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Abstract. Tearing mode instability is one of the most important dynamic processes in space and 5 

laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could 6 

cause the fast development and perturbation structure rotation of the tearing mode and become 7 

non-negligible. A high accuracy nonlinear MHD code (CLT) is developed to study Hall effects on 8 

the dynamic evolution of tearing modes with Tokamak geometries. It is found that the 9 

diamagnetic rotation of the mode structure is self-consistently contained in the Hall MHD model. 10 

The self-consistently generated rotation largely alters the dynamic behaviors of the double tearing 11 

mode. 12 



I. INTRODUCTION 13 

 It is widely believed that many eruptive phenomena in both space
1, 2

 and laboratory
3, 4 

are 14 

closely related to a tearing mode instability
5
 that leads to not only magnetic energy converting into 15 

kinetic energy and heat
6, 7

 but also the barrier breaking down between two different plasma 16 

regions. It is regarded as the primary cause for the degradation of plasma performance in magnetic 17 

confined fusion device such as Tokamak
8-10

. The tearing mode instability was firstly studied 18 

analytically by Furth et al
11

 in the framework of resistive magnetohydrodynamics (MHD). It is 19 

found that the linear growth rate of the resistive tearing mode instability is 
3/5S 

, where S is 20 

Lundquist number. 21 

 The Hall-MHD model which describes two-fluid plasma with massless electron is often used 22 

to study magnetic reconnection
12-14

. It is believed that Hall effects can largely accelerate dynamic 23 

process of magnetic reconnection. The reconnection rate in Hall MHD well agrees with that in full 24 

particle simulation. Most studies of magnetic reconnection are carried out in slab geometry where 25 

there is no diamagnetic drift effect which may play an important role in dynamics of tearing mode 26 

instability in a toroidal geometry such as magnetic confined fusion device Tokamak. 27 

Effects of diamagnetic drift on linear tearing mode instability were firstly studied by Ara et 28 

al
15

 in the framework of the two-fluid MHD. In previous simulations of the m/n=1/1 resistive kink 29 

instability and sawtooth, a diamagnetic drift is included as an initial velocity.
16, 17

 In the present 30 

study, we carry out a Hall-MHD simulation with the zero initial velocity. It is found that the 31 

tearing mode structure is rotated diamagnetically. 32 

One of an advanced mode in Tokamak is operated with a reversed shear q profile,
18, 19

where q 33 

is the safety factor. The system may be subject to the double tearing mode (DTM) instability 34 

which is excited in neighboring rational surfaces. DTM could have quite different dynamic 35 

process from a single tearing mode due to mutual interaction between two tearing mode 36 

instabilities in rational surfaces. The tearing mode instabilities in two rational surfaces could 37 

excite each other if their perturbations in two rational surfaces are anti-phase, i.e., the expansion of 38 

the island in one rational surface compresses the current sheet of another rational surface. The 39 

tearing mode instabilities in two rational surfaces could be suppressed each other if their 40 

perturbations in two rational surfaces are in-phase, i.e., the expansion of the island in one rational 41 



surface collides with the expansion of the island in another rational surface. Since the tearing 42 

mode structures in Hall MHD are rotated due to diamagnetic drift, it is worthwhile to investigate 43 

dynamic process of the double tearing mode instability when the pressure gradients are different in 44 

the two rational surfaces. 45 

To the best of our knowledge, a toroidal tokamak simulation in the framework of Hall-MHD 46 

has not been carried out. In this paper, Hall MHD simulations are performed to investigate the 47 

dynamic processes of the m/n=2/1 tearing mode and the m/n=3/1 double tearing mode by the CLT 48 

code 
20, 21

 developed at Zhejiang University. 49 

Our article is organized as follows. In Section II, without the initial diamagnetic drift velocity, 50 

the diamagnetic rotation frequency associated with the tearing mode instability in the linear stage 51 

is derived based on Hall MHD. In Section III, the Hall MHD equations used in CLT are presented. 52 

In Section IV.A, we present simulation results from toroidal Hall-MHD code (CLT) and compare 53 

these results with theoretical predictions. In Section IV.B, double tearing mode instability is 54 

simulated with the different pressure gradients in two rational surfaces. Finally, we summarize our 55 

work in Section VI. 56 

 57 

II. DIAMAGNETIC RTOTATION FOR TEARING MODE INSTABILITY DUE TO HALL 58 

EFFECTS 59 

 The diamagnetic rotation frequency is firstly derived by Ara et al
 15

. They used two-fluid 60 

equations and analyzed the effects of diamagnetic rotation on the tearing mode instability. In this 61 

section, we use the incompressible Hall MHD equations to derive the diamagnetic rotation 62 

frequency and we will show that the theoretical prediction is in good agreement with our 63 

simulation results in Section IV.A. 64 

 For the sake of the simplicity, incompressible assumption 0 u  is used. In cylindrical 65 

geometry, the linearized equations for tearing mode instability
 5

 can be written as 66 
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where 
0h  and 

1h  are initial helical flux and perturbed helical flux, respectively.   is a 69 

radical displacement. In the exterior or ideal region, the resistive diffusion and inertia terms can be 70 

neglected. We have 71 
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In the interior region, since 
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Through the matching condition of the interior and exterior solutions, we obtain the linear growth 78 

rate 79 
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 With inclusion of the Hall contribution in the Om’s law, the linearized equations for tearing 81 

mode instability is modified to be
 82 
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The last term in Eq. (8) is associated with the Hall effects. In the exterior or ideal region, Eq. (8) 85 



and (9) becomes 86 
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respectively. From the real and imaginary parts of Eq. (10), it yields  89 
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From Eq. (12) and (13), it easily gets 92 
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where *

1 dp

neBr dr
    is the diamagnetic rotation frequency. It is suggested that the mode 94 

structure in the ideal region is rotated with the diamagnetic frequency due to inclusion of Hall 95 

effects. 96 

 For the case *  , Eq. (5) and (6) for the interior region remain unchanged. Thus, we have 97 

the same linear growth rate as in resistive MHD, which means that the diamagnetic rotation of the 98 

mode structure in the outer region for Hall MHD will not affect the mode growth rate if *  . 99 

 100 

III. HALL-MHD EQUATIONS IN CLT 101 

 The full set of the Hall-MHD equations is given as follows: 102 
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Where  , p, v, B, E, and J denote the plasma density, the thermal pressure, the plasma velocity, 109 

the magnetic field, the electric field, and the current density, respectively. /i pid c  is the ion 110 

skin length. The subscript “0” denotes the equilibrium quantities. ( 5 / 3)   is the ratio of 111 

specific heat of plasma.
ep  is the electron pressure. The variables are normalized as follows:112 

0/ B B B , / ax x ,
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2

0 0/ ( / )p B p  , 113 

0 0/ ( / )B a J J ,
0/ ( )Av B E E , /i id a d and 

2

0/ ( / )Aa t   , where a is the 114 

minor radius, 0/Av B    is the Alfven speed, and /A At a v  is the Alfven time. 0B  and115 

0  are the magnetic field and the plasma density at the magnetic axis, respectively. For the 116 

typical parameters in Tokamak,
20~10n , ~ 1a , 

10~ 10pi  and 
83 10c    so ~ 0.03id . 117 

In the previous literatures
16, 17

, the diamagnetic flow as an initial background flow is added into 118 

the momentum equation to study diamagnetic rotation effects on the tearing mode instability, i.e., 119 
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In this equation the contribution of 
*vv  is neglected. However, these terms are not guaranteed 121 

to be zero. In our simulations, the diamagnetic rotation effects on the tearing mode instability are 122 

investigated self-consistently by using the Hall-MHD equations. 123 

 124 

IV. SIMULATION RESULTS  125 

A. m/n=2/1 tearing mode 126 

  The parameters with a toroidal tokamak configuration are chosen as follows: the major radius127 

0 4R  and the minor radius 1a  . The initial equilibrium profiles of the safety factor q and the 128 

plasma pressure p are shown in Figure 1. The equilibrium magnetic field 0B  and the current 129 

density 0J  are obtained from the NOVA
22

 code. Other diffusion parameters used in our 130 



simulations are the resistivity
51 10   , the viscosity

61 10   , the plasma diffusivity 131 

61 10D   , and the conductivity 
55 10   . The larger conductivity is used to suppress 132 

ballooning modes. With the given profile, the most unstable tearing mode is the m/n=2/1 mode 133 

occurs at the q=2 rational surface.  134 

 135 

Figure 1 .Initial profiles of the safety factor q and the plasma pressure p. 136 

 137 

  Figure 2 gives the mode structures ( E ) in the 0   cross-section at (a), (c) t=620138 

At and (b), (d) t=1683 At  for cases with/without Hall effects. It is clearly indicated that there is a 139 

slow rotation of the mode structure for Hall-MHD. The mode structure at t=1683t𝐴 has been 140 

rotated about 30 degree, which gives the period to be about
42 10s AT t . After inserting the 141 

parameters used in the simulation into Equation (14), we have 
41.7 10t AT t  which is in a 142 

good agreement with that from the simulation. From the pressure profile, the pressure inside the 143 

q=2 resonant surface becomes gradually flattening. The low pressure gradient leads to a slower 144 

rotation speed. The mode structure will slow down overall mode rotation due to the dragging 145 

effect of the slower rotation of the core region. This is why the rotation period in the simulation 146 

is slightly longer than that from the theoretical calculation. 147 

 148 



 149 

Figure 2 .The mode structure ( E ) from resistive MHD and Hall MHD at t=620 At and t=1683 At . 150 

 151 

 152 

Figure 3 .The time evolution of the kinetic energy with/without Hall effects for the m/n=2/1 tearing 153 

mode. 154 

 155 

  The time evolution of the kinetic energy with/without Hall effects for the m/n=2/1 156 



tearing mode is given in Figure 3. It is found that the linear growth rate is 0.0084   that is 157 

much larger than the rotation frequency of the mode structure in Hall MHD. As we expected, 158 

there are the same linear growth rates of the m/n=2/1 mode for cases with/without Hall effects 159 

because the current sheet thickness is still larger than the ion inertial length in the linear phase. In 160 

the nonlinear phase, the reconnection rate in the slab geometry will largely increase in Hall MHD. 161 

In the present simulation with Tokamak geometry, reconnection rates are no change with/without 162 

Hall effects, which may be associated with the diamagnetic rotation of the mode structure in Hall 163 

MHD. The mode rotation can prevent the current sheet thinning. 164 

 165 

 B. Double tearing mode  166 

  Previous studies
23

 suggests that for a reserved q profile, tearing mode instabilities in two 167 

resonant surfaces will excite each other and grow much faster than a single tearing mode because 168 

the growing mode in one resonant surface becomes an external driven source that accelerates the 169 

mode development in another resonant surface.  170 

  In the previous subsection for the single tearing mode, it has been shown that the mode 171 

structure rotates at the diamagnetic frequency due to inclusion of Hall effects and the rotation 172 

speed of the mode structure depends on the local pressure gradient. It can be expected that 173 

different rotation frequencies of mode structures, due to different pressure gradients, will largely 174 

affect the dynamic evolution of a double tearing mode. We artificially construct an equilibrium 175 

with reverse-sheared q profile and different gradients of the plasma pressure to study double 176 

tearing mode instability. The initial q and pressure profiles are showed in Figure 4. With the 177 

range of q from 2.6 to 3.8, the most unstable modes should be the m/n=3/1 mode which takes 178 

place at the two resonant surfaces with q=3.  179 



 180 
Figure 4. The initial q and pressure profile for m/n=3/1 double tearing mode instability. 181 

 182 

 183 

Figure 5. The snapshots of mode structures ( E ) from resistive-MHD. 184 

  The snapshots of mode structures ( E ) from resistive MHD are shown in Figure 5. It 185 

is evident that the perturbations at the two resonant surfaces have opposite polarities and this 186 

property of the opposite polarities remains in the whole simulation period. The opposite 187 

polarities of the mode perturbations becomes mutual driven sources that accelerate the 188 

development of double tearing mode instability persistently. Therefore, the growth rate of the 189 

double tearing mode is much faster than that of a single tearing mode in resistive MHD.  190 



 191 

 192 

Figure 6. The snapshots of the mode structures ( E ) from Hall MHD. 193 

  With inclusion of Hall effect, the simulation and theoretical results of the single tearing 194 

mode suggests that the mode structure at the outer resonant surface rotates with the frequency195 

*3  while the mode structure at the inner resonant surface is stationary due to the flatten 196 

pressure profile, which is quite evident from simulation results as given in Figure 6. In the 197 

simulation, the mode structure in the outer resonant surface rotates clockwise while the inner 198 

mode structure almost remains at rest. The perturbations of two tearing modes gradually switch 199 

from anti-phase to in-phase. In other words, the perturbations for the two modes gradually evolve 200 

from mutual acceleration to mutual suppression, which is clearly indicated in Figure 6 that the 201 

growth rates of the amplitudes of the mode structure reduces with time and the mode finally 202 

saturates.  203 

  The time evolutions of the kinetic energy for double tearing modes from resistive-MHD 204 

and Hall MHD are shown in Figure 7. It is clearly indicated that the growth rate of the double 205 

tearing mode in resistive MHD is much larger than in Hall MHD. The kinetic energy in resistive 206 

MHD continuously increases and there is no saturation observed in the simulation period. But the 207 



kinetic energy in Hall MHD has a low growth rate and quickly saturates at a very low level. 208 

 209 

Figure 7. The time evolution of the kinetic energy for double tearing modes from resistive-MHD and 210 

Hall MHD. 211 

V. SUMMARY AND DISCUSTION 212 

 In magnetic confined fusion device such as Tokamak, the thermal plasma pressure decreases 213 

away from the central core region. The pressure gradient leads to a diamagnetic rotation of plasma. 214 

The diamagnetic rotations resulted from ion or electron pressure usually play different role on 215 

plasma dynamics due to the large mass ratio. The diamagnetic rotation associated with ion 216 

pressure causes a plasma flow while it related to the electron pressure leads to the rotation of the 217 

magnetic field perturbation due to the frozen-in condition. In Hall MHD, the pressure is only from 218 

the electrons because the cold ions are assumed. Thus, we should only observe the diamagnetic 219 

rotation of the mode structure without the plasma rotation flow.  220 

 Tearing mode instability is one of the most important dynamic processes in space and 221 

laboratory plasmas. It is suggested that Hall effects in the slab geometry could cause the fast 222 

development and perturbation structure rotation of the tearing mode and become non-negligible. 223 

In this paper, we use the new developed high accuracy nonlinear MHD code (CLT) to study Hall 224 

effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the 225 

rotation speed of the mode structure from the simulation is in a good agreement with that from the 226 

analytical theory in a single tearing mode. The phenomenon of fast growth of tearing mode 227 

instability is not observed, which may be associated with the rotation of the reconnection region. 228 

 The Hall effects on dynamic evolution of double tearing mode is also conducted out. 229 

With an artificial constructed pressure to amplify the different diamagnetic rotation speeds at two 230 



resonant surfaces, it is found that the perturbations of two tearing modes in Hall MHD gradually 231 

switch from anti-phase to in-phase while the perturbations in resistive MHD is persistently 232 

anti-phase. In Hall MHD, the mutual driven perturbations with opposite polarities gradually 233 

evolve to the mutual suppressed perturbations with the same polarities which cause the lower 234 

growth rate of the double tearing mode and the mode amplitude saturates at a very low level. 235 
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