

𝑘𝑘𝜃𝜃2𝑐𝑐2𝐼𝐼𝑗𝑗
𝑄𝑄𝐹𝐹𝑗𝑗Ω𝑑𝑑𝑗𝑗2 𝛿𝛿Ψ

𝐽𝐽0𝑖𝑖2 𝐽𝐽12(𝐺𝐺1𝑘𝑘⊥𝜌𝜌𝑑𝑑𝑖𝑖)
(𝑘𝑘⊥𝜌𝜌𝑑𝑑𝑖𝑖)2

(
𝑒𝑒2𝑖𝑖𝜃𝜃 + 𝑒𝑒−2𝑖𝑖𝜃𝜃 − 2

𝜔𝜔 −𝜔𝜔𝑡𝑡𝑖𝑖
)〉 (31) 

In Eq. (31), 𝜔𝜔𝑡𝑡𝑖𝑖  is the transit frequency. the 𝐽𝐽𝑛𝑛(𝑘𝑘⊥𝜌𝜌𝑗𝑗)  is the 𝑙𝑙𝑛𝑛ℎ  order Bessel 259 

function of the first kind. In the long wavelength limit, we can obtain: 260 
 

𝐾𝐾𝐾𝐾 = 〈
4𝜋𝜋𝑞𝑞𝑗𝑗2𝑞𝑞2𝑅𝑅2

𝑘𝑘𝜃𝜃2𝑐𝑐2𝐼𝐼𝑗𝑗
𝑄𝑄𝐹𝐹𝑗𝑗Ω𝑑𝑑𝑗𝑗2 𝛿𝛿Ψ

1
𝜔𝜔 − 𝜔𝜔𝑡𝑡𝑖𝑖

𝐺𝐺12 sin2 𝜃𝜃〉 (32) 

According to the theory[12], both BAE and KBM can be driven by 𝜂𝜂𝑖𝑖 . Below 261 
some critical value of 𝜂𝜂𝑖𝑖𝑐𝑐 , the KBM is the most unstable mode; and above 𝜂𝜂𝑖𝑖𝑐𝑐 , the 262 
KBM is coupled with the BAE mode. The traditional calculation of the BAE/KBM 263 
instability by the DAEPS code is based on the concircular flux surface model[16]. 264 
Here we show how the BAE/KBM growth rate varies with elongation of the 265 
magnetic flux surface, as is shown in Fig. 2, where the data is calculated by the 266 
DAEPS code with plasma parameters 𝛽𝛽𝑖𝑖 = 0.01 , 𝑞𝑞 = 1.5 , 𝜔𝜔⋆𝑛𝑛𝑖𝑖 = 𝜔𝜔𝑇𝑇𝑖𝑖 , and 𝜂𝜂𝑖𝑖 =267 
1, 1.2, 1.5 . 268 



 
Fig. 2. Linear growth rate or 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜔𝜔𝑖𝑖/𝜔𝜔∗𝑛𝑛𝑖𝑖 of BAE instability varies with 
elongation factor 𝜅𝜅 for various 𝜂𝜂𝑖𝑖 . 

As can be seen from Fig .2, the growth rate or 𝐼𝐼𝐼𝐼(𝐼𝐼) with 𝐼𝐼 ≡ 𝜔𝜔/𝜔𝜔∗𝑛𝑛𝑖𝑖  of 269 
the BAE mode firstly increases with elongation to a maximum value as the 270 
elongation κ~1.5, and then it decreases with the elongation monotonically. In this 271 
case, we note that the pressure gradient α  increases with 𝜂𝜂𝑖𝑖  , e.g. 𝛼𝛼 =272 
0.45, 0.495, 0.5625 when 𝜂𝜂𝑖𝑖 = 1, 1.2, 1.5, respectively. Fig. 2 also shows that, for 273 

the same elongation 𝜅𝜅， the growth rate 𝐼𝐼𝐼𝐼𝐼𝐼  increases with 𝜂𝜂𝑖𝑖   and thus 274 

increases with 𝛼𝛼, which is consistent with the BAE theory[16,19].  275 

  
(a) (b) 

Fig. 3. BAE mode structure for elongated equilibrium with 𝜅𝜅 = 3 and 𝜂𝜂𝑖𝑖 = 1 
using rKC integration method for the KC term. (a) linear scale; (b) logarithmic 
scale.  

Figure. 3 exhibits parallel mode structures of BAE for 𝜅𝜅 = 3 and 𝜂𝜂𝑖𝑖 = 1 using 276 
reduced integration method for the kinetic compression (KC) term. This reduced 277 
kinetic compression (rKC) method is semi-analytic and much faster than the brute 278 
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force integration method or complete kinetic compression (cKC) method, which 279 
are both implemented in the DAEPS code. The DAEPS code requires that the 280 
simulation domain should be wide enough to cover the non-vanishing asymptotic 281 
mode structure for the outgoing wave boundary condition, and the grid size should 282 
be small enough to achieve numerical convergence, e.g., Δ𝜃𝜃 < 0.2. It can be seen 283 
from Fig .3(a) that the widths of different mode structures are in the range of 284 
[−50, 50], which is much narrower than the simulation domain. The fast-spatial 285 
oscillation component of the mode in Fig3. (a) is caused by 𝑃𝑃(𝜃𝜃) , which is an 286 
oscillatory function with a period of 2𝜋𝜋. According to the Floquet theory and Eq. 287 
(5), the logarithm of Ψ varies linearly with the ballooning angle 𝜃𝜃 in the inertial 288 
region, which suggests that there is negligible numerical error generated by the 289 
numerical asymptotic matching process. Thus, the mode structure in the ideal 290 
region can hardly be distorted by the inertial region computation. Using this 291 
asymptotic matching process for the boundary condition, we can significantly 292 
narrow down the simulation domain in the inertial region while maintaining high 293 
computational accuracy. For example, the simulation domain is set as [−100,100] 294 
for the calculation in Fig3. (a), and the grid size is set as Δ𝜃𝜃 = 0.05𝜋𝜋. With these 295 
settings, we can use cKC method to calculate the eigen frequency for the BAE mode.  296 

With the parallel mode structure of BAE in the ballooning representation, the 297 
3-dimensional mode structure could be drawn in real space using the following 298 
transform:  299 

 
𝛿𝛿𝜓𝜓(𝑟𝑟,𝜃𝜃, 𝜁𝜁) = ∑ 𝑒𝑒𝑖𝑖(𝑛𝑛𝜁𝜁−𝑚𝑚𝜃𝜃) ∫ 𝑒𝑒−𝑖𝑖(𝑛𝑛𝑞𝑞−𝑚𝑚)𝜃𝜃′𝛿𝛿𝜓𝜓𝑛𝑛(𝑟𝑟,𝜃𝜃′)𝑑𝑑𝜃𝜃′𝑛𝑛,𝑚𝑚 , (33) 

where 𝜃𝜃′ is the ballooning angle and 𝜃𝜃 is the angle in the real space. To mimic the 300 
global radial variance, we can artificially modulate the mode function with an 301 
envelope function 𝑀𝑀(𝑟𝑟), i.e. a super Gaussian function, defined as the following:  302 

 
𝑀𝑀(𝑟𝑟) = 𝐸𝐸𝑑𝑑𝑝𝑝[− (𝑟𝑟−𝑟𝑟𝑐𝑐)4

Δ𝑟𝑟4
], (34) 

where we choose 𝑟𝑟𝑐𝑐 = 𝑎𝑎/2 , 𝛥𝛥𝑟𝑟 = 𝑎𝑎/2 . The resultant two-dimensional mode 303 
structure is illustrated in Fig. 4, which is similar to the 2D mode structure 304 
calculated by other simulation codes, except the elongation effect. 305 



 
Fig. 4. 2D mode structure of BAE in poloidal plane with 𝜅𝜅 = 2.. 

 306 
Ⅳ. Theoretical analysis for elongation effect on BAE 307 

In this section, we provide detailed theoretical analysis for the elongation 308 
effect on the BAE instability. First we show how the BAE growth rates varies with 309 
elongation 𝜅𝜅 using the DAEPS code, as is demonstrated in Fig. 5, where the result 310 
from the rKC method is compared to the completed KC term (cKC) method, with 311 
the same parameters as in the 𝜂𝜂𝑖𝑖 = 1  case in Fig. 2. The red circle line is the 312 
growth rate 𝐼𝐼𝐼𝐼𝐼𝐼 calculated by cKC while the blue plus line is the growth rate or 313 
𝐼𝐼𝐼𝐼Ω calculated by reduced KC term (rKC). The growth rate from rKC agrees well 314 
quantitatively with that from cKC, justifying the use of the simplification method 315 
of rKC. This agreement provides a solid basis for investigating the instability BAE 316 
using the formula in Eq. (32). 317 
 318 
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(c) (d) 

Fig. 5 (a) Comparison of BAE growth rate with reduced kinetic compression term 
(rKC) and complete kinetic compression term (cKC) for 𝜂𝜂𝑖𝑖 = 1. (b) The growth 
rate of BAE ignoring different parts of kinetic compression term for 𝜂𝜂𝑖𝑖 = 1. (c) 
The real frequency of BAE with and without kinetic compression term for 𝜂𝜂𝑖𝑖 =
1 . (d) The first order poloidal Fourier coefficient 𝐺𝐺1  decreases with 𝜅𝜅 
increasing from 2.5 to 3. 

  As is shown in Fig. 5(a), the growth rate of BAE firstly increases with the 319 
elongation 𝜅𝜅, reaches a maximum, and then decreases. In order to analyze kinetic 320 
and fluid/MHD contributions to the growth rate of BAE/KBM, we artificially 321 
remove the kinetic compression term and recalculate the growth rate. As is shown 322 
in Fig. 5(b), the red circle line is obtained from the cKC method, the blue plus line 323 
is obtained by removing the KC term, and the black diamond line is calculated 324 
without the FLR and FOW effect. The trend of growth rate varying with 𝜅𝜅 without 325 
the kinetic compression term (KC) or 𝛿𝛿𝑊𝑊𝑘𝑘 is essentially the same as the original 326 
trend. And there exists a notable difference between the growth rates with and 327 
without the KC term when the elongation 𝜅𝜅 > 2.5 . In this strongly elongated 328 
region, the BAE growth rate with only the MHD effect decreases rapidly with 𝜅𝜅 329 
increasing, and it nearly disappears at 𝜅𝜅 = 3. However, the stability results with 330 
the KC term shows that the BAE is still unstable, and decreases gradually around 331 
𝜅𝜅 = 3. Based on these observations, it is then conjectured that the trend of the BAE 332 
instability is mainly related to the MHD effect around the turning point (𝜅𝜅 ≈ 1.5), 333 
and the instability in the strongly elongated region 𝜅𝜅 > 2.5  is caused by the 334 
kinetic effect, such as wave-particle resonance. 335 

 To justify our viewpoint, the kinetic contribution to the potential energy 336 
𝛿𝛿𝑊𝑊𝑘𝑘, and the fluid contribution to the potential energy 𝛿𝛿𝑊𝑊𝑓𝑓 needs to be examined 337 

as 𝜅𝜅  increases. 𝛿𝛿𝑊𝑊𝑘𝑘  can be calculated by ⟨𝛿𝛿𝜓𝜓|𝐾𝐾𝐾𝐾|𝛿𝛿𝜓𝜓⟩ , where δ𝜓𝜓  is the 338 
normalilzed eigenfunctions, and 𝛿𝛿𝑊𝑊𝑓𝑓 can be acquired by ⟨𝛿𝛿𝜓𝜓|𝑊𝑊|𝛿𝛿𝜓𝜓⟩, where 𝑊𝑊 339 

contains the Schrödinger potential well term (interchange term) and field line 340 
bending term. Therefore, we could rewrite the vorticity equation as  341 

 𝐾𝐾𝜔𝜔 + 𝐷𝐷𝜔𝜔2 − 𝑖𝑖Λ𝐵𝐵 − 𝛿𝛿𝑊𝑊𝑓𝑓 − 𝛿𝛿𝑊𝑊𝑘𝑘 = 0 (35) 
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Similarly, 𝐾𝐾 = �𝛿𝛿𝜓𝜓� −𝜔𝜔⋆𝑝𝑝𝑐𝑐

𝜔𝜔𝐴𝐴
2 �𝛿𝛿𝜓𝜓� , 𝐷𝐷 = �𝛿𝛿𝜓𝜓� 1

𝜔𝜔𝐴𝐴
2 �𝛿𝛿𝜓𝜓� , and 𝐵𝐵 = ⟨𝛿𝛿𝜓𝜓|𝐵𝐵.𝐾𝐾. |𝛿𝛿𝜓𝜓⟩  is 342 

the boundary condition term, which is much smaller than 𝛿𝛿𝑊𝑊𝑓𝑓 and 𝛿𝛿𝑊𝑊𝑘𝑘 for this 343 

case. Thus Eq. (35) is a quadratic equation about 𝜔𝜔  and its solution can be 344 
expressed as  345 

 

𝜔𝜔 =
−𝐾𝐾/2 ± �𝐾𝐾

2

4 + (𝛿𝛿𝑊𝑊𝑓𝑓 + 𝛿𝛿𝑊𝑊𝑘𝑘)

𝐷𝐷
 

(36) 

To verify the previous conjecture, we could solve the preceding eigen equation 346 
by ignoring 𝐼𝐼𝐼𝐼𝛿𝛿𝑊𝑊𝑘𝑘, and compare the resultant eigenvalue 𝜔𝜔. As is shown in Fig. 347 
6 (a), the trend of the growth rate is almost the same in both cases when 𝜅𝜅 < 2, 348 
which suggests a fluid instability of reactive type. But in the region 𝜅𝜅 > 2.5, there 349 
is a noticeable difference: when the whole kinetic compression term is considered, 350 
the growth rate decreases gradually with 𝜅𝜅 ; whereas when 𝐼𝐼𝐼𝐼𝛿𝛿𝑊𝑊𝑘𝑘  is ignored, 351 
the growth rate decays rapidly. Therefore, 𝐼𝐼𝐼𝐼𝛿𝛿𝑊𝑊𝑘𝑘  is the main cause of the 352 
instability of BAE in this strongly elongated region. We proceed to verify our 353 
previous conjecture by analyzing the change in the magnitude of various potential 354 
energies in Fig.6 (b). When 1 < 𝜅𝜅 < 2, the change of 𝛿𝛿𝑊𝑊𝑘𝑘 can be considered to 355 
be approximately invariant compared to 𝛿𝛿𝑊𝑊𝑓𝑓. Thus, in this region, the change in 356 
the growth rate is mainly determined by the change in 𝛿𝛿𝑊𝑊𝑓𝑓. When 𝜅𝜅 > 2.5, both 357 
𝛿𝛿𝑊𝑊𝑓𝑓 and 𝑅𝑅𝑒𝑒𝛿𝛿𝑊𝑊𝑘𝑘 decays towards zero and they tend to cancel each other. In fact, 358 
in this region, 𝛿𝛿𝑊𝑊𝑓𝑓 + 𝑅𝑅𝑒𝑒𝛿𝛿𝑊𝑊𝑘𝑘 can be shown to be much smaller than 𝐼𝐼𝐼𝐼𝛿𝛿𝑊𝑊𝑘𝑘 in 359 

Fig. 6(b). This suggests that the instability or linear growth is mainly caused by 360 
𝐼𝐼𝐼𝐼𝛿𝛿𝑊𝑊𝑘𝑘 in this region.                    361 
 As Fig.5 (b) shows, the kinetic contribution 𝛿𝛿𝑊𝑊𝑘𝑘 decreases with elongation 362 
𝜅𝜅 when 𝜅𝜅 > 2.5. The red circle and black diamond lines in Fig. 5 (b) represents 363 
BAE growth rates vs. 𝜅𝜅 with or without FLR-FOW (finite Larmor radius & fintie 364 
orbit width) effects respectively. These two lines are coincident with each other 365 
when 𝜅𝜅 > 2.5, which suggests that the FLR or FOW effect has little influence on 366 
the growth rate. Therefore, the kinetic effect in this region is mostly likely due to 367 
wave-particle resonance, which corresponds to 𝐼𝐼𝐼𝐼𝛿𝛿𝑊𝑊𝑘𝑘  mathematically and 368 
suggests a dissipative instability. 369 
   Next we try to analyze why the wave-particle resonance effect decays with 370 
elongation 𝜅𝜅 increasing in the strongly shaped region. We examine the form of 371 
kinetic compression term with holding off the FLR and FOW effects after 372 
performing the drift center transformation. As Eq. (36) shows, the kinetic 373 

compression term is related to 1
𝜔𝜔−𝜔𝜔𝑡𝑡𝑐𝑐

 , i.e., the wave-particle resonance kernnel, 374 

and the first order Fourier coefficients 𝐺𝐺1  while the first-order expansion is 375 
dominant as shown in Fig4. (a). When 2.5 < 𝜅𝜅 < 3 , the real frequency 𝜔𝜔𝑟𝑟  is 376 
almost constant in Fig5 .(c), suggesting that the resonance position is almost 377 
unchanged in this region. Fig. 5 (d) shows that 𝐺𝐺1 decreases with the elongation 378 

𝜅𝜅, which means the first poloidal Fourier coefficient of 𝛼𝛼
𝜅𝜅⊥

 decreases with 𝜅𝜅. Thus, 379 



according to Fig. 5(d) and Eq. (32), we can find that the decrease in 𝛿𝛿𝑊𝑊𝑘𝑘 is mainly 380 
caused by the decrease in 𝐺𝐺1 . The decrease in the kinetic compression in the 381 
disspative region is due to the decrease in the projection of geodesic curvature on 382 
the poloidal direction rather than the shift in the wave particle resonance point.  383 

  
(a) (b) 

Fig. 6 (a) Growth rate varies with elongation factor 𝜅𝜅 with different forms of KC 
term. (b)The local kinetic and fluid contribution to potential energy as 𝜅𝜅 
increases.  
 384 
Ⅴ. CONCLUSION AND DISCUSSION 385 

In this paper, we have constructed a local 𝑠𝑠 − 𝛼𝛼 equilibrium model including 386 
the elongation factor and implemented this model in the DAEPS code by modifying 387 
the gyrokinetic equation and vorticity equation using the Boozer coordinates and 388 
Ballooning representation. The elongation effect on the BAE caused by the thermal 389 
ions has been investigated by the DAEPS code with thermal ions as the kinetic 390 
compression. In order to calculate the growth rate of BAE/KBM accurately and 391 
quickly, we have also upgraded the reduced kinetic compression with elongation. 392 
It is discovered that the BAE growth rate first increases, reaches a maximum and 393 
then decreases with elongation. This trend occurs for many different values of 𝜂𝜂𝑖𝑖  394 
and quite general. We find that, when the shape of cross-section is close to circular, 395 
e.g., 1 < 𝜅𝜅 < 2, the trend of growth rate is mainly determined by the fluid/MHD 396 
effects, namely the combination of the field line bending term and potential well 397 
term in the vorticity equation, which suggests a reactive instability. However, for 398 
strongly shaped plasma with 𝜅𝜅 > 2.5 , the growth rate is mainly driven by the 399 
wave-particle resonance embeded in 𝛿𝛿𝑊𝑊𝑘𝑘, which suggests a dissipative instability. 400 
In this dissipative region, the wave-particle resonance effect decreases with the 401 
elongation 𝜅𝜅  since the dominent poloidal Fourier component of the geodesic 402 
curvature decreases with elongation while the resonant point keeps unchanged.    403 

As has been demonstrated, the plasms shaping effects can introduce many 404 
interesting physics phenomena in drift-Alfvénic instability and turbulence. In the 405 
future, we will introduce more shaping factors in our calculation, e.g., the 406 
triangularity, to investigate how these shaping factors together influence various 407 
drift-Alfvénic instabilities. 408 
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