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Abstract. Spontaneous nonlinear excitation of geodesic acoustic mode (GAM)
by toroidal Alfvén eigenmode (TAE) is investigated using nonlinear gyrokinetic
theory. It is found that, the nonlinear decay process depends on thermal ion βi

value. Here, β is the plasma thermal to magnetic pressure ratio. In the low-
β limit, TAE decays into a GAM and a lower TAE sideband in the toroidicity
induced shear Alfvén wave continuous spectrum gap; while in the high-βi limit,
TAE decays into a GAM and a propagating kinetic TAE in the continuum.
Both cases are investigated for the spontaneous decay conditions. The nonlinear
saturation levels of both GAM and daughter wave are derived. The corresponding
power balance and wave particle power transfer to thermal plasma are computed.
Implications on thermal plasma heating are also discussed.
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1. Introduction

Energetic particle (EP) related physics is a key concern in burning plasmas of next
generation magnetic confinement fusion devices such as ITER [1], characterized by
plasma self heating due to fusion alpha particles [2, 3]. Because of their high
birth energy, fusion alpha particles heat more effectively electrons than fuel ions
via Coulomb collisions. Meanwhile, thermal ion energy is a key control parameter
for maximizing the fusion reactivity and, it would be desirable to control fusion
alpha particle power transfer and the branching ratio of electron to ion heating.
Effective ways for transferring fusion alpha particle power to fuel ions, i.e., so called
“alpha-channeling”, have been proposed and investigated [4, 5]. On the other hand,
fusion alpha particles can drive symmetry breaking electromagnetic perturbations
unstable [6–9] via resonant wave-particle interactions. For example, shear Alfvén
wave (SAW) can be excited as instabilities, lead to enhanced anomalous alpha particle
transport, degradation of plasma performance [2, 3] and, potentially, damage plasma
facing components due to the heavy heat load [10]. Due to the equilibrium magnetic
field geometry and plasma nonuniformities, SAW instabilities can be excited as
Alfvén eigenmodes (AEs) inside the frequency gaps of the SAW continuous spectrum,
and/or energetic particle continuum modes (EPMs) [2,3,6]. Among various AEs, the
well-known toroidal Alfvén eigenmode (TAE) [11–13] excited inside the toroidicity
induced SAW continuum gap is recognized as one of the most serious concerns for
the fluctuation-induced EP transport, with the transport rate closely related to TAE
saturation amplitude [14–16]. Thus, understanding the nonlinear dynamics of TAE,
including saturation, is crucial for understanding the properties of burning plasmas in
future reactors, and was under extensive investigation in the past decades [6, 17–22].
Nonlinear evolution of Alfvénic fluctuations, including TAE, can occur along two
“routes” [23]; i.e., they can saturate through either nonlinear wave-particle phase space
dynamics [17–20, 24] and/or nonlinear mode-mode coupling processes [21, 22, 25–28],
as reviewed in Ref. 6.

Axisymmetric zonal structures (ZS) related physics, including zonal flow [29],
zonal current [21] and (EP) phase space zonal structures [30], is another important
topic in confined fusion plasma physics research. ZS are generally recognized as the
generators of nonlinear equilibria [6, 16, 31], and can be driven nonlinearly by micro-
scale drift wave (DW) type turbulences including drift Alfvén waves (DAWs), and
in turn, scatter DW/DAW into radially short wavelength stable regime [32, 33]. The
nonlinear excitation of ZS, as an important mode-mode coupling channel for AEs
saturation, are investigated in a few recent publications [27, 34–39]. Noteworthy is
that geodesic acoustic mode (GAM) [40], as the finite frequency counterpart of zonal
flow, can also be excited by TAE [28,41], leading to nonlinear TAE saturation. GAM
is predominantly an electrostatic mode unique to toroidal plasmas, and exists due to
the thermal plasma compressibility. GAM is characterized by an n/m = 0/0 scalar
potential and and n/m = 0/1 up-down anti-symmetric density perturbation, with
n/m denoting the toroidal/poloidal mode numbers when using a standard Fourier
decomposition of fluctuation fields. Nonlinear excitation of GAM by TAE was firstly
investigated in Ref. 28, where a pump TAE decaying into a GAM and a TAE lower
sideband inside the frequency gap was studied using nonlinear gyrokinetic theory. It
was found that, for spontaneous decay, the pump TAE should lie within the upper
half of the toroidicity induced SAW continuum frequency gap, which is not the usual
case. In Ref. 41, a new decay channel has been proposed and analyzed, i.e., a pump



3

TAE decay into a GAM and a propagating lower kinetic TAE (LKTAE). LKTAEs
are eigenmodes in the SAW continuum frequency range, which are discretized by
kinetic effects, such as finite ion Larmor radius (FLR) effects and electron parallel
dynamics including dissipation [42–47]. A series of LKTAEs can co-exist, with a small
frequency separation. Note that, because of the frequency matching constraint, the
processes investigated in Ref. 28 and 41 occur, respectively, as 4q2βi/ϵ

2 is smaller
or larger than unity; i.e., as GAM frequency is smaller or larger than the distance
between the pump TAE frequency and the lower accumulation point frequency of the
toroidicity induced SAW continuum frequency gap. Here, q is the safety factor, βi is
the ratio of ion thermal pressure to equilibrium magnetic field pressure, and ϵ is the
inverse aspect ratio. It is found that the process proposed in Ref. 41 is relevant and
possibly important for typical burning plasma parameters, and can influence not only
the EP confinement via TAE saturation but also the nonlocal power transfer from
fusion alpha particles to thermal plasma via ion Landau damping of the nonlinearly
driven GAM [48,49]. The secondary GAM excited by TAE, being the finite frequency
counterpart of zonal flow, may also regulate DW turbulence [50,51], and cause cross-
scale couplings and confinement improvement [52].

In this work, using gyrokinetic theory, we present a detailed analysis of nonlinear
excitation of GAM by TAE, and discuss the saturation level of AEs and ZS, as well as
the corresponding power balance and the power transfer from EPs to thermal plasmas
via different channels. Thereby, we address the impact of TAE decay by GAM on
plasma performance including fuel ion heating. The rest of the paper is organized
as follows. In Sec. 2, the theoretical model is given. The parametric process is
investigated in Sec. 3. The effect of this process on plasma heating is discussed in
Sec. 4. And finally, a summary is given in Sec. 5.

2. Theoretical model

We investigate the nonlinear interactions among pump TAE (Ω0 ≡ (ω0,k0)), GAM
(ΩG ≡ (ωG,kG)) and high frequency daughter wave (Ωh ≡ (ωh,kh)) ‡ with the same
poloidal and toroidal mode numbers as the pump TAE. Here, the high frequency
daughter wave can be another TAE within the toroidicity induced SAW continuum
gap, as in the case of Ref. 28, or a propagating LKTAE in the SAW continuous
frequency spectrum [28, 41], depending on the respective βi regime for the two
processes to take place. For TAE and the high frequency daughter wave, the scalar
potential δϕ and parallel component of vector potential δA∥ are taken as the field
variables, since the corresponding parallel magnetic perturbation is negligible [6].
Furthermore, δψ ≡ ωδA∥/(ck∥) is taken as an alternative variable for TAE and the
high frequency daughter wave, and one recovers the ideal MHD constraint by taking
δψ = δϕ. One then has, δϕ = δϕ0 + δϕG + δϕh, with the subscripts 0, G and h
denoting pump TAE, GAM and high frequency daughter wave, respectively. Without
loss of generality, Ω0 = ΩG +Ωh is adopted as the frequency/wavenumber matching
conditions. Meanwhile, for TAE and the high frequency daughter wave with high
toroidal mode numbers in burning plasmas [6], we adopt the well-known ballooning-
mode decomposition [54] (see, e.g., Refs. [6,43,55] for a recent review of mode structure

‡ Here, “high” indicates that the mode frequency is high with respect to the other daughter wave,
GAM, generated during the decay process. The frequency, however, is lower than that of the pump
TAE for the spontaneous decay [53].
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representation in toroidal geometry) in the (r, θ, ϕ) field-aligned flux coordinates

δϕ0 = A0e
i(nϕ−m0θ−ω0t)

∑
j

e−ijθΦ0(x− j) + c.c.,

δϕh = Ahe
i(nϕ−m0θ−ω0t)e−i(

∫
k̂Gdr−ωGt)

×
∑
j

e−ijθΦh(x− j) + c.c..

Here, (m = m0+j, n) are the poloidal and toroidal mode numbers, m0 is the reference

value of m, nq(r0) = m0, x = nq −m0 ≃ nq′(r − r0), k̂G is the radial envelope due

to GAM modulation and k̂G ≡ nq′θkG
in the ballooning representation, Φ is the fine

radial structure associated with k∥ and magnetic shear, and A is the radial envelope.
For the predominantly electro-static GAM characterized by radially corrugated

scalar potential, one has

δϕG = AGe
i(
∫
k̂Gdr−ωGt)

∑
j

ΦG(x− j) + c.c..

Here, ΦG is the fine scale structure of GAM due to the weakly ballooning features
of both the pump TAE and the high frequency daughter wave [35]§, and the
summation over j is the summation over the radial positions where the pump TAE
poloidal harmonics are localized. As a result, kG = k̂G − i∂r lnΦGêr, and one
typically has |∂r lnΦG| ≫ |k̂G|. In the expression for pump TAE, GAM and the
high frequency daughter wave, frequency and wavenumber matching conditions are
implicitly assumed. This is generally valid. For the high-βi limit where the high
frequency daughter wave is an LKTAE, the frequency difference between neighbouring
LKTAEs is rather small [56], and, thus, the LKTAEs can be considered as a dense
spectrum of eigenmodes. Thus, the frequency mismatch effects on the three wave
decay process is generally unimportant, consistent with the dense continuum limit
of LKTAEs. In the low-βi limit, the high frequency daughter wave is a TAE lower
sideband with finite radial envelope wave-number (θkG

), and the matching condition
comes from the finite θk dependence of the TAE lower sideband frequency.

The governing equations for the resonant three wave interactions, can then be
derived from quasi-neutrality condition

n0e
2

Ti

(
1 +

Ti
Te

)
δϕk =

∑
s

⟨qJkδHk⟩s , (1)

and nonlinear gyrokinetic vorticity equation

c2

4πω2
k

B
∂

∂l

k2⊥
B

∂

∂l
δψk +

e2

Ti

⟨
(1− J2

k )F0

⟩
δϕk

−
∑
s

⟨
q

ωk
JkωdδHk

⟩
s

= − i
c

B0ωk

∑
k=k′+k′′

b̂ · k′′ × k′
[
c2

4π
k′′2⊥

∂lδψk′∂lδψk′′

ωk′ωk′′

+ ⟨e(JkJk′ − Jk′′)δLk′δHk′′⟩] . (2)

§ The fine radial scale of zonal structure due to the weakly ballooning nature of the pump TAE was
not accounted for in Ref. 28.
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Here, Jk ≡ J0(k⊥ρ) with J0 being the Bessel function of zero index accounting
for FLR effects, ρ = v⊥/Ωc is the Larmor radius, Ωc = eB/(mc) is the cyclotron
frequency, F0 is the equilibrium particle distribution function,

∑
s is the summation

on different particle species, ωd = (v2⊥ + 2v2∥)/(2ΩR0) (kr sin θ + kθ cos θ) is the
magnetic drift frequency, l is the arc length along the equilibrium magnetic field line,
δLk ≡ δϕk − k∥v∥δψk/ωk; and other notations are standard. The dominant nonlinear
terms in the vorticity equation are Maxwell and Reynolds stresses ∥; formally written
on the right hand side of equation (2). Furthermore, ⟨· · ·⟩ indicates velocity space
integration and δHk is the nonadiabatic particle response, which can be derived from
nonlinear gyrokinetic equation [57]:(

−iω + v∥∂l + iωd

)
δHk = −iωk

q

T
F0JkδLk

− c

B0

∑
k=k′+k′′

b · k′′ × k′Jk′δLk′δHk′′ . (3)

In equation (3), the free energy associated with pressure gradient is neglected in the
formally linear term on the right hand side, assuming the free energy driving the
pump TAE unstable comes from the EP pressure gradient, while the nonlinear mode
coupling process studied here is dominated by the thermal plasma contribution. For a
discussion on the contribution of resonant EPs on ZS generation by TAE [37], which
may dominate in the linear growth stage of the pump TAE, interested readers may
refer to Refs. [34, 35].

3. Parametric instability dispersion relation

The particle responses to TAE/LKTAE and GAM can be derived from equation (3),
by taking a small amplitude expansion δHk = δHL

k + δHNL
k , with the superscripts

“L” and “NL” denoting linear and nonlinear responses, respectively. The leading order
linear particle responses are given below, which are then used to derive the nonlinear
particle responses. For pump TAE and the high frequency daughter wave, with kT,∥ ≃
1/(2qR0) and |ωT | ≃ |VA/(2qR0)|, one has |k∥vt,e| ≫ |ωT | ≫ |k∥vt,i| ≫ |ωd,e|, |ωd,i|,
and the linear particle responses to TAE/LKTAE can be derived as

δHL
T,e = − e

Te
F0δψT + δKL

T,e,

δHL
T,i ≃

e

Ti
F0JT δψT + δKL

T,i.

The subscript “T” is used for modes in the TAE frequency range, and the expressions
are applicable to both TAE and LKTAE. Meanwhile, δKL

T,e and δKL
T,i account for

kinetic compression effects of the thermal plasma (see, e.g., Ref. [6]), which are not
explicitly given here since they are typically of higher order and describe damping as
well as diamagnetic effects that are assumed implicitly. The corresponding EP linear
responses are also implicitely accounted for [6], without being explicitly given in the
present work for the sake of simplicity. Substituting the leading order linear particle
responses into the quasi-neutrality condition, one then has

δψT = (1 + τ − τΓT ) δϕT ≡ σT δϕT .

∥ Some subtleties with the interpretation of Maxwell and Reynolds stresses in equation (2) are
discussed in Ref. 6.
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Here, τ ≡ Te/Ti is the electron to ion temperature ratio, Γk ≡ ⟨J2
kF0/n0⟩, σT ̸= 1

describes the deviation from ideal MHD condition due to kinetic effects and generation
of parallel electric field, which is important in the high-βi limit, when the high
frequency daughter wave is an LKTAE, while σ0 ≃ 1 for the pump TAE as well as the
TAE lower sideband in the low-βi limit. Substituting into linear vorticity equation,
one has

ET δϕT ≡
(
1− ΓT − k2T,∥V

2
AσT bT /ω

2
T +∆T

)
δϕT = 0.

Here, ∆T accounts for thermal plasma as well as EPs compression effects in toroidal
geometry, proportional to particle magnetic drifts. ∆T (and, hence, ET ) is generally
a linear integro-differential operator and its known exact expression [6, 42, 43] is not
needed here for the present scope. Thus, we just indicate it formally and recall that its
calculation yields expressions for EP drive as well as the thermal plasma collisionless
and collisional damping. Note that, for short wavelengths, the previous equation is
the formal dispersion relation of KAW, and it yields ω2 = k2∥V

2
A(1 + Ckk

2
⊥ρ

2
i ), with

Ck ≡ 3/4 + τ(1 − iδe). In particular, the δe term accounts for trapped electron
collisional damping [58] but, if properly modeled, also includes electron Landau
damping and is responsible for the electron heating by LKTAE, as we will discuss in
Sec. 4. However, this δe term is not explicitly kept in our derivation of δHL

T,e, which
aims at giving the lowest order bulk particle response to be used for the nonlinear
derivation. The eigenmode dispersion relation of TAE/LKTAE can be derived, noting
the V 2

A ∝ (1−2ϵ0 cos θ) dependence of V
2
A due to toroidicity, and matching the solutions

through the radially fast to slowly varying regions [11, 42, 43]. Here, ϵ0 = r/R0 +∆′

with ∆′ being the Shafranov shift.
Linear particle response to GAM can be derived, noting the ωG ∼ |vt,i/R0| ≫

|ωtr,i|, |ωd| ordering based on q ≫ 1, and that k∥,G = 0. One then has, to the leading
order [49],

δHL
G,e = − e

Te
F0δϕG,

δHL
G,i =

e

Ti
F0JGδϕG.

Here, ωtr ≡ v∥/(qR0) is the transit frequency, and (· · ·) ≡
∫
dθ(· · ·)/(2π) denotes

surface averaging.

3.1. Nonlinear GAM equation

The nonlinear GAM equation in the electrostatic limit can be determined from the
nonlinear vorticity equation. One obtains, after some tedious but straightforward
algebra

EG∗δϕG∗ = i
c

BωG
kGk0,θ

×

[
Γ0 − Γh − (bh − b0)

k2∥V
2
A

ω0ωh
σ0∗σh

]
δϕ0∗δϕh, (4)

with k0,θ = −m0/r being the poloidal mode number of the pump TAE Ω0 ≡ (ω0,k0).
The two terms on the right hand side of equation (4) are, respectively, the generalized
Reynolds and Maxwell stresses, valid for arbitrary k⊥ρi. Furthermore, EG is the linear
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dispersion function of GAM, defined as [50]

EG ≡
⟨
(1− J2

G)
F0

n0

⟩
− Ti
n0e2

∑
s

⟨qs
ω
JGωdδHL

G

⟩/
δϕG.

Taking ΦG∗ ≡ Φ0∗Φh as the fast varying component [35] of GAM, one then has,
the GAM eigenmode dispersion relation from the radially slowly varying component
of equation (4):

EG∗AG∗ = i
c

B0
k0,θ

1

ωG
α̂GA0∗Ah, (5)

with

α̂G ≡
∫

Φ0∗ΦhkG

[
Γ0 − Γh − (bh − b0)

k2∥V
2
A

ω0ωh
σ0∗σh

]
dr

×
(∫

Φ0∗Φhdr

)−1

.

α̂G contains the complex information of breaking of pure Alfvénic state [23] by
toroidicity [27,28] and kinetic effects [59], as well as mode structure due to equilibrium
magnetic geometry. Equation (5) is valid for arbitrary k⊥ρi. In the long wavelength
|k⊥ρi| ≪ 1 and low-βi limit, equation (5) recovers equation (8) of Ref. 28, where
GAM excitation by the beating of the pump TAE and a TAE lower sideband within
the toroidicity induced SAW continuum gap is investigated. On the other hand, in
the high-βi limit with consequently k⊥ρi ∼ O(1), equation (4) recovers equation (2)
of Ref. 41, where GAM was excited by the beating of pump TAE to an LKTAE.

3.2. Nonlinear high frequency daughter wave equation

Nonlinear electron response to the high frequency daughter wave can be derived noting
the |k∥vt,e| ≫ |ωT | ≫ |ωd,e| ordering. The gyrokinetic equation for nonlinear electron
response to the high frequency daughter wave, to the leading order, is

v∥∂lδH
NL
h,e ≃ − c

B0
b · k0 × kG∗

(
δLG∗δHL

0 − δL0δH
L
G∗

)
,

which can be solved and yields

δHNL
h,e = −i c

B0

e

Te
F0k0,θkG

1

ω0
δψ0δϕG∗ . (6)

Nonlinear ion response to the high frequency daughter wave can be derived noting
the ωT ≫ k∥vt,i, ωd,i ordering, and is given as

δHNL
h,i = −i c

B0
kGk0,θ

e

Ti
F0

k∥,0v∥

ω0ωh
J0JGδϕ0δϕG∗ . (7)

Substituting equations (6) and (7) into quasi-neutrality condition, we then have

δψh = σhδϕh − i
c

B0

kGk0,θ
ω0

δϕG∗δϕ0. (8)

The nonlinear ion response δHNL
h,i is an odd function of v∥, and it has no contribution

to the quasi-neutrality condition to the leading order. Thus, equation (8) describes
the nonlinear electron correction to the ideal MHD condition of the high frequency
daughter wave, in addition to the linear kinetic corrections contained in σh.
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The nonlinear vorticity equation of the high frequency daughter wave then yields

c2

4πω2
B
∂

∂l

k2⊥
B

∂

∂l
δψh +

n0e
2

Ti
(1− Γh +∆h)δϕh

= i
c

B
kGk0,θ

n0e
2

Ti

Γ0 − ΓG

ωh
δϕ0δϕG∗ . (9)

In equation (9), ∆h is the integro-differential operator ∆T introduced above,
specialized to the high frequency daughter wave. Meanwhile, the SAW continuum up-
shift due to kinetic thermal ion compression is neglected, consistent with the β ≪ 1
ordering. Substituting equation (8) into (9), we then obtain

Ehδϕh = i
c

B
kGk0,θ

(
Γ0 − ΓG

ωh
−1− Γh

σhω0
σ0

)
δϕG∗δϕ0. (10)

Here, Eh is the wave operator of the high frequency daughter wave, and σh =
1+ τ − τΓh. Noting that ωh = ω0 −ωG, the nonlinear coupling coefficient of equation
(10) recovers that of equation (10) of Ref. 59 for KAW lower sideband generation by a
pump KAW beating with a finite frequency convective cell. More precisely, assuming
only the lower sideband generation, only the electro-static convective cell generation
should be considered, assuming |ωG| ≪ |ω0| in the small β limit.

The nonlinear radial envelope equation of the high frequency daughter wave, on
the other hand, can be derived by multiplying both sides of equation (10) by Φ∗

h, and
integrating over meso- radial scales. One obtains,

ÊhAh = i
c

B0
k0,θα̂hAG∗A0, (11)

with Êh being the eigenmode dispersion function of the high frequency daughter wave

Êh ≡
∫
dr|Φh|2Eh,

and

α̂h ≡
∫
dr|Φ0|2|Φh|2kG

(
Γ0 − ΓG

ωh
− 1− Γh

σhω0
σ0

)
.

Note that, equation (11) is valid for both low-βi and high-βi cases. In the low-βi
case, equation (11) recovers the TAE lower sideband nonlinear dispersion relation,
i.e., equation (14) of Ref. 28, including the effects of GAM fine radial structure [35],
which are neglected in Ref. 28; while, in the high-βi limit, equation (11) recovers the
LKTAE nonlinear dispersion relation, i.e., equation (4) of Ref. 41 ¶.

3.3. Nonlinear parametric dispersion relation

The nonlinear dispersion relation can be derived from equations (5) and (11) as

ÊhEG∗ = −
(
c

B0
k0,θ

)2
α̂Gα̂h

ωG
|A0|2. (12)

In the low-βi limit, by taking long wavelength k⊥ρi ≪ 1 expansion, the nonlinear
term on the right hand side of equation (12) recovers that of equation (17) of Ref.

¶ Note that, in Ref. 41, there is a typo in the definition of α̂L (Subscript “L” is used as in Ref. [41],
since the high frequency daughter wave is a lower kinetic TAE), where the second term in the bracket
should a negative rather than a positive sign (i.e., (Γ0 − ΓG)/ωL + (1 − ΓL)σ0/(σLω0)). The final
results are not changed by the sign mistake.
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Figure 1: TAE decay into GAM and TAE lower sideband in the low-βi limit.

28, where a pump TAE decaying into a GAM and a TAE lower sideband is discussed,
with the enhanced coupling due to fine radial scale structure of GAM. Meanwhile, in
the high-βi limit, the lower sideband is an LKTAE in the SAW continuous frequency
spectrum, and equation (12) recovers equation (5) of Ref. 41. Noting that, in both
low- and high-βi limits, the high frequency daughter wave can be considered as a
normal mode of the system, one can than expand EG and Êh along the characteristics
of GAM and Ωh. In the local limit, one can write:

EG∗ ≃ i∂ωG
EG,R(γ + γG)

≃ − 2ibG (γ + γG) /ωG,

Êh ≃ i∂ωh
Êh,R(γ + γh),

with γG ≡ EG,I/(∂ωGEG,R) being the collisionless damping rate of GAM [48, 49],
and γh ≡ Eh,I/(∂ωh

Eh,R) being the dissipation of the lower sideband. Here, the
subscripts “R” and “I” denote real and imaginary parts, respectively. The validity of
the frequency and wavenumber matching conditions used here to have simultaneously
EG(ωG, kr,h) = 0 and Êh,R(ω0 − ωG, kr,h) = 0, are discussed in Sec. 2.

The parametric dispersion relation can be written as

(γ + γG)(γ + γh) = −
(
c

B0
k0,θ

)2
α̂Gα̂h|A0|2

2bG∂ωh
Êh,R

, (13)

which yields the condition for the spontaneous excitation of the parametric decay
instability from γ = 0,

−
(
c

B0
k0,θ

)2
α̂Gα̂h|A0|2

2bG∂ωh
Êh,R

> γhγG. (14)

Equation (14) describes TAE spontaneous decay as the nonlinear drive overcomes
the dissipation due to GAM and high frequency daughter wave damping, and can be
solved for the spontaneous decay condition separately for the low- and high-βi cases.

3.3.1. Low-βi limit: TAE decay into GAM and TAE lower sideband We start from
the low-βi limit investigated in Ref. 28, where the pump TAE decays into a GAM and



10

a TAE lower sideband, as shown in Fig. 1. Denoting the TAE lower sideband with
subscript “S” and noting that the TAE lower sideband dispersion relation is given
as [27]

ÊS ≡
(
ω4
A

ϵ0ω2
ΛT (ω)D(ω, kG)

)
ω=ωS

, (15)

with D(ω, kG) = ΛT (ω)− δŴf (ω, kG), ΛT (ω) ≡
√
−Γ−Γ+, Γ± ≡ ω2/ω2

A± ϵ0ω2/ω2
A−

1/4 determining the lower and upper accumulational points of toroidicity induced
gap, ω2

A ≡ V 2
A/(q

2R2
0) and δŴf (ω, kG) playing the role of a normalized potential

energy [60].
Since both TAE and TAE lower sideband are TAEs with krρi ≪ 1, equation (14)

can be greatly simplified by taking σ0 = σS = 1, and thus,

α̂S ≃ − 2b0kG
ω0

,

α̂G ≃ 1

2
k3Gρ

2
i

(
1− ω2

A

4ω2
0

)
,

with the two terms on the right hand side of α̂G denoting the competition between
Reynolds and Maxwell stresses [23, 27]. Equation (13) recovers equation (20) of Ref.
28. Equation (14) thus, becomes,

γSγG <
( c
B
k0,θkG

)2 k20,⊥
k2S,⊥

ϵ0ω
3
0

ω4
AΛT (ω)

× |A0|2

∂D/∂ω0

(
1− ω2

A

4ω2
0

)
. (16)

We generally have ω0∂ω0D(ω0, kG) > 0 in the ideal MHD first stability region for ideal
ballooning modes [60] and, thus, for the spontaneous decay of TAE into GAM and
TAE lower sideband, one requires, first,

ω2
0 >

ω2
A

4
, (17)

i.e., the pump TAE lies within the upper half of the toroidicity induced SAW
continuum gap for the nonlinear drive on the right hand side of equation (16) to
be positive. Second, the nonlinear drive from pump TAE overcomes the threshold due
to GAM and TAE lower sideband damping, which yields the threshold condition in
terms of the pump TAE magnetic perturbation(

δBr

B0

)2

thr

≃ γSγG
ϵ0ω2

0

k2S,⊥
k20,⊥

1

4q2R2
0k

2
G

≃ 10−9 − 10−8. (18)

In deriving the above threshold condition, 1− ω2
A/(4ω

2
0) ∼ ϵ0 is assumed, while other

typical tokamak parameters are used, e.g., γS/ω0 ∼ γG/ωG ∼ 10−2, kGρi . 1, and
k∥ρi ∼ 10−3 [28].

3.3.2. High-βi limit: TAE decay into GAM and LKTAE In the high-βi limit, TAE
decay into a GAM and a propagating LKTAE in the SAW continuous frequency
spectrum, as shown in Fig. 2. In the following, we denote the LKTAE with
subscript “L”. For general parameter regimes, especially k⊥ρi ∼ 1 for LKTAE,
equation (14) is an integro-differential equation due to its complex dependence on the
mode structure and equilibrium geometry, and, thus, it requires numerical solution.
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Figure 2: TAE decay into GAM and LKTAE in the high-β limit.

However, analytical progress can be made by assuming bL ≪ 1. Noting that, for
|bk| ≪ 1, Γk(bk) ≃ 1− bk + 3b2k/4 and σk ≃ 1 + τ(bk + 3b2k/4), one then has

α̂G ≃ kG(bL − b0)

(
1− ω2

A

4ω0ωL

)
< 0,

α̂L ≃ kG
ωL

(
bG − b0 −

bL
1 + τbL

ω0 − ωG

ω0
(1 + τb0)

)
> 0.

Here, α̂L is positive can be verified noting that |kr,0| ∼ O(nq′/ϵ0), |kr,L| ≃
O((ϵ0ρ

2
i /(n

2q′2))−1/4) ≫ |kr,0|, and |kG| = |kr,0 + kr,L| ≃ |kr,L|. Furthermore, for

LKTAE with even mode structure, the eigenmode dispersion function ÊL, can be
written as [42,43]

ÊL ≡ πk2θρ
2
iω

2
A

22ξ̂+1Γ2(ξ̂ + 1/2)ω2
L

[
−2

√
2Γ(ξ̂ + 1/2)

α̂Γ(ξ̂)
− δŴf

]
,

with Γ(ξ̂) and Γ(ξ̂ + 1/2) being gamma-functions, ξ̂ ≡ 1/4 − Γ+Γ−/(4
√

Γ−ŝ2ρ̂2K),

α̂2 = 1/(2
√
Γ−ŝ2ρ̂2K) with ρ̂2K ≡ (k2θρ

2
i /2)[3/4 + Te/Ti(1 − iδe)] denoting the kinetic

effects associated with finite ion Larmor radii and electron parallel dynamics including
electron dissipation described by δe. One can estimate that ∂ωL ÊL,R > 0. Thus, the
right hand side of equation (13) is positive, i.e., pump TAE drives GAM and LKTAE
sidebands.

Noting that |kr,0| ∼ O(nq′/ϵ0), |kr,L| ≃ O((ϵ0ρ
2
i /(n

2q′2))−1/4) ≫ |kr,0|, GAM
wave number |kG| = |kr,0 + kr,L| ≃ |kr,L| from matching condition, and that
|δBr| ≃ |kθδA∥| ≃ |ck∥kθδϕ/ω|, the threshold condition for the nonlinear process
in the |bL| ≪ 1 limit can be estimated as:(

δBr

B0

)2

∼ γLγG
ω2
0

k2∥,0

k2L

4

ϵ0
∼ O(10−9). (19)

In estimating the threshold condition, typical tokamak plasma parameters are used.
The nonlinear cross-section of the analyzed processes are comparable with or greater
than other wave-wave coupling channels for TAE saturation in the short wavelength



12

(krkθρ
2
i > ω/Ωci ) kinetic regime [61], e.g., zero frequency zonal structure generation

[27] and ion induced scattering [62]. Thus, the processes discussed in the present
work are relevant and competitive for TAE nonlinear dynamics, where, for a realistic
description, all the various processes must be accounted for on the same footing, as it
is argued below.

3.4. Relevant tokamak plasma parameter regimes

Several processes with comparable scattering cross-section may contribute equally
to the nonlinear saturation of TAE. As a result, the nonlinear dynamics of TAE can
depend quite sensitively on the tokamak plasma parameter regimes and corresponding
threshold conditions. Thus, the parameter regimes for each process to occur and
possibly dominate must be well understood. For the processes discussed in this paper
to take place, several conditions are required as addressed below.

First, for resonant decay, both GAM and TAE/LKTAE should be weakly damped
normal modes of the system. For GAM dominated by thermal ion transit resonance,
weak ion Landau damping requires that GAM frequency be larger than thermal ion
transit frequency, ωG > ωtr,i, which yields q

√
7/4 + τ > 1, that is a usually satisfied

condition. Meanwhile, for the TAE/LKTAE to be weakly damped by thermal ion
Landau damping, e.g., by ion sideband resonance with v∥,res = VA/3, for which the
TAE/LKTAE damping rate is γT /ωT ∝ exp(−v2∥,res/v

2
t,i) = exp(−1/(9βi)) [63], one

reasonable upper-bound for βi (e.g., γT /ωT . 10−2) can thus be βi < 3%.
Second, for mode-mode coupling processes in the short wavelength kinetic regime

to occur and dominate other mode-mode couplings in the MHD limit [22], the
condition krkθρ

2
i > ω/Ωci is required. For TAE excited by circulating EPs, one

typically has kθρiq
√
TE/Ti ≃ 1; i.e., the poloidal wavelength is comparable to the

circulating EP magnetic drift orbit width. On the other hand, for the short length
scales that provide the dominant contribution of Reynolds and Maxwell stresses, one
has kr ≃ kθ/ϵ. Thus, kinetic regime corresponds to (Ti/TE)/(q

2ϵ) ≫ ω0/Ωci, which is
the case for typical burning plasma parameters.

Third, for the pump TAE to decay into a GAM and an LKTAE, as we discussed
in Sec. 3.3.2, the GAM frequency must be larger than the difference between pump
TAE frequency and lower accumulation point frequency of toroidicity induced SAW
continuous spectrum frequency gap, which we denote as ωl. Thus, ωG > ω0 − ωℓ ∼
λϵωA, which gives βi > [λϵ/(2q)]2 with λ expressing the fraction of ω0 −ωℓ in units of
the frequency gap width. Note that TAEs are typically localized within the lower half
of the toroidicity induced SAW continuum frequency gap, and we have 0 < λ < 1/2.
This criterion, thus, sets the lower bound of βi for this process to occur. In the
opposite limit, with βi < [λϵ/(2q)]2, i.e., ωG < ω0 − ωℓ, the lower sideband is then a
TAE lower sideband within the toroidicity induced SAW continuum frequency gap, as
we discussed in Sec. 3.3.1. +

In summary, the parameter regime for this process to occur and possibly dominate
is, 1. q

√
7/4 + τ > 1, 2. (Ti/TE)/(q

2ϵ) ≫ ω0/Ωci and 3. [λϵ/(2q)]2 < βi < 3% for
TAE to decay into a GAM and an LKTAE, or βi < min[3%, [λϵ/(2q)]2] for TAE to
decay into a GAM and a TAE lower sideband. These conditions also suggest the
proper setup of plasma parameters to verify this process in numerical simulations or
experimental conditions.

+ Note that, in Ref. 62, a similar analysis on βi is presented, for the optimal condition for ion-induced
scattering to occur.
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4. Consequences on plasma heating

The physics processes discussed above, provide a new channel for transferring fusion
alpha particle power to thermal plasmas. To be more specific, considering that
TAE pump is resonantly excited by EPs, the ion Landau damping of the nonlinearly
driven GAM, will nonlinearly transfer fusion alpha power to thermal ions, providing
a novel “alpha-channeling” mechanism [4, 5]. On the other hand, the trapped
electron collisional (or Landau) damping of the high frequency daughter wave, leads
to thermal electron heating, i.e., the fusion alpha particle anomalous slowing down.
To quantitatively estimate the thermal plasma heating rate, the nonlinear saturation
level of GAM and the high frequency daughter wave are needed, which can be derived
from equations (5) and (11), with an additional equation for the feedbacks of the two
daughter waves to the pump TAE. This aspect is neglected in Sec. 3 focusing on the
exponential growth stage of the parametric decay process. The pump TAE equation
can be derived closely following equation (11):

Ê0A0 = −i(c/B0)k0,θα̂0AGAh, (20)

with

Ê0 ≡
∫
dr|Φ0|2E0

being the eigenmode dispersion function of pump TAE, and

α̂0 ≡
∫
dr|Φ0|2|Φh|2kG

[
Γh − ΓG

ω0
− (1− Γ0)σh

σ0ω0

]
.

In the local limit, the three-wave nonlinear envelope equations can then be derived
by expanding equations (5), (11) and (20) along their respective characteristics, and
be cast as

(∂t − γ0)A0 = − c

B0∂ω0 Ê0,R

k0,θα̂0AGAh, (21)

(∂t + γG∗)AG = − c

2B0bG
k0,θα̂GA0∗Ah, (22)

(∂t + γh)Ah =
c

B0∂ωh
Êh,R

k0,θα̂hAG∗A0. (23)

Here, γ0 is the linear growth rate of pump TAE due to, e.g., resonant EP drive.
Equations (22) and (23) are used in Sec. 3 for deriving the parametric dispersion
relation, equation (13), letting ∂t = γ. The pump TAE dynamic equation (21), with
an interesting one-to-one correspondence to equation (23), has a negative sign on the
right hand side unlike equation (23), showing energy conservation in the three-wave
coupling system.

The saturation levels of high frequency daughter wave and GAM can be estimated
from the fixed point solution of the above coupled equations. Note that this does not
mean that the coupled three equations will necessarily exhibit fixed point solutions. In
fact, the nonlinear evolution of the driven-dissipative system, may be characterized by
rich dynamics such as limit-cycle oscillations, period-doubling and route to chaos [64].
By taking ∂t = 0, the high frequency daughter wave and GAM saturation level can
be derived from the fixed point solutions as

|Ah|2 = − 2γ0γGbG∂ω0 Ê0,R/((c/B0)
2k20,θα̂0α̂G),

|AG|2 = γ0γh∂ωh
Êh,R∂ω0 Ê0,R/((c/B0)

2k20,θα̂0α̂h).
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The corresponding thermal ion and thermal electron heating rate can be derived,
and yield

Pi =
1

α̂h

n0e
2

Ti

γ0γGγhbG∂ωh
Êh,R∂ω0 Ê0,R

4π(c/B0)2k20,θα̂0
, (24)

Pe =
ωh

α̂G

n0e
2

Ti

γ0γGγhbG∂ωh
Êh,R∂ω0 Ê0,R

4π(c/B0)2k20,θα̂0
. (25)

One can then roughly estimate, the fuel ions heating rate is, thus, of O(ϵ0) weaker
than that of electrons.

5. Conclusions and Discussions

In conclusion, TAE decaying into a GAM and a high frequency daughter wave with the
same poloidal/toroidal mode number of the pump TAE, is investigated as a potential
mechanism for the nonlinear saturation of TAE. This channel is possible when both
GAM and TAE/LKTAE are weakly damped due to ion Landau damping. Another
key parameter in determining the TAE nonlinear evolution is 4q2βi/ϵ

2
0, determining

the high frequency daughter wave to be a TAE sideband within the toroidicity induced
SAW continuum frequency gap [28], or an LKTAE in the SAW continuous frequency
spectrum [41]. For the TAE decay processes in the kinetic regime to dominate over
mechanism in the MHD limit, krkθρ

2
i ≫ ω/Ωci is also required, which is the typical

parameter for burning plasmas.
The nonlinear dispersion relation for the decay instability is derived, which is

valid for arbitrary wavelength. The conditions for the decay instability to take place,
and the threshold condition on pump TAE amplitude to overcome GAM and the
high frequency daughter wave damping, are derived for the low- and high-βi limits,
respectively. It is found that, in the low-βi limit [28], the spontaneous decay requires
the pump TAE to lie within the upper half of the toroidicity induced SAW continuous
frequency spectrum gap. While in the high-βi limit, the condition for spontaneous
decay is complicated due to the non-trivial contribution of mode structure and
toroidicity. A rough estimation is made in the long wavelength limit, and we found
that, this proposed channel is indeed relevant and competitive in burning plasma
relevant parameter regime. As a final remark, as the finite frequency ZS, GAM may
interact with other turbulences in the plasma, e.g., drift wave turbulence, and leads
to cross-scale couplings and possibly, improved confinement. This is also open for
investigation [65].
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