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Abstract The transverse shear Alfvén wave (SAW) is a fundamental aniso-
tropic electromagnetic oscillation in plasmas with a finite background mag-
netic field. In realistic plasmas with spatial inhomogeneities, SAW exhibits
the interesting spectral feature of a continuous spectrum. That is, the SAW
oscillation frequency varies in the non-uniform (radial) direction. This con-
tinuum spectral feature then naturally leads to the phase-mixing process; i.e.
time asymptotically, the effective radial wave-number increases with time. Any
initial perturbation of SAW structures will, thus, evolve eventually into short-
wavelength structures; termed as kinetic Alfvén wave (KAW). Obviously, one
needs to employ kinetic theory approach to properly describe the dynamics of
KAW; including effects such as finite ion-Larmor radius (FILR) and/or wave-
particle interactions. When KAW was first discovered and discussed in 1975-
1976, it was before the introduction of the linear electromagnetic gyrokinetic
theory (1978) and nonlinear electromagnetic gyrokinetic theory (1982). Ki-
netic treatments then often involved the complicated procedures of taking the
low frequency limit of the Vlasov kinetic theory and/or employing the drift-
kinetic theory approach; forsaking, thus, the FILR effects. In recent years,
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the powerful nonlinear gyrokinetic theory has been employed to re-examine
both the linear and nonlinear physics of KAWs. This brief review will cover
results of linear and nonlinear analytical theories, simulations, as well as ob-
servational evidences. We emphasize, in particular, that due to the enhanced
electron-ion decoupling in the short-wavelength regime, KAWs possess signif-
icantly enhanced nonlinear coupling coefficients and, thereby, play important
roles in the heating, acceleration and transport processes of charged particles
in magnetized plasmas.

Keywords Kinetic Alfvén waves · Nonlinear phenomena and parametric
effects · Wave-wave and wave-particle interactions

PACS 52.35.Bj · 52.35.Mw · 94.05.Pt

1 Introduction

In 1942 [1], Hannes Alfvén discovered that if a perfectly conducting medium(e.g.,
a fully ionized gas; i.e., a plasma) is immersed in a finite background magnetic
field B0; electromagnetic waves can then propagate within it. The reason is
that, while the free electron mobility remains extremely large along B0, its
mobility perpendicular to B0 is inhibited. That is, a magnetized plasma is
an anisotropic conducting medium with an extremely large parallel (to B0)
and finite perpendicular (to B0) conductivities. Thus, correspondingly, these
propagating electromagnetic waves, called Alfvén waves, have nearly vanishing
parallel (to B0) and finite perpendicular (to B0) electric fields.

There are two types of Alfvén waves; the compressional (fast) and shear
Alfvén waves [35]. The compressional Alfvén wave (CAW) compresses the
magnetic field as well as plasma and its group velocity propagates almost
isotropically. The shear Alfvén wave (SAW), meanwhile, is nearly incompress-
ible and, thus, more readily excitable by either external perturbations (e.g.,
solar wind, antenna) or intrinsic collective instabilities [17]. This brief review is
focused on the SAW or, more specifically, its kinetic extension; i.e., the kinetic
Alfvén wave (KAW).

In a uniform plasma immersed in a uniform background magnetic field,
B0 = B0ẑ, and adopting the ideal magnetohydrodynamic (MHD) fluid de-
scription, it is well-known that the SAW satisfies the following linear dispersion
relation

ω2 = k2‖v
2
A . (1)

Here, ω and k = k⊥ + k‖b0 are, respectively, the wave angular frequency and
wave vector, b0 = B0/B0, k⊥ is the perpendicular (to B0) component of k,
k‖ = k · b0, vA = B0/(4π̺m)1/2 is the Alfvén speed with ̺m ≃ n0mi being
the mass density, and mi ≫ me. The corresponding wave polarization is
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Fig. 1: Three-component dynamic power spectrum of magnetic field data from
AMPTE CCE satellite [From original figure in Ref. [22]]. The geomagnetic BR,
radially outward from the center of the Earth; BE , magnetically Eastward; and
BN , approximately along local magnetic field lines correspond to, respectively,
δBx, δBy, δBz.

with δE⊥ and δB⊥ denoting, respectively, the fluctuating components of elec-
tric and magnetic field perpendicular to B0. Equation (1) indicates that SAW
is an anisotropic electromagnetic wave; i.e., while its phase velocity can prop-
agate in any direction, its group velocity, vg = vAb0, propagates only along
B0. This property, of course, has the direct bearing on the feature of Alfvén
wave resonant absorption [28, 47, 29, 12, 13].

In a non-uniform plasma, SAW attains the interesting property of a con-
tinuous spectrum. To illustrate this feature, let us consider the simplified slab
model of a cold plasma with a non-uniform density, ̺m = ̺m(x), and a uniform
B0 = B0ẑ. Given and initial perturbation, one can readily derive, assuming
time asymptotically that |∂2x| ≫ |k2y|, |k2z |, to be justified a posteriori, the fol-
lowing wave equation

[

∂2t + ω2
A(x)

]

δBy(x, t) = 0 . (3)

Here, ω2
A(x) = k2zv

2
A(x) and the solution is

δBy(x, t) = δB̂y(x, 0) exp [−iωA(x)t] . (4)

Equation (4) shows that every point in x oscillates at a different frequency,
ωA(x). With a continuously varying ωA(x); the wave frequency, thus, consti-
tutes a continuous spectrum. While the above result is based on a model with
a one-dimensional non-uniformity in x, this general feature of SAW continu-
ous spectrum also holds in magnetized plasmas with two- or three-dimensional
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Fig. 2: Snapshots of δBy(x, t) spatial structure vs. x at different times, illus-
trating the formation of shorter scales at later times [From original figure in
Refs. [48, 49]].

non-uniformities [29, 11, 55, 17]. A good example is geomagnetic pulsations
in the Earth’s magnetosphere. Figure 1 shows the oscillations in the Earths’
magnetic field as observed by the satellite AMPTE CCE [22, 23], illustrating
the three-component dynamic power spectrum of magnetic field data from for
a full orbit from 02 : 30 to 17 : 30 UT March 6, 1987. Apogee is at the center
of the figure. As the satellite moved outward from the morning side, ωA should
decrease due to the decreasing |B0| and |k‖| (increasing field-line length), and
this was clearly exhibited in the wave frequency of BE , the azimuthal (East-
West) component of δB (i.e.; the effective δBy). BE also shows that the wave
frequency increases as the satellite moved inward toward the dusk side; con-
sistent, again, with ωA. Furthermore, the observed wave frequency consisted
of several bands, which could be understood as harmonics of standing waves
along the field line; i.e., different |k‖|.

δBy(x, t) given by Eq. (4) also indicates an unique and important prop-
erty of SAW continuous spectrum; i.e., the spatial structure evolves with time.
Specifically, the wave number in the non-uniformity direction is, time asymp-
totically, given by

|kx| = |∂x ln δBy/∂x|
≃ |dωA(x)/dx|t ≡ |ω′

A|t . (5)

That |kx| increases with t is significant, since it implies that any initially long-
scale perturbations will evolve into short scales. This point is illustrated in
Fig. 2; showing the evolution of a smooth δBy at t = 0 to a spatially fast
varying δBy at a later t [48, 49]. Another consequence of |kx| increasing with
t is the temporal decay of δBx. From ∇ · δB ≃ ∇⊥ · δB⊥ = 0, we can readily
derive that, for |ω′

At| ≫ |ky|

δBx(x, t) ≃
ky

ω′
A(x)t

δB̂y(x, 0)e
−iωA(x)t

[

1 +O
(

ky
|ω′
At|

)

+ . . .

]

. (6)



Physics of Kinetic Alfvén Waves 5

That is, δBx decays temporally due to the phase-mixing of increasingly more
rapidly varying neighboring perturbations. This property also explains why,
in Fig. 1, the radial component of δB, BR, is much weaker than BE .

Noting that, as t→ ∞, |kx| → ∞, it, thus, suggests that the perturbation
will develop singular structures toward the steady state. Indeed, taking ∂t =
−iω, the SAW governing wave equation for the cold-plasma becomes [12, 13]

{

d

dx

[

ω2 − ω2
A(x)

] d

dx
− k2y

[

ω2 − ω2
A(x)

]

}

δBx(x) = 0 . (7)

δBx, thus, exhibits a logarithmic singularity at the Alfvén resonant point
(layer), x0, where ω

2 = ω2
A(x0) along with a finite resonant wave-energy ab-

sorption rate.

That the solution exhibits singularities naturally suggests that the mi-
croscopic length-scale physics neglected in the ideal MHD fluid description
should be included in the long-time-scale dynamics of SAWs. For low-frequency
SAWs, one can readily recognize the relevant perpendicular (to B0) micro-
scopic scales are either the ion Larmor radius, ρi = vti/Ωi, and/or ρs = cS/Ωi
with c2S = Te/mi. Including the effects of finite ρi and/or ρs in the SAW dy-
namics then led to the discovery of the so-called kinetic Alfvén wave (KAW)
[32, 33].

The pioneering discovery of KAW was carried out before the introduc-
tion of linear electromagnetic gyrokinetic theory [7, 3] and, later, nonlinear
electromagnetic gyrokinetic theory [27]. The analyses employed, therefore, in-
volved taking the low-frequency (|ω| ≪ |Ωi|) limit of the Vlasov dynamics.
This makes theoretical analysis of KAW dynamics in non-uniform plasmas
with realistic B0(x) intractable; especially when dealing with the nonlinear
physics. Indeed, previous nonlinear analyses adopted either the drift-kinetic
or the two-fluid description [41, 43, 44, 45, 46, 65]. As our later discussions
will show, such approximations not only are inadequate for treating realistic
plasma regimes; but also often leave out important physics. The above discus-
sions have, thus, motivated us [15, 16, 68] to re-visit and explore further the
KAW physics employing the powerful gyrokinetic theories.

Section 2 presents a brief review of the linear gyrokinetic theory (cf. Sec.
2.1) and its applications to KAW (cf. Secs. 2.2 and 2.3) along with KAW ob-
servations by satellites (cf. Sec. 2.4). The nonlinear gyrokinetic theory is then
briefly reviewed in Sec. 3.1. It is then applied to examine the physics of the
three-wave parametric decay instabilities, the modulational instabilities asso-
ciated with the spontaneous generation of convective cells, and the quasilinear
phase space transport induced by KAW (cf. Secs. 3.2, 3.3 and 3.4). Results
from corresponding numerical simulations are also presented. Final conclusions
and discussions are given in Sec. 4.
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2 Linear KAW physics

Here, we first introduce the foundation of the linear gyrokinetic formalism
in Sec. 2.1. Linear KAW properties are then derived in Sec. 2.2 for uniform
plasmas. Section 2.3 contains brief discussions of KAW in nonuniform plasmas;
including the resonant mode conversion process. Observational evidences of
KAWs by satellites are presented in Sec. 2.4.

2.1 Linear gyrokinetic theory

In magnetically confined plasmas, there exists a natural smallness parameter,
ǫ = ρ/a with ρ and a being, respectively, the charged particle’s Larmor radius
and the macroscopic system scale length. Typically, we have ǫ<∼ O(10−2) ≪ 1.
Since low-frequency but short-wavelength fluctuations are of interest here, one,
thus, adopts the following linear gyrokinetic orderings [7, 3, 27, 57, 6, 58]

∣
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∼ O(ǫ) , |k⊥ρi| ∼ O(1) ; (8)
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k‖v‖ ∼ ω , or
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Noting, furthermore, for |k⊥ρi| ∼ O(1) and βi<∼ O(1), with βi = 8πP0i/B
2
0 the

ratio of plasma ion pressure to the background magnetic field energy density,
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∣
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∣

∣

β
1/2
i

<∼ O(ǫ) ; (10)

compressional Alfvén (fast) waves are systematically suppressed in the gyroki-
netic orderings.

In the next step, linear gyrokinetic theories perform the following coor-
dinate transformation from the charged particle’s phase space (x,v) to the
corresponding guiding-center phase space (X,V ); where

X = X⊥ +X‖b0 , X⊥ = x⊥ + ρ , ρ = v × b0/Ωc ; (11)

V =
[

E = v2/2, µ = v2⊥/2B0, σ = sgn(v‖)
]

. (12)

Here, v‖ = v·b0, µ is the magnetic moment adiabatic invariant (µ = v2⊥/2B0 at
the leading order) and, assuming there is no equilibrium electrostatic potential,
E is an equilibrium constant of motion.

In the guiding-center phase space, charged particle dynamics is naturally
separated into the fast cyclotron motion and the slow guiding-center motion.
One can then apply the gyrokinetic orderings and systematically average out
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the fast cyclotron motion (i.e., the gyrophase averaging) and obtain the asymp-
totically dominant (in terms of the smallness parameter ǫ) perturbed distri-
bution function response. This perturbed distribution function in the guiding-
center phase space can then be inversely transformed back to the charged
particle phase space and applied toward the field equations (i.e., Maxwell’s
equations) for a self-consistent kinetic description [7, 3].

For the purpose of the present review, we shall limit our considerations to
that of a simple uniform plasma with an isotropic Maxwellian equilibrium dis-
tribution function. Readers interested in the detailed analyses and/or broader
applications may consult References [3, 14]. Assuming, furthermore, β ≪ 1,
such that there is negligible magnetic compression, the particle velocity dis-
tribution is then given by

f(x,v, t) = FM (E) + δf(x,v, t) , (13)

where

δf =
q

T
FM (E)δφ+ e−ρ·∇δg , (14)

δg satisfies the following linear gyrokinetic equation

(

∂

∂t
+ v‖b0 ·∇

)

δg =
q

T
FM (E) ∂

∂t
〈δLg〉α , (15)

δLg = eρ·∇δL , (16)

δL = δφ− v‖δA‖/c , (17)

and 〈. . .〉α denotes averaging over the gyrophase angle, α. Here, the field vari-
ables are the scalar and vector potentials, δφ and δA, with δA‖ = δA · b0 and
the ∇ · δA = 0 Coulomb gauge. The operator eρ·∇, meanwhile, represents the
transformation between the particle and guiding center positions.

The corresponding field equations are the Poisson’s equation and the par-
allel Ampère’s law, ∇2δA‖ = −4πδJ‖/c. In the low-frequency and |kλD|2 ≪ 1
limit with λD being the Debye length, Poisson’s equation can be approxi-
mated as the quasi-neutrality condition;

∑

j n0jqj 〈δfj〉v ≃ 0. Here, 〈. . .〉v =
∫

d3v (. . .) is the velocity-space integral, and subscript j runs over the particle
species. Meanwhile, substituting the parallel Ampère’s law into the ∇ ·δJ ≃ 0
quasi-neutrality condition as given by the parallel velocity moment of Eq.
(15) yields a generalized linear gyrokinetic vorticity equation; which is often
convenient to use in studying SAW/KAW dynamics [14, 15, 17, 68].

2.2 Linear KAW properties

For plane-wave (ω,k) perturbations, Eq. (15) gives

δgk = − q

T
FMJ0(k⊥ρ)

ω

k‖v‖ − ω

(

δφ− v‖

c
δA‖

)

k
. (18)
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Note, here, that J0(k⊥ρ) corresponds to the gyro-averaging of the coordinate
transformation; i.e.,

〈exp (−ρ ·∇)〉α = J0(k⊥ρ) . (19)

In SAW/KAW analyses, it is sometimes convenient to introduce an effective
induced potential defined by b0 ·∇δψ = −∂tδA‖/c or

δψk = ωδA‖k/(ck‖) . (20)

δψ, thus, corresponds to the induced parallel electric field; that is, the net
parallel electric field is given by

δE‖ = −b0 ·∇ (δφ− δψ) ; or

δE‖k = −ik‖ (δφ− δψ)k . (21)

The quasi-neutrality condition then becomes

∑

j

(

n0q
2

T0

)

j

{δφk + Γ0kj [ξkjZkjδφk − (1 + ξkjZkj)δψk]} = 0 . (22)

Here, ξkj = ω/|k‖|vtj , Zkj = Z(ξkj) with Z the plasma dispersion func-
tion, and Γ0kj = I0(bkj) exp(−bkj) with I0 the modified Bessel function and
bkj = k2⊥ρ

2
j/2 = k2⊥(Tj/mj)/Ω

2
j . The linear gyrokinetic vorticity equation,

meanwhile, is given by

i
c2

4πω
k2‖k

2
⊥δψk − i

∑

j

(

n0q
2

T0

)

j

(1 − Γ0kj)ωδφk = 0 . (23)

Noting that, for KAW, |k⊥ρi| ∼ O(1) and |k⊥ρe| ≪ 1 and, thus, Γ0ke ≃ 1,
Eqs. (22) and (23) then become

ǫskδφk = [1 + ξkeZke + τ (1 + ΓkξkiZki)] δφk

= [1 + ξkeZke + τΓk (1 + ξkiZki)] δψk , (24)

and

ω2δφk = k2‖v
2
A

bk
1− Γk

δψk . (25)

Here, τ = T0e/T0i, bk = bki, Γk = Γ0ki, and ǫsk is the dielectric constant for
the slow-sound (ion-acoustic) wave (SSW).

It is also instructive, as done in some literatures, to define the effective
parallel potential, δφ‖k = δφk − δψk, and rewrite Eqs. (24) and (25) as

ǫskδφ‖k = −τ (1− Γk) δψk , (26)

and
[

ω2 − k2‖v
2
A

bk
1− Γk

]

δψk = −ω2δφ‖k . (27)

Equations (26) and (27) demonstrate the coupling between SAW and SSW
via the finite |k⊥ρs| term. In the |k⊥ρi| ∼ O(1) short-wavelength limit, SAW
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Fig. 3: Dispersion curves illustrating (ωkr/k‖vA)
2 versus b

1/2
k for different τ

values.

evolves into KAW due to both the finite |k⊥ρi| and |k⊥ρs| effects. More specif-
ically, the coupled KAW-SSW dispersion relation becomes

ω2
k

[

1− τ (1− Γk)

ǫsk

]

= k2‖v
2
A

bk
1− Γk

. (28)

Let us concentrate on the KAW branch and, to further simplify the anal-
ysis, assume 1 ≫ βi ∼ βe ≫ me/mi. With |ω| ∼ |k‖vA|, we then have

|ξki| = |ω/k‖vti| ∼ β
−1/2
i ≫ 1 ≫ |ξke| ∼ (me/miβe)

1/2, and, keeping only
the lowest-order O(1) terms,

ǫsk ≃ 1 + τ (1− Γk) ≡ σk . (29)

From Eq. (28), we then have

ω2
kr ≃ k2‖v

2
A

σkbk
1− Γk

. (30)

A sketch of (ωkr/k‖vA)
2 versus b

1/2
k for different τ values is given in Fig. (3).

As to wave polarizations, which are useful for wave identification in obser-
vations, we can readily derive

∣

∣

∣

∣

cδE⊥

δB⊥

∣

∣

∣

∣

= vA

[

bk
σk (1− Γk)

]1/2

, (31)

and
∣

∣

∣

∣

cδE‖

δB⊥

∣

∣

∣

∣

= vA

∣

∣

∣

∣

k‖

k⊥

∣

∣

∣

∣

τ

[

bk (1− Γk)

σk

]1/2

. (32)
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Fig. 4: Polarization curves illustrating |cδE⊥/vAδB⊥| versus b1/2k for different
τ values.

Sketches of |cδE⊥/vAδB⊥| and |cδE‖k⊥/vAδB⊥k‖τ | are given in, respectively,
Figs. 4 and 5.

Equation (32) and Fig. 5 show that, for a fixed |k‖/k⊥|, |δE‖/δB⊥| in-
creases with bk. Since wave-particle energy and momentum exchanges are pro-
portional to |δE‖|, short-wavelength KAW are, thus, expected to play crucial
roles in the heating, acceleration, and transport of charged particles.

In addition to having a significant δE‖, another important property of
KAW, in contrast to SAW, is that KAW has a finite perpendicular (to B0)
group velocity, vg⊥. Assuming |k⊥ρi|2 ≪ 1, we have, letting ω2

A ≡ k2‖v
2
A,

ω2
k ≃ ω2

A

(

1 + k2⊥ρ̂
2
)

, (33)

where

ρ̂2 = (3/4 + τ) ρ2i . (34)

Thus,

vg⊥ ≃ ω2
A

ωk

ρ̂2k⊥ , (35)

2.3 Linear mode conversion of KAW

Equation (33) has a significant implication in non-uniform plasmas. Consider,
again, a slab plasma with a non-uniform ω2

A(x) and k
2
⊥ = k2x(x) being theWKB

wavenumber in the non-uniformity direction, x. Equation (33) then indicates
that KAW is propagating (k2x > 0) in the ω2

k > ω2
A(x) region, and it is cutoff
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Fig. 5: Polarization curves illustrating |cδE‖k⊥/vAδB⊥k‖τ | versus b
1/2
k for

different τ values.

(k2x < 0) in the ω2
k < ω2

A(x) region. That vg⊥ is finite also suggests that,
in contrast to SAW, an initial smooth perturbation will not only evolve into
short wavelengths but also propagate toward the lower – ω2

A(x) region. These
features are illustrated in Fig. 6(b); where the spatial-temporal evolution of
KAW is solved explicitly according to the following wave equation

[

ρ̂2
∂2

∂x2
− 1− 1

ω2
A(x)

∂2

∂t2

]

δBy(x, t) = 0 . (36)

The spatial profile of ω2
A(x)/ω

2 = 1/(1 + x2/L2) is shown in Fig. 6(a), with
L indicating the profile length-scale, so that the KAW wave-packet frequency
is assumed to be consistent with the SAW frequency at x = 0. Figure 6(b)
shows the propagation of the KAW wave packet in the direction of radial
non-uniformity, consistent with Eq. (35).

That there exists a finite perpendicular group velocity also implies, in the
steady state, the removal of “singular” resonance and linear mode conversion
process [33]. More specifically, the corresponding wave equation is given by

{

ρ̂2
∂2

∂x2
+

[

ω2
0

ω2
A(x)

− 1

]}

δB̂y(x) = δB̂y0 . (37)

Here, ω0 is the external driving frequency. In the ideal SAW (ρ̂ → 0+) limit,
there is the resonance singularity at x0 where ω2

0 = ω2
A(x0). Noting that,

near x = x0, ω
2
A(x) ≃ ω2

0 +
(

ω2
A

)′
(x0)(x − x0) ≡ ω2

0 − (ω2
0/LA)(x − x0),

Eq. (37) can be approximated as an inhomogeneous Airy equation and solved
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(a) (b)

Fig. 6: (a) Spatial dependence of ω2
A. (b) Propagation of the KAW wave-packet

in the non-uniformity direction.

analytically. Equation (37) can then be solved, with appropriate boundary
conditions, by connecting the solutions valid away from the x = x0 resonance
layer via the analytic solution of the inhomogeneous Airy equation valid near
x = x0 [32, 33]. The solutions away from the singular layer are given by

δB̂y(x) =























δB̂y0
ǫA(x)

, for ω2
0 < ω2

A(x) ;

δB̂y0
ǫA(x)

−
√
πδB̂y0

(ρ̂2/LA)1/2

(

ρ̂2

ǫA(x)

)1/4
(38)

× exp

[

i

∫ x

x0

(

ǫA(x
′)

ρ̂2

)1/2

dx′ + i
π

4

]

, for ω2
0 > ω2

A(x) ;

where

ǫA(x) =
ω2
0

ω2
A(x)

− 1 . (39)

The corresponding numerical solutions are plotted in Fig. 7. Both the analyt-
ical results and mode conversion process exhibit two important features. One
is, instead of being singular, the amplitude at x = x0 (where ωA(x0) = ω0)
is amplified by the Airy swelling factor; (LA/ρ̂)

2/3. The other is the singu-
larity at x = x0 is being replaced by the Airy scale length; ∆0 = (ρ̂2LA)

1/3.
Recalling, from Eq. (5), |kx| ≃ |ω′

A|t ≃ (ω0/LA)t, there then exists a KAW
formation time scale given by (ω0/LA)t0 ≃ 1/∆0; i.e., ω0t0 ≃ (LA/ρ̂)

2/3. Tak-
ing, for an example, a typical laboratory plasma, LA/ρ̂ ≃ O(103), we have
ω0t0 ≃ O(102); suggesting that it is reasonable to anticipate, in the presence
of SAW continuous spectrum, the appearance of KAW in such plasmas.
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Fig. 7: Illustration of ideal MHD (dashed blue line) and KAW (red line) so-
lutions, which asymptotically match Eq. (38) for |x − x0|/∆0 ≫ 1. The Airy
swelling factor is evident from the normalization of the ordinate.

2.4 Satellite observations of KAWs

Due to the diagnostics constraints in laboratory plasmas, most of the KAW
observations were made by satellites in the Sun-Earth space plasma environ-
ments. Shear Alfvénic oscillations in the magnetosphere have been linked to
drivers from the upstream solar wind. Due to the collisionless nature of space
plasmas, kinetic effects create large-amplitude waves and pressure pulses in the
foreshock region upstream from the quasi-parallel bow shock. The foreshock
is found to be an important source of magnetospheric waves in the Pc3-4
and Pc5 ranges [25, 24, 19, 21, 61]. The mode conversion process associated
with the compressional modes of the foreshock waves has been suggested as a
directly-driven mechanism for the generation of the frequently observed dis-
crete harmonic frequencies of shear Alfvénic field line resonances (see Figure
1) [31, 32, 36]. Indeed, near the magnetopause boundary, a sharp transition
is frequently found in wave polarization from predominantly compressional
waves in the magnetosheath to transverse in the boundary layer [56, 51, 8].
THEMIS observations by Chaston et al. [8] show a direct evidence of a turbu-
lent spectrum of KAWs at the magnetopause with sufficient power to provide
massive particle transport. Using coordinated observations in the foreshock
and the magnetosphere, Wang et al. [61] found direct evidence of Pc5 field
line resonances driven by the foreshock perturbations. As remarked earlier,
the main mode identification method for KAWs is based on the measurement
of the wave polarization, |cδE⊥/vAδB⊥|. Two cases are illustrated here. One
is observation by the Van Allen Probes in the Earth’s inner magnetosphere
[9] (cf. Fig. 8); the other is observations by the Cluster satellites in the solar
wind [54] (cf. Fig. 9). Both observations showed the measured polarizations,
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Fig. 8: (a) The time averaged ratio EYFAC/BXFAC in field aligned coordinates
(MKS units). Red line shows the fit of the local KAW dispersion relation (cf.
Fig. 4). [Reproduced from Ref. [9]]. (b) Relative phase and coherency (red)
between EYFAC and BXFAC [Reproduced from Ref. [9]].

|cδE⊥/vAδB⊥|, agree qualitatively and/or quantitatively with those theoret-
ically predicted for KAWs.

Finally, we remark KAW physics has also been applied theoretically in lab-
oratory fusion plasmas [32, 33, 16, 17]. For example, in toroidal fusion plasmas,
the Kinetic Toroidal Alfvén Eigenmodes (KTAEs) [40] may exist within the
SAW continuum and their dynamics are intrinsically related to those of KAWs.
Furthermore, laboratory plasma experiments have shown evidence of coupling
between SAW eigenmodes and KAWs [63] that may also be externally driven
by mode conversion of fast modes [26]. Since KAW carries significant implica-
tions to plasma heating and transport, it will be interesting to see more focused
investigations on KAW physics in laboratory plasma experiments and/or sim-
ulations.

3 Nonlinear KAW physics

In this Section, we first discuss the nonlinear gyrokinetic orderings and present
the corresponding equations. We then apply the nonlinear gyrokinetic equa-
tions to the fundamental three-wave parametric decay instabilities. Here, we
emphasize the qualitative and quantitative differences between the results of
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(a) (b)

Fig. 9: (a) Prediction of |δE/δB|s/c for kinetic Alfvén waves (red curves) or
whistler waves (black and blue curves) with specified angle θ. Cluster measure-
ments of |δEy/δBz| up to 2 Hz, or 12 fci, are presented without (green solid)
and with (green dashed) the EFW noise floor removed. [Reproduced from Ref.
[54]]. (b) Prediction of |δB‖|/|δB|s/c for kinetic Alfvén waves (red) or whistler
waves (black/blue) with specified angle θ. Cluster FGM measurements up to
2 Hz, or 12 fci, are shown in green. [Reproduced from Ref. [54]].

nonlinear gyrokinetic theory and those based on the ideal MHD theory. Corre-
sponding simulations not only support the gyrokinetic theory results, but also
suggest the excitation of k‖ ≃ 0 fluctuations; i.e., convective cells. This moti-
vated the studies on the spontaneous excitations of convective cells by KAWs.
The results demonstrate the significant effects of finite ion Larmor radius; and,
thus, the nonlinear gyrokinetic theory as a powerful theoretical tool. Finally,
we present a quasilinear description of plasma transport due to KAWs.

3.1 Nonlinear gyrokinetic theory

In extending the linear gyrokinetic theory to the nonlinear regime, one allows
the fluctuations to be of finite amplitudes with, however, the constraint that
the corresponding nonlinear frequencies, ωnℓ, be much less than the cyclotron
frequency. In other words, consistent with the linear gyrokinetic orderings:

|ωnℓ| ∼ |δu⊥ ·∇⊥| ∼ |ω| ∼ O(ǫ) |Ωi| . (40)

Here, δu⊥ represents the fluctuation-induced particle (guiding-center) jiggling
velocity. Taking, for example, δu⊥ ≃ v‖δB⊥/B0 due to magnetic fluctuation,
δB⊥, v‖ ∼ vt, and |∇⊥| ∼ 1/ρi, we then obtain the following nonlinear gy-
rokinetic orderings [27]:

|δf/F0| ∼ |δB/B0| ∼ |cδE⊥/(B0vt)| ∼ O(ǫ) . (41)

Again, let us consider the case of a uniform plasma in order to simplify the
presentation and highlight the important underlying physics. In a uniform
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case, the perturbed distribution function, δf as in the linear case, can be
decomposed into an adiabatic and a non-adiabatic components; i.e.,

δf = − q

T
FMδφ+ exp (−ρ ·∇) δg . (42)

Here, we have taken the background distribution to be Maxwellian, and δg
satisfies the following nonlinear gyrokinetic equation [27]

[

∂

∂t
+ v‖b0 ·∇+ 〈δu⊥g〉α ·∇

]

δg =
q

T
FM

∂

∂t
〈δLg〉α , (43)

δLg given by Eq. (16) and (17), and

〈δu⊥g〉α = (c/B0)b0 ×∇ 〈δLg〉α
= (c/B0) 〈δE⊥g〉α × b0 + v‖ 〈δB⊥g〉α /B0 . (44)

Expanding in terms of plane-wave solutions, Eq. (43) yields

i
(

k‖v‖ − ωk
)

δgk = −iωk
q

T
JkδLkFM

+
c

B0
Λk

′′

k′ [Jk′δLk′δgk′′ − Jk′′δLk′′δgk′ ] ; (45)

where Jk ≡ J0(k⊥v⊥/Ω), J0 is the Bessel function,

Λk
′′

k′ = b0 · (k′
⊥ × k′′

⊥) , (46)

δLk = δφk − v‖δA‖k/c , (47)

and (ωk,k) satisfy frequency and wave-vector matching conditions; i.e., ωk =
ωk′ + ωk′′ and k = k′ + k′′.

The field equations remain the same; i.e., the Poisson’s equation or the
quasi-neutrality condition and the parallel Ampère’s Law or the generalized
nonlinear gyrokinetic vorticity equation. The quasi-neutrality condition is for-
mally the same as in the linear theory; i.e.,

(1 + τ) eδφk/Te = 〈Jkδgki − δgke〉v ; (48)

with τ ≡ Te/Ti, consistent with the definition introduced below Eq. (25) and
where we dropped the subscript “0” on equilibrium temperature; and Jk =
Jki for brevity. The nonlinear gyrokinetic vorticity equation [17, 18, 66, 67],
meanwhile, is given by

ik‖δJ‖k − i
c

4π

ωk
v2A

k2⊥
bk

(1− Γk) δφk = (NL)A + (NL)φ , (49)

where bk = k2⊥ρ
2
i /2, Γk = I0(bk) exp(−bk), consistent with the definitions

introduced below Eq. (22),

(NL)A = −Λk′′k′
(

δA‖k′δJ‖k′′ − δA‖k′′δJ‖k′
)

/B0 , (50)



Physics of Kinetic Alfvén Waves 17

and

(NL)φ = (ec/B0)Λ
k′′

k′ 〈(JkJk′ − Jk′′ ) δLk′δgk′′

− (JkJk′′ − Jk′) δLk′′δgk′〉i,v . (51)

We remark that (NL)A corresponds to the Maxwell stress term due to the
δJ‖b0 × δB⊥ force with δJ‖ mainly carried by electrons due to me ≪ mi.
(NL)φ, meanwhile, is the gyrokinetic stress tensor; which is dominated by ions

and reduces to the well-known fluid expression in the k2⊥ρ
2
i ≪ 1 limit [17, 18].

3.2 Parametric decay instabilities

Parametric decay instability (PDI) is a fundamental nonlinear process in-
volving three nonlinear coupled waves/oscillators [34, 39]. One is the pump
(“mother”) wave and the other two are the decay (“daughter”) waves. The
PDI can be either resonant if both decay waves are marginally stable or weakly
damped normal modes, or non-resonant if one of the decay waves is a heavily
damped quasi mode. Since the pump wave can be either spontaneously or ex-
ternally excited, PDI, thus, is an important channel for wave energy transfer
along with its associated consequences on plasma heating, acceleration and
transports.

Interested readers may refer to the original work [15] for the detailed deriva-
tions of the KAW PDI dispersion relations. Here, we will just present the
key points and results. Let the three interacting waves be the pump wave
Ω0 = (ω0,k0), the low-frequency daughter SSW Ωs = (ωs,ks) and the daugh-
ter KAW Ω− = (ω−,k−) with ω− = ωs−ω0 and k− = ks−k0. Let the small
but finite pump wave amplitude be denoted as Φ0 = eδφ0/Te. As Ωs could
be a quasi mode, we then need to retain O(|Φ0|2) terms in order to properly
account for non-resonant PDI. Carrying on the straightforward algebra [15],
we then derive the KAW PDI dispersion relation

ǫsk

(

ǫAk− + χ
(2)
A−

)

= Ck |Φ0|2 . (52)

Here,
ǫsk = 1 + τ + τΓsξsZ(ξs) (53)

and

ǫAk− =

[

(1− Γ−) /b− −
(

k2‖v
2
A/ω

2
)

−
σ−

]

(54)

are, the linear dielectric constants of, respectively, the Ωs-SSW and Ω−-KAW

decay waves. χ
(2)
A−, as will be further discussed later, corresponds to nonlinear

ion Compton scattering

χ
(2)
A− = ǫsk

(

λ2/Γs
)

G |Φ0|2 , (55)

λ2 = (Ωi/ω0)
2 (
ρ2sΛ

s
0

)2
/ (σ−bs−) , (56)

G =
〈

J2
0J

2
−F0i

〉

v
/n0 − F 2

1 /Γs , (57)
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and
F1 = 〈JsJ0J−F0i〉v /n0 , (58)

where ρ2s = τρ2i and bs− = τb−. Note that G ≥ 0 from Schwartz inequality. Ck
on the right hand side of Eq. (52) represents the nonlinear coupling coefficient
between Ωs and Ω− daughter waves via the pump wave |Φ0|, and

Ck = (λH)
2

(59)

with
H = (σ0σ− − F1σs/Γs) . (60)

Furthermore, in the PDI dispersion relation, Eq. (52), we have dropped the
term associated with nonlinear frequency shift to focus on the stability prop-
erty [15].

Let us first consider the resonant decay, which occurs when both decay
daughter waves,Ωs andΩ−, are weakly damped normal modes. This generally
requires τ ≡ Te/Ti>∼ 5 [32, 33] in order to minimize the ion Landau damping
of the Ωs (SSW) mode. In this case, letting, ωs = ωsr + iγ as well as noting
ǫskr(ωsr) = 0 and ǫAk−r(ωA−r) = ǫAk−r(ωsr − ω0) = 0, Eq. (52) reduces to

(γ + γdA−) (γ + γds) = (λH |Φ0|)2
[

−∂ǫskr
∂ωsr

∂ǫAk−r
∂ωA−r

]−1

, (61)

where γdA− and γds are, respectively, the linear damping rates of the KAW and
SSW daughter waves. We also note that, in order to have a parametric growth
(γ > 0), the round bracket term on the right hand side of Eq. (61) must be
positive; i.e., ωsrω0 > 0. Thus, the KAW decay wave has its normal-mode real
frequency lower than that of the KAW pump frequency, ω0, by the amount
of the SSW normal-mode frequency, ωsr. Noting that, for β ≪ 1, we have
|ω0| ∼ |k‖0vA| ≫ |k‖0cS | and |ωA−r| ∼ |k‖A−vA| ≫ |k‖A−cS |. Thus, in order
to satisfy the frequency and wave-number matching conditions for the resonant
decay, |ωsr| ∼ |k‖scS |, we must have k‖A− ≃ k‖0 or k‖s ≃ 2k‖0. Consequently,
we have (ω0/k‖0)(ωA−r/k‖A−) < 0; i.e., the decay KAW daughter wave, Ω−,
has parallel (to B0) group velocity opposite to that of the pump wave. In
other words, Ω− can be understood as a KAW due to backscattering of the
Ω0 pump wave by Ωs fluctuations. Finally, |Φ0| must be over a threshold value
set by γds and γdA− to achieve γ > 0.

For τ ≡ Te/Ti<∼ 5, the Ωs SSW mode is, in general, heavily ion Landau
damped; i.e., it becomes a quasi mode. The Ω− KAW mode, meanwhile,
remains a weakly damped normal mode. The PDI growth rate, γ, is then
determined by the imaginary part of the dispersion relation, Eq. (52);

(γ + γdA−)

(

−∂ǫAk−r
∂ωA−r

)

= Im

[

χ
(2)
A− − Ck

ǫsk
|Φ0|2

]

= |λΦ0|2
[

G/Γs +H2/ |ǫsk|2
]

Imǫsk , (62)

where, again, G ≥ 0,
Imǫsk = τΓsIm [ξsZ(ξs)] , (63)
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and ξs = ωsr/|k‖s|vti = (ω0 + ωA−r)/|k‖0 + k‖A−|vti. Since Imǫsk maxi-
mizes around ξs ∼ O(1) or ωsr ∼ |k‖0 + k‖A−|vti, and, again, we have
|ω0| ∼ |ωA−r| ≫ |k‖0|vti ∼ |k‖A−|vti, the Ω− KAWmode is, again, a backscat-
tered KAW normal mode with frequency lower than the pump wave frequency
ω0.

Note, from Eqs. (61) and (62), that the parametric decay instability growth
rates increase with the nonlinear coupling coefficient,

∣

∣Ck|Φ0|2
∣

∣ of Eq. (52);
which can be readily shown to scale with |k⊥ρi|4|δB⊥0/B0|2 for |k⊥ρi|2 ≪ 1
and |δB⊥0/B0|2/|k⊥ρi| for |k⊥ρi|2 ≫ 1. The decay instabilities are, thus,
strongest when |k⊥ρi| ∼ O(1); and it clearly demonstrates the necessity of
keeping FILR kinetic effects in dealing with the decay instabilities of KAW.

Finally, it is illuminating to compare the decay instabilities of KAWs versus
those of SAWs in the MHD regime [52]. In a nutshell, employing the ideal MHD
fluid theory, the PDI dispersion relation takes the form similar to the KAW
PDI dispersion relation, Eq. (52), with KAW terms replaced by corresponding
SAW terms; e.g., ǫAk− by ǫA− etc. The more fundamental change lies in the
nonlinear coupling term; that is, Ck is replaced by CI given as

CI = |k⊥0ρs · k⊥−ρs|2 / [bs−(1 + ΓiTi/Te)]

= [bs0/(1 + ΓiTi/Te)] cos
2 θ0 . (64)

Here, θ0 is the angle between k⊥0 and k⊥−, and Γi is the ion ratio of specific
heats. Ck, meanwhile, can be expressed as

Ck = (Ωi/ω0)
2(bs0/σ−)H

2 sin2 θ0 . (65)

We then have
|Ck|/|CI | ∼ O(|ΩiH/ω0|2) ; (66)

which becomes

|Ck|/|CI | ∼ O(|Ωi/ω0|2)|k⊥ρi|4 ; for |k⊥ρi|2 ≪ 1 , (67)

and
|Ck|/|CI | ∼ O(|Ωi/ω0|2) ; for |k⊥ρi| ∼ O(1) . (68)

Equation (67) indicates that, for 1 > |k⊥ρi|2 > |ω0/Ωi|, nonlinear cou-
plings via kinetic effects dominate. Noting that |ω0/Ωi| ∼ O(10−3) in typ-
ical laboratory plasmas, the validity regime of MHD fluid theory for the
SAW nonlinear physics is rather limited. Furthermore, at the |k⊥ρi| ∼ O(1)
regime where KAW nonlinear effects maximize, we have |H | ∼ O(1) and
|Ck|/|CI | ∼ O(|Ωi/ω0|2) ∼ O(106) for typical parameters.

In addition to the significantly enhanced PDI growth rates, there is, per-
haps, more significant qualitative difference between KAW and SAW PDI in
terms of the wave vector of the scattered daughter wave with respect to that
of the pump wave. Note, from Eq. (64), CI ∝ cos2 θ0 and, thus, the SAW
scattering maximizes around θ0 = 0 and π; i.e., when k⊥− is parallel or anti-
parallel to k⊥0; or k0 and k− are co-planar. In contrast, we have, from Eq. (65),
Ck ∝ sin2 θ0 and, thus, the KAW scattering maximizes around θ0 = ±π/2;
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i.e., k⊥0 and k⊥− are orthogonal. This difference not only affects, as might be
expected, the nonlinear evolution of KAW turbulence, but also, as we will ar-
gue further below and perhaps more significantly, charged particle transports
induced by the KAW decay processes.

Let us consider the pump wave be the mode-converted KAW at the Earth’s
dayside magnetopause; thus, k⊥0 = k⊥0r̂ with r̂ being in the Sun-Earth radial
direction. Now, according to the ideal MHD theory, the decay wave tends to
have k⊥− = k⊥−r̂ and, thus, the East-West azimuthal symmetry is in general
kept. In other words, charged particle’s East-West azimuthal generalized mo-
mentum, Pφ, is conserved, which implies no or little radial transport [10]. On
the other hand, in the KAW regime, the decay wave would have wave vector
in the East-West azimuthal direction; i.e., k⊥− = k⊥−φ̂ and, hence, the East-
West azimuthal symmetry is broken by the daughter wave and, consequently,
Pφ is no longer conserved and finite radial transports could occur [10]. These
features are observed in the numerical simulations to be discussed below. In
addition, the MHD fluid theory would suggest that the turbulence in the per-
pendicular to B0 plane to be preferentially anisotropic in the r̂ direction; while
KAW turbulence would tend to be more isotropic.

Insights to the above qualitative and quantitative transitions in the nonlin-
ear coupling coefficient between the long-wavelength MHD fluid and the short-
wavelength KAW regimes can be also gained by examining the responsible
nonlinear coupling mechanisms. More specifically, while in the MHD regime,
ion-sound fluctuations are nonlinearly generated by the (δJ⊥ × δB⊥) · b0/c
parallel (to B0) force; in the KAW regime, the nonlinear force is due to
the mini(δu ·∇)δu‖ convective nonlinear term. Similarly, while in the MHD
regime, scatterings of the SAW by the ion sound fluctuations occur via the
δns(∂δu0/∂t) nonlinear ion density modulation; scatterings of the KAW oc-
curs, again, via the ni(δu ·∇)δu0 convective nonlinearity.

Numerical simulations on the linear mode conversion of KAW and the
ensuing nonlinear wave generations were carried out by Lin et al. [38] using
a three-dimensional hybrid model, in which ions are treated as fully kinetic
particles and electrons are treated as a massless fluid. Readers are referred
to the original work for details. Here, we summarize and discuss the essen-
tials. Specifically, consider a slab plasma with B0 = B0ẑ and nonuniformities
in the x (radial) direction. Simulations demonstrated that an incoming fast
compressional Alfvén wave mode converted into a short-wavelength KAW with
|kxρi| ∼ O(1) localized about the Alfvén resonance point. This mode-converted
KAW then serves as a pump KAW and nonlinearly excited secondary KAWs
with, preferentially, short azimuthal wavelengths; i.e., |k⊥ρi| ∼ |kyρi| ∼ O(1).
In order to analyze the nonlinear wave generation mechanism in more de-
tails, Lin et al. [38] further carried out dedicated simulations with a pre-
scribed pump KAW in a uniform plasma. The resultant (k‖, ω) spectra of
δBx and δE‖ are shown in Fig. 10. In the right plot of δE‖, we can see
the pump KAW at Ω0 = (k‖0 = 0.2, ω0 = 0.6) and the ion sound wave at
Ωs = (k‖s ≃ 2k‖0 = 0.4, ωs = 0.2). Correspondingly, in the left plot of δBx,
we see the backscattered decay KAW with Ω− = (k‖− = −0.2, ω0 = 0.4).
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Fig. 10: k‖-ω spectra of δBx and δE‖ obtained from the simulation of decay of
an initial pump KAW in a uniform plasma. The solid black line indicates the
dispersion relation of the MHD shear Alfvén mode for reference. Multiples of
the parallel pump KAW wave number, k‖p, are also shown. [Reproduced from
Ref. [38]].

Note, since Te/Ti ≃ 0.4, the ion sound wave, Ωs, is a heavily ion Landau
damped quasi mode, and the PDI corresponds to the nonlinear ion induced
scattering. Both the Ω− and Ωs modes have preferentially short wavelengths
in the ŷ direction; i.e., |k⊥sρi| ∼ |kysρi| ∼ |ky−ρi| ∼ O(1). The simulation
results are, thus, consistent with analytical theories discussed above.

As noted by Lin et al. [38], the δBx spectrum also showed excitations
around (k‖ ≈ 0, ω ≈ 0) with |kyρi| ∼ O(1) short wavelengths; which, as sug-
gested, correspond to magnetostatic convective cells [20]. The nonlinear excita-
tions of convective cells also explain the appearance of δBx fluctuations at k‖0
and ω0; since the pump KAW with ky0 ≃ 0 has δBx0 ≃ 0. These interesting
simulation results, thus, naturally lead to the following gyrokinetic analytic
theory on excitations of convective cells via the modulational instabilities of a
KAW pump wave.

3.3 Nonlinear excitations of convective cells

Convective cells have been of theoretical interests since the 1970’s [20, 37,
42, 59]; since they lead to vortex dynamics perpendicular to the confining
magnetic field and, consequently, carry significant implications to the cross-
field transport [53]. Historically, convective cells have been classified into two
categories; the electrostatic convective cells (ESCC) with δE = δE⊥ [42, 59]
and the magnetostatic convective cells (MSCC) with δB = δB⊥ [20]. In recent
years, there has been renewed interest in convective cells since they may be
regarded as paradigms of the so-called zonal structures in laboratory fusion
plasmas [16, 68]. Zonal structures are fluctuations with k ·B0 = 0 and varying
only in the radial direction [30, 31]. Zonal structures may have frequencies
either around ω = 0 or a finite frequency (i.e., the so-called geodesic acoustic
mode [62]). The ω = 0 zero-frequency zonal structures could be either zonal
flow or zonal field/current; corresponding, respectively, to ESCC and MSCC.
In this respect, zonal structures may be regarded as subset of convective cells.
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Since convective cells have ω ≈ 0, they are nominally damped by either
viscosity and/or resistivity; and, thus, generally require nonlinear excitations
in order to achieve finite intensities. In laboratory fusion plasmas, nonlinear
excitations of convective cells (i.e., zonal structures) usually occur via mode-
mode couplings of ambient drift-wave and/or Alfvén-wave instabilities. In this
respect, zonal structures may be regarded as spontaneous growth of corru-
gations of the radial equilibrium profiles; which, in turn, scatter the ambient
instabilities into the radially short-wavelength stable domain. Zonal structures,
therefore, provide self-regulatory mechanisms for the ambient turbulences and
the associated transports. We refer to the recent review [17] for readers inter-
ested in this important topic.

In the present review, we will focus on nonlinear excitations of convective
cells by KAWs in uniform plasmas in order to explore in sufficient details the
underlying physics mechanisms. Since convective cells have k · B0 = 0, their
nonlinear excitations involve couplings between co-propagating SAWs with the
same k‖; which vanishes in the ideal MHD limit due to the cancellation be-
tween the Reynolds and Maxwell stresses; i.e., the pure Alfvénic state [1, 2, 60].
It, thus, has long been recognized that only non-ideal MHD fluctuations, such
as KAW, can nonlinearly excite convective cells [16, 41, 43, 44, 45, 46, 65].
Furthermore, since having ω = 0, it is also recognized that it takes the form
of modulational instabilities for the spontaneous excitations of convective cells
by KAWs; that is of the reinforcement by nonlinearity of the deviation from
wave periodic behavior, which may lead to spectral sidebands and possibly to
breaking of the periodic fluctuation into modulated pulses [4, 16, 68]. Previ-
ous theoretical studies, however, suffer from two limiting considerations; (1)
employing two-fluid or drift-kinetic descriptions, and (2) assuming that ESCC
and MSCC are decoupled. By (1), effects due to finite ion Larmor radii (FILR)
are ignored. Both limiting considerations have been adopted in order to sim-
plify the theoretical analysis and, as will be shown here, lead to erroneous
conclusions on the nonlinear excitation mechanisms. Here, we will employ the
nonlinear gyrokinetic equation and demonstrate that both the FILR as well as
the finite coupling between ESCC and MSCC play qualitatively crucial roles
in the dynamics of the modulational excitations of convective cells. Only key
points of the theoretical analysis and results will be highlighted here. Readers
are referred to the original works for details.

We consider a uniform Maxwellian plasma immersed in a confining mag-
netic field, B0 = B0ẑ. Furthermore, we assume 1 ≫ βe, βi ≫ me/mi and
ignore the compressional Alfvén wave; i.e., δB‖ ≈ 0. Denoting Ω0 = (ω0,k0)
as the finite-amplitude pump KAW and Ωz = (ωz,kz) as the convective cell
(CC) mode, four-wave modulational instability then involves couplings with
the upper and lower KAW sidebands denoted, respectively, as Ω+ = (ω+ =
ωz + ω0,k+ = kz + k0) and Ω− = (ω− = ωz − ω0,k− = kz − k0). With
compressional Alfvén wave suppressed due to frequency separation, the field
variables are δφk and δA‖k with k = 0, z, ± corresponding to the Ω0, Ωz

and Ω± fluctuations. The governing equations, meanwhile, are the nonlinear
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gyrokinetic equation, Eq. (45), the quasi-neutrality condition, Eq. (48), and
the nonlinear gyrokinetic vorticity equation, Eq. (49).

Carrying out the standard perturbative analysis to O(|δφ0|2), we then de-
rive, after some straightforward but lengthy algebra [68], the following coupled
equations between δφz and δψz ≡ ω0δA‖z/(k‖0c)

[

γ2z +
∆2

1 +∆/ω0

]

δφz = −αφ(δφz − δψz) + βφδψz ,

[

γ2z +
∆2

1 +∆/ω0

]

δψz = −αψ(δφz − δψz) + βψδψz . (69)

Here, we have let ωz = iγz and kz ⊥ k0 to maximize the nonlinear couplings,

∆

ω0
=
b+σ+(1− Γ0)− b0σ0(1− Γ+)

2b0σ0(1− Γ+)
(70)

is the frequency mismatch between the normal-mode frequency of KAW at
k± and ω0; ∆ > 0 and we have noted that b− = b+ as well as Γ− = Γ+ for
kz · k0 = 0. Furthermore,

αφ =

∣

∣

∣

∣

c

B0
kzk⊥0δφ0

∣

∣

∣

∣

2
1

1− Γ+

[

Γ0 − Γ+

1− Γz

(

Γ0 − Γz

−b+
b0

1− Γ0

1 +∆/ω0

)

+
bz(1 − Γ0)

b0(1 − Γz)

(

(1− Γ+)σ0

− (Γ0 − Γz)σ+
1 +∆/ω0

)]

, (71)

βφ =

∣

∣

∣

∣

c

B0
kzk⊥0δφ0

∣

∣

∣

∣

2
1

1− Γ+

[

bz(1− Γ0)

b0(1− Γz)

σ+
1 +∆/ω0

−Γ0 − Γ+

1− Γz

](

1− Γz − bz
1− Γ0

b0

)

, (72)

αψ =

∣

∣

∣

∣

c

B0
kzk⊥0δφ0

∣

∣

∣

∣

2
σ0

1− Γ+

∆/ω0

1 +∆/ω0

× [(1− Γ+) σ0 − (Γ0 − Γz)σ+] , (73)

and

βψ =

∣

∣

∣

∣

c

B0
kzk⊥0δφ0

∣

∣

∣

∣

2
σ0

1− Γ+

∆/ω0

1 +∆/ω0

×σ+
(

1− Γz − bz
1− Γ0

b0

)

. (74)

Equation (69) clearly indicates that δφz (ESCC) and δψz ∝ δA‖z (MSCC)
are intrinsically coupled. From Eq. (69), one readily obtains the following
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modulational instability dispersion relation for the spontaneous excitations of
the CCs by the Ω0 pump KAW;

Y 2 + Y (αφ − αψ − βψ) + (αψβφ − αφβψ) = 0 ; (75)

where

Y = γ2z +∆2/(1 +∆/ω0) . (76)

Equation (75), in general, needs to be solved numerically and the numerical
results will be presented later (cf. also Appendix A for further details). It is,
however, instructive to examine the stability properties in two limiting cases.
First, let us consider the long wavelength limit; where |bk| ≪ 1. Straightfor-
ward algebra then readily shows that the unstable (or least stable) branch of
the modulational instability dispersion relation, Eq. (75), is given by

Y ≃ γ2z +

[(

3

4
+ τ

)

bz
2
ω0

]2

≃ (αψβφ − αφβψ)

(αψ − αφ)

≃ 3

32

∣

∣

∣

∣

c

B0
kzk⊥0δφ0

∣

∣

∣

∣

2 (
3

4
+ τ

)2

b3z

(

1− b2z
b20

)

; (77)

where we have applied the |bk| ≪ 1 limits of Eqs. (71) – (74). Equation (77)
indicates that a necessary condition for instability is bz < b0 and that the
corresponding threshold condition is

∣

∣

∣

∣

δB⊥0

B0

∣

∣

∣

∣

2

th

=
8

3

(

b20/b
2
z

1− b2z/b
2
0

)

k2‖0ρ
2
i

b20
. (78)

Here, we have noted δφ0 = δψ0/σ0 ≃ ω0δA‖0/(k‖0c), k⊥0δA‖0 = δB⊥0, and
expressed the amplitude in terms of δB⊥0; which is more convenient for com-
parisons with simulations. Eq. (78) indicates that, as |k⊥ρi|2 ≪ 1, |δB⊥0/B0|th
rapidly increases as |k⊥0ρi|−2 and, hence, finite |k⊥ρi| effects are necessary of
the instability to set in. Well above the threshold condition, we have

(

γ

Ωi

)

≃
√
3

4β
1/2
i

(

3

4
+ τ

)

b2z

√

1− b2z
b20

∣

∣

∣

∣

δB⊥0

B0

∣

∣

∣

∣

. (79)

Furthermore, since

|δψz|/|δφz | ≃ 1 ; (80)

ESCC and MSCC are, indeed, strongly coupled, and arbitrary de-coupling
assumptions could lead to erroneous conclusions on the stability. It is read-
ily seen that the threshold in Eq. (78) is minimized for b0 =

√
2bz that yields

|δB⊥0/B0|2th,min = (32/3)k2‖0ρ
2
i /b

2
0. Thus, b

2
0 = (32/3)k2‖0ρ

2
i /|δB⊥0/B0|2th,min ≪

1 for effective mode excitation, which is hard to meet at long wavelength. For
this reason, in the original works on CC nonlinear excitation by KAW via
modulational instability [16, 68], it was noted that nonlinear excitations of
convective cells by KAW are always suppressed in the long wavelength limit,



Physics of Kinetic Alfvén Waves 25

although only the Y ≃ (αψ − αφ) < 0 root was discussed therein and in the
recent review on this subject [17].

The other limit is the short-wavelength limit; i.e., |bk| ≫ 1, where FILR
effects exhibit distinctively. Taking this limit and, to further simplify the anal-
ysis, assuming bz ≪ b0; we can readily show that Eq. (75) yields the following
unstable solution

Y ≃ γ2z + ω2
0

(

bz
2b0

)2

≃ ταφ , (81)

where
αφ ≃ |(c/B0)kzk⊥0δφ0|2 (bz/b0)(1 + τ) . (82)

Equation (81) indicates that, in this |bk| ≫ 1 short wavelength limit, con-
vective cells can be modulationally excited when the pump KAW amplitude
exceeds the following threshold value, noting δφ0 ≃ δψ0/(1 + τ),

∣

∣

∣

∣

δB⊥0

B0

∣

∣

∣

∣

2

th

=
(1 + τ)

4τ

(

k‖0

k⊥0

)2

. (83)

Well above the threshold value, we have

∣

∣

∣

∣

γz
ω0

∣

∣

∣

∣

≃
(

τ

1 + τ

)1/2 ∣
∣

∣

∣

k⊥0

k‖0

∣

∣

∣

∣

(

bz
b0

)3/2 ∣
∣

∣

∣

δB⊥0

B0

∣

∣

∣

∣

. (84)

Meanwhile, ESCC and MSCC remain strongly coupled;

|δψz|/|δφz| ≃ (1 + τ)/2 . (85)

We emphasize that the above two limiting analyses clearly demonstrate that
finite |k⊥ρi| effects are necessary for the modulational excitations of con-
vective cells and that ESCC and MSCC are intrinsically coupled. Taking
k⊥0 = x̂kx, k⊥z = ŷky and δB⊥0 = ŷδBy sin(ω0t − kxx − k‖0z), we shall
assume δBy/B0 = 2δB⊥0/B0 in the comparison of numerical simulation re-
sults with theoretical predictions discussed above. The complete dispersion
relation is numerically solved in the (kxρi, kyρi)-plane for fixed k‖0ρi = 0.02,
τ = 1 and βe = βi = 0.2 and different values of δBy/B0. Figure 11 shows the
marginal stability curves. It clearly demonstrates, consistent with the above
analytical predictions, the crucial roles of the finite k⊥ρi effects in the stability
properties. Marginal stability curves demonstrate the existence of a necessary
condition for instability, bz > k2yℓρ

2
i ≡ bzℓ, given by [68]

bzℓ (1− Γzℓ)

2Γzℓ − τ (1− Γzℓ)
=

4k2‖0ρ
2
i

|δBy/B0|2
, (86)

where Γzℓ ≡ Γz(bz = bzℓ), which holds for b0 ≫ 1 and arbitrary bzℓ. Figure
12, meanwhile, plots the calculated growth rates vs. δBy/B0 for (kxρi, kyρi) =
(0.8, 0.6) and (kxρi, kyρi) = (1.0, 0.8). Corresponding hybrid simulations have
also been carried out to investigate the nonlinear excitations of convective
cells by a pump KAW [68]. The observed growth rates, as shown in Fig. 12,
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Fig. 11: Marginal stability curves in the (kxρi, kyρi)-plane as a function of the
pump KAW amplitude δBy/B0. Fixed parameters are k‖0ρi = 0.02, τ = 1,
and βe = βi = 0.2 [From original figure in Ref. [68]].

agree reasonably well with the theoretically predicted values. Meanwhile, sim-
ulations also show that, for kz = ŷky, the ESCC (δEyz) and MSCC (δBxz)
are coupled and both are spontaneously excited; consistent, again, with the
theoretical predictions. For γz/ω0 = O(1), in general, it is necessary to solve
for CC dispersion relation and polarization from Eq. (120) in the Appendix
A, which allows determining both CC magnetic perturbation as well as the
corresponding inductive electric field; that is,

∣

∣

∣

∣

δBxz
δBy0

∣

∣

∣

∣

=
|kyρi|

2σ0|kxρi|
|δψz|
|δφ0|

, (87)

∣

∣

∣

∣

cδE‖z

vAδBy0

∣

∣

∣

∣

=

√

βi/2

2σ0|kxρi|

∣

∣

∣

∣

γz
Ωi

∣

∣

∣

∣

|δψz |
|δφ0|

. (88)

3.4 Quasilinear transports induced by KAWs

In the presence of finite δE‖, KAWs can exchange energy and generalized
momenta with charged particles when the wave-particle resonance condition
is satisfied. Such energy-momentum exchanges, thus, could lead to efficient
acceleration/heating, current/flow, as well as cross-field transports; that is,
wave-induced collisionless transports in the charged particle’s phase space.
The self-consistent analysis of charged particle’s phase-space dynamics and
the corresponding dynamics of collective electromagnetic fluctuations rep-
resents, indeed, fundamental and complex investigations on the frontier of
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Fig. 12: Modulational instability growth rates (continuous lines), including
finite γz/ω0 (cf. Appendix A), vs. δBy/B0 are compared with hybrid simu-
lation results (circles; error bars are a measure of discrete particle noise) for
(kxρi, kyρi) = (0.8, 0.6) (ble) and (kxρi, kyρi) = (1.0, 0.8) (red). Fixed param-
eters are the same as in Fig. 11 [From original figure in Ref. [68]].

plasma physics research. Such complexities, in one aspect, are associated with
the complexities of phase-space dynamics of charged particles in the presence
of electromagnetic fluctuations that vary, self-consistently, in space and time.
Detailed analyses on this topic are beyond the intended scope of this review.
Interested readers are referred ref.[17] for further discussions. In this review,
we assume the fluctuations have sufficiently broad spectral widths and finite
but small intensities; such that charged particles diffuse stochastically in the
phase space and we may employ the quasilinear description. Furthermore, we
will limit our considerations to KAWs in a slab plasma. More general analyses
in realistic geometries can be found in Chen[10].

Let x be the nonuniformity (radial) direction and B0 = B0(x)ẑ. Assuming
β ≪ 1, B0 is then approximately constant. The particle distribution function,
f , can be decoupled into an “equilibrium” component, F0, and a fluctuating
component, δf ; i.e.,

f = F0(x, µ, v‖, ǫt) + δf(x, t); (89)

where ǫt with ǫ ≪ 1 denotes that F0 is slowly varying in time and vary
spatially only in the nonuniformity x direction. δf , meanwhile, is given by
the linear gyrokinetic equations, Eqs. (14) and (15) with, however, FM and
(−qFM/T ) replaced, respectively, by F0 and (q/mv‖)(∂F0/∂v‖). Employing
the linear gyrokinetic equations[27, 5], it is then straightforward to show that
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F0 satisfies the following quasi-linear gyrokinetic equations[10]

∂

∂t
(B0F0) +

∂

∂x
(B0δẋδGres) +

∂

∂v‖
(B0δv̇‖δGres) = 0, (90)

where

δẋ = (
cb

B0
×∇〈δLg〉α) · x̂, (91)

δLg is given by Eqs. (16) and (17) ; i.e.,

〈δLg〉α = 〈eρ·∇(δφ− v‖δA‖/c)〉α, (92)

δv̇‖ = − q

m
b ·∇〈δLg〉α, (93)

and b = ẑ.
Meanwhile, δGres in Eq. (90) represents the contribution of resonant par-

ticles to δf [10]; i.e.,

δGres = iπ
q

m
δ

[

−i(v‖b ·∇+
∂

∂t
)

]

QF0〈δLg〉α, (94)

and

QF0〈δLg〉α = i

[

1

v‖

∂F0

∂v‖

∂

∂t
+∇F0 · (

b

Ω
)×∇

]

〈δLg〉α. (95)

Finally, in Eq. (90) , (. . . ) denotes averaging over the (fast) wave periods.
Taking perturbations to be of the following form

δφ(x, t) =
1

2

∑

k

{δφ̂k(x) exp [i(k · x− ωkt)] + c.c.}, (96)

with k = ky ŷ+k‖b, and ŷ corresponds to the azimuthal (east-west) direction.
We then have

δẋ = −i c
2B

∑

k

{kyJ0(k⊥ρ)δL̂k exp [i(k · x− ωkt)] + c.c.}, (97)

δv̇‖ = −i q
2m

∑

k

{k‖J0(k⊥ρ)δL̂k exp [i(k · x− ωkt)] + c.c.}, (98)

and
δL̂k = (δφ̂− v‖δÂ‖/c)k. (99)

Note that, for resonant particles,

δ

[

−i(v‖b ·∇+
∂

∂t
)

]

= δ(k‖v‖ − ωk), (100)

and, hence,
δL̂k,res = (δφ̂ − δΨ̂)k ≡ δφ̂‖k. (101)
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Here, we recall Eq. (20), δΨ̂k = (ωδÂ‖/ck‖)k, and Eq. (21), δÊ‖k = −ik‖δφ̂‖k.
δGres can then be expressed, correspondingly, as

δGres =
1

2
{δĜk,res exp [i(k · x− ωkt)] + c.c.}, (102)

where
δĜk,res = iπ

q

m
δ(k‖v‖ − ωk)Q̂kF0J0(k⊥ρ)δφ̂‖k, (103)

and

Q̂kF0 = (ωk
∂

v‖∂v‖
+
ky
Ω

∂

∂x
)F0. (104)

Substituting Eqs. (98), (101), and (102) into Eq. (90), we can readily derive

the expression of the quasi-linear gyrokinetic equation in terms of δφ̂‖k. More
specifically, we have

δẋδGres = −(
π

2
)(
c

B0
)(
q

m
)
∑

k

[

δ(k‖v‖ − ωk)kyJ
2
0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

Q̂kF0

]

, (105)

and, similarly, obtain

δv̇‖δGres = −(
π

2
)(

q

mc
)2
∑

k

[

δ(k‖v‖ − ωk)k‖J
2
0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

Q̂kF0

]

. (106)

Taking the various moments of Eq. (90), we then obtain the transport
equations for density, parallel momentum/current, and energy. Specifically,
defining the slowly varying “equilibrium” density, N(x, ǫt), as

N(x, ǫt) = 2π

∫

B0dµdv‖F0 ≡ 〈F0〉v, (107)

Eq. (90) along with Eq. (105) then yield the following particle transport
equation[10, 30, 36]

∂N

∂t
+

∂

∂x
Γx = 0, (108)

where
Γx = Γxc + Γxd, (109)

Γxc = −(
π

2
)(
q

m
)(
c

B0
)
∑

k

〈δ(k‖v‖ − ωk)J
2
0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

kyωk(
∂

v‖∂v‖
)F0〉v, (110)

Γxd = −(
π

2
)(
q

m
)(
c

B0
)
∑

k

〈δ(k‖v‖ − ωk)J
2
0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

(
k2y
Ω

)(
∂

∂x
)F0〉v. (111)

Equations (109)-(111) demonstrate that the particle flux, Γx, intrinsically con-
sists of a convective, Γxc, and a diffusive, Γxd component; even though charged
particles diffuse stochastically in the phase space. Note also that |Γxc| and
|Γxd| scale, respectively, with ky and k2y. Thus, no transport occurs if ky = 0.
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This, of course, is expected, since for ky = 0, Py = mvy + qAy/c is con-
served. As 〈Py〉α = qAy(Xgc)/c with Xgc being the guiding center position in
x, long-time transport will occur only if Py conservation is broken by finite-ky
symmetry-breaking perturbations. Equations (110) and (111) also indicates
that the relative magnitudes between Γxc and Γxd depend on the detailed

spectral properties of
∣

∣

∣
δφ̂‖k

∣

∣

∣

2

. We can also employ Eq. (90) to derive the equa-

tion for energy transport and heating. Letting K = 〈mv2F0/2〉v, it is then
straightforward to show[10]

∂K

∂t
+

∂

∂x
qx = S, (112)

where qx = qxc + qxd is the energy flux with

qxc = −(
π

2
)(
cq

B0
)
∑

k

〈δ(k‖v‖ − ωk)(
v2

2
)J2

0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

(kyωk)(
∂

v‖∂v‖
)F0〉v, (113)

qxd = −(
π

2
)(
cq

B0
)
∑

k

〈δ(k‖v‖ − ωk)(
v2

2
)J2

0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

(
k2y
Ω

)(
∂

∂x
)F0〉v, (114)

and S is the local heating rate;

S = −(
π

2
)(
q2

m
)
∑

k

ωk〈δ(k‖v‖ − ωk)J
2
0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

(ωk
∂

v‖∂v‖
+
ky
Ω

∂

∂x
)F0〉v. (115)

Similarly, we can derive the following equation for parallel momentum trans-
port and generation[10];

∂

∂t
P‖ +

∂

∂x
Πx = F‖, (116)

where P‖ = 〈mv‖F0〉v, Πx = Πxc +Πxd is the parallel momentum flux,

Πxc = −(
π

2
)(
qc

B0
)
∑

k

〈δ(k‖v‖ − ωk)(v‖)J
2
0

∣
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∣

∣

∣

2

(kyωk)(
∂

v‖∂v‖
)F0〉v, (117)

Πxd = −(
π

2
)(
qc

B0
)
∑

k

〈δ(k‖v‖ − ωk)(v‖)J
2
0

∣

∣

∣
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∣
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2

(
k2y
Ω

)(
∂

∂x
)F0〉v; (118)

and

F‖ = −(
π

2
)(
q2

m
)
∑

k

k‖〈δ(k‖v‖ − ωk)J
2
0

∣

∣

∣
δφ̂‖k

∣

∣

∣

2

(ωk
∂

v‖∂v‖
+
ky
Ω

∂

∂x
)F0〉v (119)

is the local effective parallel force due to KAWs. Multiplying Eq. (116) by
(q/m) naturally leads to the equation of current transport and generation.

As noted in Chen[10], the transport equations derived above have the ap-
pealing physical pictures that transports as well as acceleration/heating may
be viewed as “collisions” between charged particles of energy = ǫ = mv2/2
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and generalized momentum = P = mv + qA/c with wave packets or quasi-
particles of energy = ω and momentum = k. The transport equations also
clearly demonstrated that, in collisionless plasmas, wave-particle resonances
are responsible for phase-space transports, and the transports consist of both
convective and diffusive components with coefficients depending critically on
the spectral properties of, in this case, KAWs.

4 Conclusions and discussions

In this paper, we argue that short-wavelength KAWs are ubiquitous in re-
alistic nonuniform magnetized plasmas due to the very existence of SAW
continuous spectra. Employing the powerful theoretical tool of gyrokinetic
equations, we then re-examine and explore further the linear and nonlinear
physics of KAWs. Our analyses clearly demonstrate that kinetic effects due
to; e.g., finite ion Larmor radii, can qualitatively and quantitatively modify
the nonlinear processes. More specifically, we show that in contrast to the
MHD fluid description, the FILR effects lead to the significantly enhanced
electron-ion decoupling; which, in turn, leads to significantly enhanced non-
linear coupling coefficients. Our analyses, furthermore, suggest that the KAW
turbulence spectra will be more isotropic than those according to the MHD
description. In additions, convective cells could be nonlinearly excited only
in the short-wavelength regime. These spectral properties obviously carry im-
portant implications to the symmetry-breaking wave-induced transports of
charged particles. In other words, based on our theoretical studies, we submit
that one needs to employ first-principle-based self-consistent kinetic or gyroki-
netic theories in order to develop a reliable and accurate understanding of
KAW physics; especially, when effects associated with nonlinearities, realistic
nonuniformities, and geometries are considered.

Since the primary aim of the present paper is to illuminate physics of KAWs
based on the gyrokinetic theory approach, our focus, therefore, has been on
the fundamental processes. This paper, thus, is not, and, indeed never intends
to be a comprehensive review of all aspects of the rich KAW physics. For
complimentary readings, we refer to the monograph by Wu et al. [64], the
review article by Chen and Zonca[17], and the recent works by Qiu et al. [50]
for KAWs in fusion tokamak plasmas.

As we, hopefully, have demonstrated, there are many interesting issues;
especially, in the nonlinear regime, associated with the KAW physics. Some
of them remain little explored; for example, the phase-space dynamics of non-
linear wave-particle interactions as well as the physics of the fully developed
KAW turbulence, including frequency/wave number cascading and, possibly,
filamentary structures via nonlinear excitations of convective cells. Obviously,
careful studies of these physics issues employing the powerful gyrokinetic
approach analytically and/or via numerical simulation will make significant
impacts to our deep understandings of the charged particle dynamics and
Alfvenén wave turbulences in nature and laboratory plasmas.
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A Appendix: Equations for strongly excited convective cells

The equations for coupled ESCC and MSCC excitations derived in Sec. 3.3, that is Eqs. (69),
give only the leading order terms in γ2z/ω

2
0
, for simplicity, and are adopted for computing

marginal stability curves of the modulational instability as shown in Fig. 11. Exact equations,
i.e. including higher order corrections in γ2z/ω

2
0
, are given below for interested readers and

are used for computing the finite growth rate of the modulational instability (cf. Fig. 12)
away from marginal stability [68]. The complete equations for coupled ESCC and MSCC
excitations can be cast as follows

[

γ2z +
∆2

1 +∆/ω0

+
γ4z

4ω2
0
(1 +∆/ω0)

]

δφz = −αφ(δφz − δψz) + βφδψz

+
γ2z

2ω2
0
(1 +∆/ω0)

[

−α̂φ(δφz − δψz) + β̂φδψz
]

,

[

γ2z +
∆2

1 +∆/ω0

+
γ4z

4ω2
0
(1 +∆/ω0)

]

δψz = −αψ(δφz − δψz) + βψδψz

+
γ2z

2ω2
0
(1 +∆/ω0)

[

−α̂ψ(δφz − δψz) + β̂ψδψz
]

, (120)

where

α̂φ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2 1

1− Γ+

[

Γ0 − Γ+

1− Γz
(Γ0 − Γz)

+
bz(1 − Γ0)

b0(1− Γz)
(1− Γ+)σ0

]

, (121)

β̂φ = −

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2 1

1− Γ+

(

Γ0 − Γ+

1− Γz

)

×

(

1− Γz − bz
1− Γ0

b0

)

; (122)

and

α̂ψ = −

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2 σ0

1− Γ+

× [(1− Γ+)σ0 + (Γ0 − Γz) σ+] , (123)

β̂ψ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2 σ0

1− Γ+

×σ+

(

1− Γz − bz
1− Γ0

b0

)

. (124)
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