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Abstract
Nonlinear wave-wave coupling constitutes an important route for the
turbulence spectrum evolution in both space and laboratory plasmas.
For example, in a reactor relevant fusion plasma, a rich spectrum of
symmetry breaking shear Alfvén wave (SAW) instabilities are expected
to be excited by energetic fusion alpha particles, and self-consistently
determine the anomalous alpha particle transport rate by the saturated
electromagnetic perturbations. In this work, we will show that the non-
linear gyrokinetic theory is a necessary and powerful tool in qualitatively
and quantitatively investigating the nonlinear wave-wave coupling pro-
cesses. More specifically, one needs to employ the gyrokinetic approach
in order to account for the breaking of the “pure Alfvénic state” in the
short wavelength kinetic regime, due to the short wavelength structures
associated with nonuniformity intrinsic to magnetically confined plas-
mas.

Using well-known toroidal Alfvén eigenmode (TAE) as a paradigm case,
three nonlinear wave-wave coupling channels expected to significantly
influence the TAE nonlinear dynamics are investigated to demonstrate
the strength and necessity of nonlinear gyrokinetic theory in predict-
ing crucial processes in a future reactor burning plasma. These are: 1.
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the nonlinear excitation of meso-scale zonal field structures via mod-
ulational instability and TAE scattering into short-wavelength stable
domain; 2. the TAE frequency cascading due to nonlinear ion induced
scattering and the resulting saturated TAE spectrum; and 3. the cross-
scale coupling of TAE with micro-scale ambient drift wave turbulence
and its effect on TAE regulation and anomalous electron heating.

Keywords: Gyrokinetic theory, burning plasma, shear Alfvén wave, energetic
particles

1 Introduction
Shear Alfvén waves (SAWs) [1] are fundamental electromagnetic fluctuations
in magnetised plasmas, and are ubiquitous in space and laboratories. SAWs
exist due to the balance of restoring force due to magnetic field line bending
and plasma inertia, and are characterized by transverse magnetic perturba-
tions propagating along equilibrium magnetic field lines, with the parallel
wavelength comparable to system size, while perpendicular wavelength varying
from system size to ion Larmor radius. Due to their incompressible character,
SAWs can be driven unstable with a lower threshold, in comparison to that
of compressional Alfvén waves or ion acoustic waves. In magnetically confined
fusion reactors such as ITER [2] and CFETR [3], with their phase/group veloc-
ity comparable to the thermal velocity of super-thermal fusion alpha particles,
SAW instabilities could be strongly excited by fusion alpha particles as well
as energetic particles (EPs) from auxiliary heating. The enhanced symmetry-
breaking SAW fluctuations could lead to transport loss of EPs across magnetic
field surfaces; raising an important challenge to the good EP confinement
required for sustained burning [4, 5].

In magnetic confined fusion devices, due to the nonuniformities associ-
ated with equilibrium magnetic geometry and plasma profile, SAW frequency
varies continuously across the magnetic surfaces and form a continuous spec-
trum [6], on which SAWs suffer continuum damping by mode conversion to
small scale structures Landau damped, predominantly, by electrons [7–9]. As
a result, SAW instabilities can be excited as various kinds of EP continuum
modes (EPMs) as the EP resonant drive overcomes continuum damping [10],
or discretised Alfvén eigenmodes (AEs) inside continuum gaps to minimise
the continuum damping, among which, the famous toroidal Alfvén eigenmode
(TAE) [11–14] is a celebrated example. For a thorough understanding of the
SAW instability spectrum in reactors, interested readers may refer to Refs.
[4, 5, 15–17] for comprehensive reviews.

The SAW instability induced EP anomalous transport/acceleration/heat-
ing rate, depends on the SAW instability amplitude and spectrum via
wave-particle resonance conditions [18, 19], which are, determined by the non-
linear saturation mechanisms. The first channel for SAW instability nonlinear
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saturation is the nonlinear wave-particle interactions, i.e., the acceleration/de-
celeration of EPs by SAW instability induced EP “equilibrium” distribution
function evolution and the consequent self-consistent SAW spectrum evolu-
tion, among which there are well-known and broadly used model introduced
by Berk et al [20–22] from the analogous to the wave-particle trapping in
one-dimensional beam-plasma instability system [23]. More recently, Zonca et
al systematically developed the non-adiabatic wave-particle interaction the-
ory, based on nonlinear evolution of phase space zonal structures (PSZS)
[5, 24–27], i.e., the phase space structures that are un-damped by collisionless
processes. The PSZS approach, by definition of the “renormalised” nonlinear
equilibria typically varying in the mesoscale in the existence of microscopic
turbulences, self-consistently describes the EP phase space non-adiabatic evo-
lution and nonlinear evolution of turbulence due to varying EP “equilibrium”
distribution function, very often in the form of non-adiabatic frequency chirp-
ing, and is described by a closed Dyson-Schrödinger model. Both mechanisms
are tested and broadly used in interpretation of experimental results as well
as large scale numerical simulations, e.g., [28–30]. The other channel for SAW
nonlinearity, relatively less explored in large-scale simulations, is the nonlinear
wave-wave coupling mechanism, describing SAW instability spectrum evolu-
tion due to interaction with other electromagnetic oscillations, and is the focus
of the present brief review, using TAE as a paradigm case. These approach
developed for TAE and the obtained results, are general, and can be applied
to other SAW instabilities based on the knowledge of their linear properties.

The nonlinear wave-wave coupling process, as an important route for SAW
instability nonlinear dynamic evolution and saturation, is expected to be even
more important in burning plasmas of future reactors; where, different from
present-day existing magnetically confined devices, the EP power density can
be comparable with that of bulk thermal plasmas, and the EP characteristic
orbit size is much smaller than the system size. As a consequence, there is a
rich spectrum of SAW instabilities in future reactors [4, 5, 31, 32], with most
unstable modes being characterized by n & O(10) for maximized wave-particle
resonances, with n being the toroidal mode number. That is, multi-n modes
with comparable linear growth rates could be excited simultaneously. These
SAW instabilities are, thus, expected to interact with each other, leading to
complex spectrum evolution that eventually affects the EP transport. It is
noteworthy that, the nonlinear wave-particle interaction described by Dyson
Schrödinger model and nonlinear wave-wave coupling described by general-
ized nonlinear Schrödinger equation, are two pillars for the unified theoretical
framework for self-consistent SAW nonlinear evolution and EP transport, as
summarized in Ref. [24], and is being actively developed by the Center for
Nonlinear Plasma Physics (CNPS) collaboration 1.

Due to the typically short scale structures associated with continuum
coupling, the nonlinear coupling of SAW instabilities, are dominated by the

1For more information and activities of CNPS, one may refer to the CNPS homepage at
https://www.afs.enea.it/zonca/CNPS/
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perpendicular nonlinear scattering via Reynolds and Maxwell stresses, instead
of the polarization nonlinearity [8, 33, 34]. Thus, the kinetic treatment is
needed, to capture the essential ingredients of SAW nonlinear wave-wave cou-
pling dominated by small structures naturally occur due to SAW continuum,
and some other crucial physics not included in magnetohydrodynamic (MHD)
theory, e.g., the wave-particle interaction crucial for ion induced scattering of
TAEs [35, 36], and trapped particle effects in the low frequency range that
may lead to neoclassical inertial enhancement crucial for zonal field structure
(ZFS) generation [37–39]. These crucial physics ingredients are not included
in the MHD description, and kinetic treatment is mandatory to both quan-
titatively and qualitatively study the nonlinear wave-wave coupling processes
of SAWs. These features can be fully and conveniently covered by nonlinear
gyrokinetic theory [40] derived by systematic removal of fast gyro motions
with Ωc � ωA, and yield quantitatively, using TAE as a paradigm case, the
nonlinear saturation level and corresponding EP transport and/or heating.
The general knowledge obtained here, as noted in the context of this review,
can be straightforwardly applied to other kinds of SAW instabilities, with the
knowledge of their linear properties.

The rest of the paper is organized as follows. In Sec. 2, the general back-
ground knowledge of nonlinear wave-wave coupling of SAW instabilities in
toroidal are introduced, where SAW instabilities in toroidal plasmas and non-
linear wave-wave coupling are briefly reviewed. The kinetic theories of TAE
saturation via nonlinear wave-wave coupling are reviewed in Sec. 3, where
three channels for TAE nonlinear dynamic evolution are introduced. Finally,
a brief summary is given in Sec. 4.

2 Theoretical framework of nonlinear mode
coupling and SAWs in toroidal plasmas

In this section, the fundamental knowledge needed for SAW nonlinear mode
coupling is introduced, including the linear SAW dispersion relation, pure
Alfvénic state, perpendicular nonlinear coupling, and nonlinear gyrokinetic
theoretical framework. For the accessibility of general readers, these materials
are introduced in a pedagogical way. Readers interested in more technical
details may refer to references given.

2.1 Nonlinear wave-wave coupling
The nonlinear wave-wave coupling corresponds to wave spectrum evolution
due to interaction with other collective oscillations, and is an important pillar
of nonlinear plasma physics [34]. For SAW instability, there is an important
property that, in uniform plasmas and ideal MHD limit, the Reynolds and
Maxwell stresses, will exactly cancel each other. Thus, SAWs can grow to
large amplitudes without being distorted by nonlinear effects. This is called
“pure Alfvénic state”, and will be addressed briefly below. As a result, for the
nonlinear mode couplings of SAWs, the pure Alfvénic state shall be broken by,



Springer Nature 2021 LATEX template

5

e.g., system nonuniformity and/or kinetic compression, as addressed in Ref.
[41].

The momentum equation for the incompressible SAW nonlinear evolution
in the low β plasma, keeping up to quadratic terms, can be written as

ρ0(∂t + δv · ∇)δv = δJ×B0/c+ δJ× δB/c, (1)

with ρ being the mass density, v the fluid velocity, J the current density, B the
magnetic field, and δ indicating perturbed quantities. Equation (1), together
with the Ampere’s law

∇× δB = 4πδJ/c (2)

and the Faraday’s law with ideal MHD condition embedded,

∂tδB = ∇× (δv ×B0), (3)

yield, in the linear limit,

δv

VA
= ±δB

B0
, (4)

which corresponding to the famous Walen relation [42]. In deriving equation
(4), the linear SAW dispersion relation, derived from linearised equations (1)
and (3), ω2 = k2‖V

2
A is used, with VA ≡

√
B2

0/(4πρ0) being the Alfvén velocity.
Equation (1), in the nonlinear limit, can be re-written as

ρ0∂tδv
(2) = −∇|δB|2/(8π)− MX − RS, (5)

with MX ' −δB⊥ · ∇δB⊥/(4π) and RS ≡ ρ0δv⊥ · ∇δv⊥ being, respectively,
the Maxwell and Reynolds stresses, and the first term on the right hand side
corresponding to the parallel ponderomotive force [34], which is typically much
smaller than RS and MX due to the typical k‖ � k⊥ ordering. It can be seen
clearly that, in the present model of ideal MHD, uniform plasma limit, RS
and MX will cancel each other, so SAW can grow to large amplitude without
being distorted by nonlinear processes. Thus, to understand the nonlinear
evolution of SAW instabilities as this pure Alfvénic state is broken, higher
order nonlinearities that occur on longer time scales should be introduced, or
the ideal MHD conditions assumed should be removed. As we shall show in
the following applications using TAE as an example, plasma nonuniformity,
plasma compressibility may play crucial roles in the corresponding parameter
regimes. For a thorough discussion of pure Alfvénic state and SAW/KAW
nonlinear dynamics as it is broken by various effects, interested readers may
refer to Ref. [41] for more details. As a consequence, to account for these effects,
kinetic theory is needed; and for SAWs as well as drift waves (DWs) involved
in the analysis with frequencies much lower than ion cyclotron frequency,
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nonlinear gyrokinetic theory is shown to be extremely powerful in studying
the nonlinear wave-wave interaction physics, and is introduced in the Sec. 2.2.

2.2 Nonlinear gyrokinetic theoretical framework
Nonlinear gyrokinetic equation is derived by systematically removal of the
fast gyro-motion of particles, noting the conservation of magnetic moment
µ ≡ mv2⊥/(2B) in the low frequency regime with ω � Ωc, and it is a powerful
tool in theoretical/numerical studies of low frequency fluctuations of interest
in magetically confined plasmas [40, 43]. In gyrokinetic theory, the fluctu-
ating particle response can be separated into adiabatic and non-adiabatic
components,

δfj = −
( q
T

)
j
F0jδφk + exp(−ρ · ∇)δHj , (6)

with the non-adiabatic particle response derived from nonlinear gyrokinetic
equation [40] (

∂t + v‖b · ∇+ vd · ∇
)
δHk

= i
q

m
(ω∂E − ω∗)F0JkδLk −

∑
k=k′+k′′

Λk′

k′′Jk′δLk′δHk′′ . (7)

Here, vd = b × [(v2⊥/2)∇ lnB0 + v2‖b · ∇b] is the magnetic drift, ω∗ ≡
k · b ×∇ lnF0/Ωc is the diamagnetic drift frequency associated with plasma
nonuniformities, η = Ln/LT with Ln and LT being respectively the character-
istic scale length of density and temperature nonuniformities, Jk ≡ J0(k⊥ρ) is
the Bessel function of zero-index accounting for finite Larmor radius effects,
δLk ≡ δφ− v‖δA‖/c, and Λk′

k′′ ≡ (c/B0)b ·k′′×k′ for perpendicular scattering
with the constraint on wavenumber matching condition given by k = k′ +k′′.
In the rest of the paper, δψk = ωδA‖k/(ck‖) is introduced for conveniently
treating the induced field, and ideal MHD condition (δE‖ = 0) can be recov-
ered by straightforwardly taking δψk = δφk. In the present work focusing on
the nonlinear evolution of TAE with prescribed amplitude due to nonlinear
mode coupling, with dominant role played by thermal plasma contribution to
RS and MX 2, in the rest of the manuscript, Maxwellian distribution function
is adopted for thermal plasmas, and one has ∂EFM = −(m/T )FM .

The governing equations are derived from quasi-neutrality condition

n0e
2

Ti

(
1 +

Te
Ti

)
δφk =

∑
j

〈qJkδHk〉 , (8)

2We note that, EP can contribute significantly to ZFS generation by TAE as TAEs are exponen-
tially growing due to wave-particle resonance, and lead to the “forced driven” excitation of ZFS
by TAE [44, 45]. We, however, will not discuss this case in the present review aiming at giving a
fundamental picture of TAE nonlinear dynamics via nonlinear mode coupling.
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and, with magnetic compression being negligible in the low-β limit of interest
here, the nonlinear gyrokinetic vorticity equation [19, 46]

c2

4πω2
B
∂

∂l

k2⊥
B

∂

∂l
δψk +

e2

Ti

(
1− ω∗

ω

)
k

〈(
1− J2

k

)
F0

〉
δφk −

∑
j

〈
qJ0

ωd

ω
δH
〉
k

= − i

ωk

∑
k=k′+k′′

Λk′

k′′

[
〈e(JkJk′ − Jk′′)δLk′δHk′′〉+ c2

4π
k′′2⊥

∂lδψk′∂lδψk′′

ωk′ωk′′

]
. (9)

Nonlinear gyrokinetic vorticity equation is derived from parallel Ampere’s
law, quasi-neutrality condition and nonlinear gyrokinetic equation, and it,
together with quasi-neutrality condition, equation (8), form a closed set of
equations describing the dynamics of low frequency fluctuations in low β plas-
mas. Note that, for the application in the present review, in equation (9), only
effects associated with plasma density nonuniformity are accounted for, while
effects associated with temperature gradients are neglected systematically, i.e.,
η ≡ Ln/LT = 0. The terms on the left hand side of Eq. (9) are, respectively,
the field line bending, inertia and curvature-pressure coupling terms, showing
clearly the convenience of vorticity equation in studying SAW related physics,
which exist due to balancing of field bending and inertia terms. The terms
on the right hand side, on the other hand, are the formally nonlinear gener-
alized gyrokinetic RS and MX, dominated, respectively, by ion and electron
contributions.

In this brief review focusing on the TAE physics due to nonlinear wave-
wave interactions, TAE with prescribed amplitude are assumed, while EPs
contribution is typically small. Thus, we include only the thermal plasma con-
tribution in the above governing equations. The EPs, crucial for the TAE
excitation, can also be important in ZFS generation as the TAE is still expo-
nentially growing due to resonant EP drive. This interesting topic of nonlinear
ZFS forced driven process through the nonlinear EP response to ZFS will not
be the focus of the present review and only be briefly discussed in Sec. 3.1.

Note that, for TAE of interest of the present review, with frequency typ-
ically much larger than thermal plasma diamagnetic frequency, the system
nonuniformity associated with ω∗ are typically weak and are systematically
neglected in the majority of present review on TAE nonlinear physics. It is
used, however, in Sec. 3.3 on TAE scattering by DWs, where ω∗ is crucial for
the high-n DW physics, as well as enhancement of nonlinear scattering due to
|ω∗| � |vi/(qR0)| ordering.

2.3 SAW instabilities in toroidal plasmas
In this section, the SAW dispersion relation in the WKB limit will be derived,
which are then used to symbolically demonstrate the formation of SAW con-
tinuum structure and the existence of discrete Alfvén eigenmode, using the
well-known TAE as an example. The obtained linear particle responses, can
be used in the following analysis of TAE nonlinear dynamics via nonlinear
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wave-wave coupling processes. For the convenience of following analysis on
nonlinear wave-wave couplings, the particle responses to SAW, are derived in
real space, and the obtained mode equation, will be solved by transforming
into ballooning space. Note that for TAE of interest here, |ω∗/ω| � 1 is satis-
fied for most unstable TAEs with perpendicular wavelength being comparable
to EP drift orbit width, the thermal plasma ω∗ effects on SAW dispersion
relation is expected to be small. In the majority of the paper, the ω∗ effects
on TAE/KAW dispersion relation is systematically neglected. However, in our
derivation of linear thermal plasma response to SAW, ω∗ correction is kept,
which will be used in Sec. 3.3 where ω∗ effects on KAW can be non-negligible
due to its relatively high toroidal mode number due to high-n DW scattering.

The linear electron response to SAW, can be derived noting the |ω/k‖ve| �
1 ordering, and one obtains

δH
(0)
ke ' − e

Te
F0

(
1− ω∗e

ω

)
k
δψk. (10)

While for ion response, assuming unity charge for simplicity, and noting the
ω � k‖vi � ωd ordering, one has, to the leading order,

δH
(0)
ki ' e

Ti
F0Jk

(
1− ω∗i

ω

)
k
δφ

(0)
k . (11)

Substituting into quasi-neutrality condition, one obtains,

δψ
(0)
k = σ∗kδφ

(0)
k , (12)

with

σ∗k =
1 + τ − τΓk(1− ω∗i/ω)k

(1− ω∗e/ω)k
, (13)

Γk = I0(bk) exp(−bk) and I0 being the modified Bessel function. Noting
|k⊥ρi| � 1 and |ω∗i/ω| � 1 for most unstable TAEs, one has σ∗k ' 1, i.e.,
ideal MHD condition is satisfied in the lowest order. To the next order, one has

δH
(1)
ki ' e

Ti
F0Jk

(
δφ

(1)
k +

ωdi

ω
δφ

(0)
k

)
, (14)

with δφ
(1)
k being derived from quasi-neutrality condition, and contributing to

SAW continuum upshift. The particle response can be substituted into linear
gyrokinetic vorticity equation, and yields,

τbkεAkδφ
(0)
k = 0, (15)
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with the SAW operator in the WKB limit given by

εAk ≡ −
(
V 2
A

b

k‖bk‖

ω2

)
k

σ∗k +
1− Γk

bk

(
1− ω∗i

ω

)
k

+
〈
qJk

ωd

ω
δH

(1)
ki

〉/(n0e2
Ti

bkδφ
(0)
k

)
. (16)

The terms of εAk correspond to field line bending, inertia and curvature cou-
pling terms where ballooning-interchange terms are included, and resonant
excitation by EPs can be straightforwardly accounted for by substituting the
corresponding EP response into the curvature coupling term. Noting that
bk ≡ −∂2⊥ and k‖ should be strictly understood as operators, and are not com-
mutative. The SAW instability eigenmode dispersion relation in torus, can be
derived by transforming Eq. (15) into ballooning space, and noting the two
scale structure of SAW instabilities due to plasma nonuniformity. Here, for
simplicity of discussion while relevance to the present work, we focus on modes
in the TAE frequency range, and thus, from now on, the curvature coupling
term that contributes to SAW continuum upshift and BAE generation, are
neglected. The |ω∗i/ω| correction are also systematically neglected here. The
perturbed scalar potential δφk can be decomposed as

δφk = Ake
−inξ−iωt+im0θ

∑
j

eijθΦj(nq −m0), (17)

with Ak being the radial envelope, m0 being the reference poloidal mode num-
ber, m = m0 + j, and Φj being the fine radial scale structure associated with
k‖. Defining z = nq −m = k‖qR0, η being the Fourier conjugate of z, and

Φ(z) =

∫
φ(η)e−iηzdη, (18)

the SAW eigenmode equation, equation (15), can be reduced to[
∂2

∂η2
+Ω2

A (1 + 2ε0 cos η)−
ŝ2

(1 + ŝ2η2)2

]
Φ̂ = 0, (19)

with Φ̂ ≡ φ(η)/
√

1 + ŝ2η2, ŝ ≡ rq′/q being the magnetic shear, Ω2
A =

ω2q2R2
0/V

2
A, and ε0 = (r/R0 + ∆′) with ∆′ being Shafranov shift. Equation

(19) has a clear two-scale character, and can be solved by asymptotic matching
of two scale structures. For inertial layer contribution with |ŝη| � 1, equation
(19) reduces to [

∂2

∂η2
+Ω2

A (1 + 2ε0 cos η)

]
Φ̂E = 0, (20)
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i.e., Mathieu’s equation describing mode propagating in periodic systems,
which can be solved noting its two scale character,

Φ̂E = A(η) cos(η/2) +B(η) sin(η/2), (21)

with A(η) and B(η) being slowly varying with respect to cos(η/2). One then
has

−B′(η) =
(
Ω2 − 1/4 + ε0Ω

2
)
A ≡ ΓlA, (22)

A′(η) =
(
Ω2 − 1/4− ε0Ω

2
)
B ≡ ΓuB, (23)

with Γl ≡ Ω2 − 1/4 + ε0Ω
2 and Γu ≡ Ω2 − 1/4 − ε0Ω

2determining the lower
and upper accummulational points of toroidicity induced SAW continuum gap
[11], which then yields,

Φ̂E(η) = a
(√

−Γu cos
η

2
±
√

Γl sin
η

2

)
e∓

√
−ΓlΓuη. (24)

The “±” sign should be chosen in the way such that e∓
√
−ΓlΓuη decay as |η| →

∞. Noting equation (21) and that η is the Fourier conjugate of z = k‖qR0, the
cos(η/2)/sin(η/2)-dependence of Φ̂E corresponds to mode localization at |nq−
m| = 1/2, i.e., the two neighbouring poloidal harmonics couple in the middle
of two adjacent mode rational surfaces as their respective dispersion relation
degenerate, forming the well-known “rabbit-ear” like mode structure. This
feature is important for the nonlinear mode coupling processes investigated
in Sec. 3, due to the dominant contribution from the radially fast varying
inertial layer. The SAW continuum with corrections due to toroidicity, can be
obtained from

k‖qR0 =
√

−ΓlΓu, (25)

which then yields the toroidicity induced SAW continuum gap formation,
inside which the discrete TAE can be excited with minimized continuum
damping. A sketched continuum is shown in Fig. 1. The corresponding dis-
crete Alfvén eigenmode, i.e., TAE, can then be excited by, e.g., EPs, inside
this toroidicity induced continuum gap, with minimized requirement on EP
drive due to the minimized continuum damping [12, 13]. The TAE excitation
mechanism, however, is beyond the scope of the present review, focusing on
the nonlinear evolution of TAE with prescribed amplitude due to nonlinear
wave-wave coupling, and will not be addressed here.

3 TAE saturation via nonlinear wave-wave
coupling

Nonlinear mode coupling describes the TAE distortion due to interaction
with other oscillations, and is expected to play crucial role in TAE nonlinear
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TAE

Fig. 1 Toroidicity induced SAW continuum gap. The horizontal axis is radial position with
rm denoting the q = m/n rational surface, and vertical axis corresponds to ω2. The dashed
and solid curves correspond to the SAW continuum in the cylindrical and toroidal limits,
respectively; and ωU and ωL denote the upper and lower accumulational points of toroidicity
induced continuum gap.

saturation in future reactors with system size being much larger than charac-
teristic orbit size of EPs, and, thus, SAW instabilities with a broad spectrum
in toroidal mode numbers can be simultaneously excited by EPs. To illus-
trate the richness of nonlinear mode couplings of TAE and the powerfulness of
gyrokinetic theory in the investigation, three examples are presented, i.e., the
nonlinear excitation of n = 0 zonal field structure (ZFS) by TAE [39], which
corresponds to single-n TAE nonlinear envelope regulation via modulational
instability; nonlinear spectral evolution of TAE via ion induced scattering
[35, 36], which is expected to play crucial role in determining the multiple-n
TAE saturated spectrum and thus EP transport; and cross-scale scattering and
damping of meso-scale TAE by micro-scale DW [47], as motivated by recent
experiments as well as simulations showing improved thermal plasma confine-
ment in the presence of significant amount of EPs [48–50]. All three presented
channels are shown to significantly influence the TAE nonlinear dynamics from
different aspects, and their relative importance and implications on TAE satu-
ration in burning plasma parameter regimes are discussed. As many notations
are involved, in the following subsections on three difference nonlinear chan-
nels, the notations of “pump”, “sideband” and the corresponding nonlinear
coupling coefficients used, are defined only in the corresponding subsection.

3.1 ZFS generation by TAE
Zonal field structures correspond to toroidally and poloidally symmetric per-
turbations with n = 0, and are thus, linearly stable to expansion free energy
associated with plasma profile nonuniformities. ZFS can be nonlinearly excited
by DW turbulence including drift Alfvén waves (DAWs), and in this process,
self-consistently scatter DW/DAW into linearly stable short radial wavelength
domain, leading to turbulence regulation and confinement improvement. ZFS
excitation was extensively studied in the DWs dynamics [38, 51–53], observed
in simulations with TAEs [44, 54], and the theory was originally generalized
to the nonlinear physics of TAE [39]. The nonlinear excitation process can be
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Fig. 2 Frequency and wavenumber matching condition for ZFS generation by TAE. Here,
the horizontal axis is the radial envelope wavenumber kr, and vertical axis is the frequency.
The solid curve is the TAE dispersion relation, and ∆T is the frequency mismatch.

described by the four-wave modulational instability, where upper/lower TAE
sidebands due to ZFS modulation are generated, and the nonlinear dispersion
relation for ZFS generation can be obtained by the coupled ZFS and TAE side-
bands equations. It is noteworthy that, both electrostatic zonal flow (ZF) and
electromagnetic zonal magnetic field (zonal current, ZC) should be accounted
for on the same footing for the proper understanding of the ZFS generation
process [39, 55].

For the clarity of presentation, we focus on the modulational instability
of TAE originally investigated in Ref. [39]. The further extensions, including
the enhanced nonlinear coupling due to existence of “fine-radial-scale” struc-
ture ZFS [56], and effects of resonant EPs in rendering the ZFS generation
process into a forced driven process [45], will be only briefly discussed at the
end of this section to give the readers a complete picture of the state-of-art
achievements. Considering the TAE constitutes the pump wave Ω0(ω0,k0) and
its upper and lower sidebands Ω±(ω±,k±) due to the radial modulation of
ZFS ΩZ(ωZ ,kZ), and assuming Ω± = ΩZ ± Ω0 as the wave vector/frequency
matching conditions, the perturbations can be decomposed as

δφ0 = A0e
i(nφ−m0θ−ω0t)

∑
j

e−ijθΦ0(x− j),

δφ± = A±e
±(nφ−m0θ−ω0t)ei(

∫
kZdr−ωZt)

∑
j

e∓ijθ

{
Φ0(x− j)

Φ∗
0(x− j)

}
,

δφZ = AZe
i(
∫
kZdr−ωZt).

The frequency and wavenumber matching conditions are already assumed, as
illustrated in Fig. 2. We note that, the expression of δφ± indicates that the
parallel mode structure (Φ0) is not altered by the radial envelope modulation
process, which occurs on a longer time scale than the formation of the parallel
mode structure.



Springer Nature 2021 LATEX template

13

We start from ZFS generation. The first equation for zonal flow generation
can be derived from nonlinear vorticity equation. Noting that ZFS have k‖Z =
0, one obtains

n0e
2

Ti

〈
(1− J2

Z)
F0

n0

〉
δφZ −

∑
s=e,i

〈
q

ω
JZωdδH

(1)
Z

〉

= − i

ωZ

∑
k′+k′′=kZ

Λk′

k′′

[
〈e(JZJk′ − Jk′′)δLk′δHk′′〉+ c2

4π
k′′2⊥

∂lδψk′∂lδψk′′

ωk′ωk′′

]
.

Substituting ion responses of Ω0 and Ω± into RS, noting k⊥ρi . O(1), and
averaging over fast varying radial scale, one obtains

iωZ χ̂iZδφZ = − c

B0
kθ0kZ

(
1− ω2

A

4ω2
0

)
(A0A− −A0∗A+) . (26)

Here, χ̂iZ ≡ χiZ/(k
2
Zρ

2
i ), with χiZ ' 1.6k2Zρ

2
i q

2/
√
ε corresponds to the neo-

classical inertial enhancement [37], ωA = VA/(qR0) and 1− ω2
A/(4ω

2
0) ∼ O(ε)

corresponds to the RS and MX non-cancellation due to toroidicity, and finite
coupling comes from radial envelope modulation (∝ k2Zρ

2
i ) by ZFS.

The zonal magnetic field equation can be derived from electron parallel
force balance equation in stead of the quasi-neutrality condition,

δE‖ + b · δu⊥ × δB⊥ = 0. (27)

Noting that δE‖ ≡ −∇‖δφ − ∂tδA‖, δu⊥ ' ∇⊥δφ × b/B, δB⊥ = ∇× δA‖b,
and introducing the effective potential due to the induced parallel electric
field δψk = (ωδA‖/ck‖)k for TAEs while δψZ = ω0δA‖Z/(ck‖0) for zonal
component, one obtains,

δψZ = − i

ω0

c

B0
kZkθ0 (A0A− +A0∗A+) . (28)

In deriving Eq. (28), we also noted ω± = ωZ ± ω0 as well as ideal MHD
condition for TAEs.

The TAE sidebands equations can be derived from nonlinear vorticity
equation. We will start with the upper sideband, while the derivation of the
governing equations for the lower sideband is similar. Neglecting the curva-
ture coupling term due to the |ω| � ωG ordering for TAEs, substituting the
linear ion responses to Ω0 and ΩZ into equation (9), and noting k⊥ρi . O(1),
we have

k2⊥+

[
−k2‖0δψ+ +

ω2
+

V 2
A

δφ+

]
= −i c

B0
kZkθ0

(
k2Z − k2⊥0

) ω0

V 2
A

δφ0 (δφZ − δψZ) .(29)



Springer Nature 2021 LATEX template

14

The other equation for Ω+ can be derived from the electron parallel force
balance equation, equation (27), noting that k0‖ = k+‖ and δφ0 ' δψ0 for the
pump TAE, and we obtain:

δφ+ − δψ+ = i
c

B0
kZk0θ

1

ω0
δφ0 (δψZ − δφZ) . (30)

Substituting equation (30) into (29), one then have

b+εA+δφ+ = 2
i

ω0

c

B0
k0θkZb0δφ0 (δφZ − δψZ) , (31)

with εA+ being the Ω+ dispersion relation in the WKB limit. The Ω− equation
can be derived similarly. Multiplying both sides of equation (31) by Φ0 and
averaging over the radial scale, one has

b±ε̂A±A± = 2
i

ω0

c

B0
k0θkZb0

(
A0

A∗
0

)
(δφZ − δψZ) , (32)

with

ε̂A± =
(
ω4
AΛT (ω)D(ω, kZ)/ε0

)
ω=ω±

, (33)

D(ω, kZ) = ΛT (ω)− δŴ (ω, kZ), (34)

ΛT ≡
√
−ΓlΓu as given by equation (25), and δŴ (ω, kZ) being the normalized

potential energy.
The modulational dispersion relation for ZFS generation by TAE can then

be derived from equations (26), (28), and (32), and one obtains

2

(
c

B0
kZk0θ|A0|

)2
b0
bZ

[
1− ω2

A/(4ω
2
0)

χ̂iZ(ωZ/ω0)

(
1

ε̂A+
− 1

ε̂A−

)
+

(
1

ε̂A+
+

1

ε̂A−

)]
= −1, (35)

which can be solved by expanding D(ω±, kZ) as

D(ω±, kZ) = ± ∂D

∂ω0
(iγZ ∓∆T ) , (36)

with γZ = −iωZ and ∆T ≡ ωT (kZ) − ω0 being the frequency mismatch as
shown in Fig. 2, and one obtains

γ2Z =

(
c

B0
kZkθ|A0|

)2
b0
bZ

ε0
ΛT

4ω0/ω
2
A

∂D0/∂ω0

[
∆T

ω0

ω2
0

ω2
A

+
1

χ̂iZ

(
ω2
0

ω2
A

− 1

4

)]
−∆2

T ,

(37)
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with the first term in the square brackets (∝ ∆T /ω0) corresponding to the
contribution from ZC, while the other term from ZF contribution. It is read-
ily seen that, ZF contribution can be of higher order due to the neoclassical
shielding (1/χ̂iZ � 1) and RS-MX near cancellation by ω2

0/ω
2
A − 1/4 ∼ O(ε).

Thus, for ∆T /ω0 > 0, ZC excitation can be preferred due to its much lower
threshold condition on pump TAE amplitude A0. On the other hand, for
∆T /ω0 < 0, ZF excitation is still possible, however, on quite stringent con-
ditions, i.e., ω2

0/ω
2
A > 1/4 which corresponds to the pump TAE lies within

the upper half of the toroidicity induced continuum gap [57], and the pump
TAE amplitude being large enough to overcome the threshold due to fre-
quency mismatch. It thus suggests that, ZFS is dominated by ZC due to the
trapped-ion enhanced polarizability, thus, a kinetic treatment is necessary. On
the other hand, if MHD model without trapped particle effects is adopted,
the obtained ZFS excitation condition and corresponding ZFS level will be
qualitatively in-correct. It was also noteworthy that, the argument that “ZC
excitation is preferred” is also related to the TAE of interest here, for which RS
and MX nearly cancel each other. This argument cannot be straightforwardly
generalized to other SAW instabilities, e.g., BAE with |k‖VA/ω| � 1 will
predominantly excite ZF [58, 59]; while for reversed shear Alfvén eigenmode
(RSAE) with frequency between TAE and BAE frequency range, depending on
the specific |nqmin−m| value, both ZF and/or ZC excitation can be preferred
[60].

For ZC excitation with ∆T /ω0 > 0 and typical parameters of most unstable
TAE with k⊥ρE ∼ O(1), the threshold condition can be estimated as∣∣∣∣δBr0

B0

∣∣∣∣2 ∼ O(10−8 ∼ 10−7), (38)

which is consistent with the observed magnetic perturbations in present day
tokamak experiments [61], suggesting the ZFS excitation can be important
for TAE saturation. As the drive by pump TAE is significantly higher than
the threshold, the ZFS growth rate is proportional to pump TAE ampli-
tude, typical of spontaneous excitation processes by modulational instability,
demonstrating the region spontaneous excitation is dominant, in comparison
to, e.g., the forced driven process with the ZFS growth rate determined by the
instaneous TAE growth rate, as discussed below [45, 62].

In the present analysis, only thermal plasma contribution to inertial layer
is considered; consistent with EP contribution being negligible in the perpen-
dicular scattering process due to the k⊥ρE � 1 ordering. The EP response,
however, can enter the ideal region through curvature ballooning term, as
addressed in Ref. [45], where it was shown that, as the pump TAE is exponen-
tially growing due to resonant EP contribution, nonlinear EP response to ZFS
will contribute to the curvature-pressure term in the vorticity equation, with
its amplitude dominant over the RS and MX in the uniform plasma limit. This
EP enhanced coupling occur in the exponentially growing stage of the pump
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Fig. 3 Cartoon for ZFS excitation by strongly ballooning DWs (left panel) v.s. weakly
ballooning SAW instabilities (right panel). Here, the dashed curves correspond to the par-
allel mode structure Φ0(nq − m) for DWs (left panel) and SAW instabilities (right panel),
respectively; while the solid blue curves in both panels correspond to

∑
m|Φ0|2. Thus, for

DWs with
∑

m|Φ0| being almost independent of r [52], radial envelope modulation leads to
meso-scale ZF excitation; while for SAW instabilities, fine-scale structure ZFS is excited.

TAE, with ZF excitation dominating over ZC contribution. Here, the ZF exci-
tation process corresponds to a “forced driven” process, with the ZF growth
rate being twice of the instaneous TAE growth rate, as frequently observed in
numerical simulations [44, 50, 62].

Another important finding on ZFS excitation by SAW instabilities is, due
to the weak/moderate ballooning features of SAW instabilities, the width of
the parallel mode structure is comparable or smaller than the correspond-
ing distance between mode rational surfaces. As a result, different from the
well-known “meso”-scale ZF excitation in the typically moderately/strongly
ballooning DWs, the ZFS excited by TAE has, in addition to the meso-scale
radial envelope corrugation, an additional fine-scale radial structure [58, 59],
as shown in Fig. 3. This fine-scale radial structure may significantly enhance
the ZFS generation and its impact on regulating SAW instabilities via the
perpendicular scattering. For a comprehensive review of gyrokinetic ZFS by
TAE, interested readers may refer to Ref. [56] where different physics, e.g.,
forced driven v.s. spontaneous excitation, meso-scale corrugation v.s. fine-scale
structure, are clarified.

3.2 TAE saturation due to ion induced scattering
Nonlinear ion induced scattering is another potentially important channel
for SAW instability nonlinear saturation, corresponds to SAW instabilities
parametric decay into another SAW and a heavily ion Landau damped ion
quasi-mode [34], and was originally introduced in Ref. [35] for TAE saturation.
This process is of particular interest in that, TAEs lie between two neighbour-
ing mode rational surfaces, and are characterized by finite parallel wavenumber
|k‖| ' 1/(2qR0), as discussed in Sec. 2.3. Thus, as two counter-propagating
TAEs couple, a low frequency mode with finite parallel wavenumber, i.e., an
ion quasi-mode can be generated, that can be heavily ion Landau damped,
leading to significant consequence on TAE nonlinear dynamics. Compared to
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Fig. 4 Cartoon of TAE parametric decay in the low-β limit.

ZFS generation investigated in the previous section as a self-interaction process
of a single-n TAE, ion induced scattering process is expected to be of partic-
ular importance in reactor scale machines with system size being much larger
than the characteristic orbit width of fusion alpha particles, and TAEs with
multiple toroidal mode numbers and comparable linear growth rates could
coexist [5, 31, 32]. Thus, the ion induced scattering process, can determine the
saturated spectrum of TAEs and the consequent alpha particle transport rate.
The Landau damping of the nonlinearly generated ion quasi-mode will indi-
rectly transfer the fusion alpha particle power to heat deuterium and tritium
ions, providing a potential effective alpha-channeling mechanism [63–68].

The TAE saturation via ion induced scattering was originally investigated
in Ref. [35] using drift kinetic theory, which was generalized to fusion relevant
short wavelength regime with k2⊥ρ

2
i � ω/Ωci in Ref. [36]. Correspondingly,

the dominant nonlinear scattering mechanism is qualitatively replaced by the
perpendicular scattering [33], and the saturation level is consequently reduced
by one order of magnitude. However, the working flow of Ref. 36 is similar
to that of Ref. [35]. In a single scattering process, a pump TAE decays into
a counter-propagating sideband TAE and an ion quasi-mode, and the para-
metric decay process can spontaneous occur as the sideband TAE frequency
is lower than that of the pump wave, as shown in Fig. 4. This process may
lead to TAE saturation as the sideband TAE is continuum damped due to the
enhanced coupling to lower accumulational point of SAW continuum. As there
are many TAEs co-existing, each TAE may simultaneously interact with many
TAEs; in some processes it may act as the pump wave, while in some other
processes it acts as the decay wave. To study this spectral cascading process,
the interaction of a representative “test” TAE with a “background” TAE is
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studied; and the equation for the test TAE nonlinear evolution due to inter-
acting with the background TAE is derived by considering the feedback of the
background TAE and the ion quasi-mode to the test TAE. In the limit with
multiple background TAEs simultaneously interacting with the test TAE, a
summation over the background TAEs is taken, and one then obtains, from
the imaginary part of the nonlinear equation, the equation describing TAE
spectral evolution. It can be used to derive the nonlinear saturation spectrum
and the electromagnetic fluctuation induced alpha particle transport rate.

Thus, with the linear instability spectrum determined by the equilibrium
profiles, the nonlinear process gives the nonlinear saturation spectrum, which
eventually determines the electromagnetic fluctuation induced alpha particle
transport, as sketched in Fig. 5.

3.2.1 Parametric decay instability
Starting from the nonlinear interaction of the test TAE Ω0(ω0,k0) with the
counter-propagating background TAE Ω1(ω1,k1), during which the ion sound
mode (ISM) Ωs(ωs,ks) fluctuation is generated, our analysis involves the
coupled equations of ISM generation and background TAE evolution. Consid-
ering the k‖sve � ωs, ωds ordering, and assuming electrostatic ISM, the linear
thermal plasma response to ISM can be derived as

δH
(1)
si =

e

Ti
FM0

ωs

ωs − k‖sv‖
Jsδφs, (39)

δH(1)
se = 0. (40)

Adopting the linear electron response to TAEs derived in Eq. (10), the
nonlinear gyrokinetic equation for electron response to ISW becomes

v‖∂lδH
(2)
se = −

∑
k′+k′′=k

Λk′

k′′δLk′δHk′′e

' −Λ
k∗
1

k0

e

Te
F0v‖

(
k‖1∗

ω1∗
−
k‖0

ω0

)
δφ0δψ1∗ , (41)

with Λ
k∗
1

k0
≡ (c/B0)b̂ · k0 × k1∗ . Noting that ω1∗ ' −ω0, k‖1∗ ' k‖0 and

consequently that k‖s ' 2k‖0, one has

δH(2)
se ' −i

Λ
k∗
1

k0

ω0

e

Te
F0δφ0δψ1∗ . (42)

Nonlinear ion response to Ωs can be derived noting the ωs ∼ k‖sv‖ � ωds

ordering, and one has

δH
(2)
si ' −i

Λ
k∗
1

k0

ω0

e

Ti
F0

k‖sv‖

ωs − k‖sv‖
J0J1δφ0δφ1∗ . (43)
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It is noteworthy that, ωs ∼ k‖sv‖ is crucial for the resonant wave-particle
interactions that determines the scattering process. Substituting Eqs. (41) and
(43) into quasi-neutrality condition, one obtains the nonlinear equation for Ωs

generation:

εsδφs = i
Λ
k∗
1

k0

ω0
β1δφ0δφ1∗ , (44)

with εs ≡ 1 + τ + τΓsξsZ(ξs) being the ISW linear dispersion relation, ξs ≡
ωs/(k‖svit), Z(ξs) being the well-known plasma dispersion function defined as

Z(ξs) ≡
1√
π

∫ ∞

−∞

e−y2

(y − ξs)
dy,

the nonlinear coupling coefficient β1 = 1 + τF1(1 + ξsZ(ξs)) and F1 ≡
〈J0J1JsF0M/n0〉.

The nonlinear particle response to the test TAE, can be derived as

δH
(2)
0e = −

(Λ
k∗
1

k0
)2

ω2
0

e

Te
F0|δφ1|2δφ0, (45)

δH
(2)
0i = i

Λ
k∗
1

k0

ω0

e

Ti
F0

k‖sv‖

ωs − k‖sv‖

[
J1Jsδφsδφ1 − i

Λ
k∗
1

k0

ω0
J2
1J0|δφ1|2δφ0

]
. (46)

In deriving δH
(2)
0e and δH

(2)
0i , the nonlinear particle responses to Ωs are also

included due to the fact that it may be heavily ion Landau damped. One then
obtains,

δψ0 =
(
1 + σ

(2)
0

)
δφ0 +D0δφ1δφs, (47)

with σ
(2)
0 ≡ (Λ

k∗
1

k0
)2 [−1 + τF2(1 + ξsZ(ξs)] |δφ1|2/ω2

0 , D0 = iτΛ
k∗
1

k0
F1[1 +

ξsZ(ξs)]/ω0, and F2 = 〈J2
0J

2
1F0/n0〉.

The other equation of Ω0 can be derived from nonlinear vorticity equation
as

b0

[
1− Γ0 + α

(2)
0 /ω2

0

b0
δφ0 −

k2‖0V
2
A

ω2
0

δψ0

]
= D2δφ1δφs, (48)

with

α
(2)
0 = (Λ

k∗
1

k0
)2(F2 − F1)(1 + ξsZ(ξs))|δφ1|2,

D2 = −iΛk∗
1

k0
[F1(1 + ξsZ(ξs))− ΓsξsZ(ξs)− Γ1]/ω0.
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From equations (47), (48) and (44), one obtains the following nonlinear
eigenmode equation of the test TAE Ω0 due to interacting with the background
TAE Ωs

b0

(
εA0 + ε

(2)
0

)
δφ0 = −

(Λ
k∗
1

k0
)2β1β2

τεs
|δφ1|2δφ0, (49)

with β2 ≡ β1 − εs. Multiplying both sides of Eq. (49) with Φ∗
0, and averaging

over the radial length of 1/(nsq′) � δ � 1/(n0q
′), one then obtains(

ε̂A0 −∆0|A1|2 − χ0εs|A1|2
)
A0 = −(Ĉ0/εs)|A1|2A0, (50)

with ε̂A0 being the Ω0 linear eigenmode dispersion relation obtained from
ε̂A0 ≡

∫
|Φ0|2εA0dr, ∆0, χ0 and Ĉ0 corresponding, respectively, to nonlinear

frequency shift, ion Compton scattering and shielded-ion scattering. Their
specific expressions can be found in Ref. [36]. Equation (50) can be understood
as the parametric dispersion relation for δφ1 decaying into δφ0 and δφs and
the condition for the nonlinear process to occur can be determined for different
parameter regimes that crucially enter through the properties of δφs.

For typical tokamak parameters with τ ∼ O(1), Ωs is heavily Landau
damped with |εs,I | comparable to |εs,R|. One then has, from the imaginary
part of equation (50),

γ + γ0 =
|A1|2

∂ω0
ε0,R

(
Ĉ

|εs|2
+ χ0

)
εs,I . (51)

with Ĉ and χ0 corresponding, respectively, to the shielded-ion and nonlinear
ion Compton scatterings. Since both Ĉ and χ0 are positive definite, and that
εs,I =

√
πτΓsξs exp(−ξ2s ) with ξs ≡ (ω0 − ω1)/|k‖svit|, one then has, γ > 0

corresponds to ω1 > ω0, i.e., the parametric decay spontaneously occur as
the pump TAE frequency is higher than the sideband TAE. Thus, the above
discussed parametric decay process will lead to power transfer from higher
frequency part of the spectrum to the lower frequency part [34, 35], as shown
in Fig. 5. The sideband TAE, with lower frequency, can be saturated due to
enhanced continuum damping to the lower part of the SAW continuum.

3.2.2 Spectral evolution
The spontaneous power transfer from δφ1 to δφ0 investigated above can lead
to TAE scattering to the lower frequency fluctuation spectrum. In burning
plasma of reactor scale tokamak with multiple TAEs coexist, characterized
by comparable frequencies and growth rates, each TAE can interact with the
turbulence “bath” of background TAEs, and this process can be described
by an equation for spectral evolution derived from Eq. (50). Denoting the
generic test TAE with subscript k and background TAE with subscript k1,
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Fig. 5 Cartoon of TAE spectral cascading due to ion induced scattering. The horizontal
axis is the mode frequency, solid curve is the linear growth rate while the dashed curve is
the saturated spectrum due to ion induced scattering.

and summarizing over all background TAEs, one obtains

ε̂AkAk =
∑
k1

(
∆0 + χ0εs −

Ĉ0

εs

)
|Ak1

|2Ak, (52)

Multiplying Eq. (52) with A∗
k, and taking the imaginary part, we then

obtain the equation describing TAE nonlinear evolution due to interaction
with turbulence bath of TAEs:

(∂t − 2γL,k) Ik =
2

∂ωk
ε̂Ak,R

∑
k1

1

k2⊥1

(
Ĉ

|εs|2
+ χ0

)
εs,iIk1

Ik, (53)

which can be rewritten as

(∂t − 2γL(ω)) Iω =
2

∂ωεω,R

∫ ωM

ωL

dω′V (ω, ω′)Iω′Iω, (54)

with Iω =
∑

k Ikδ(ω − ωk) being the continuum version of Ik, ωM being the
highest frequency for TAE to be linearly unstable, and ωL being the lowest
frequency of TAE spectrum, which is, in fact, linearly stable, and nonlinearly
excited in the downward cascading process, as shown by Fig. 5. The integration
kernel V (ω, ω′) is given by

V (ω, ω′) ≡ 1

k2⊥ω′

(
Ĉ

|εs|2
+ χ0

)
εs,i. (55)

The saturated TAE spectrum can thus be derived from the fixed point
solution of Eq. (54) by taking ∂tIω = 0. The obtained integral equation, can
be reduced to a differential equation noting that Iω′ varies in ω′ much slower
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than V (ω, ω′), with the former varying on the scale of |ωM − ωL| ' ε0ωA,
while the latter on the scale of |vit/(qR0)| determined by εs,i. Thus, noting
Iω′ = Iω−ωs∂ωIω, V (ω, ω′) varying in ω much faster than Iω, and |ωM−ωL| ∼
ε0ωA � ωs for the ion induced scattering process to be important as shown
in Fig. 4, one has

γL(ω) = − 1

∂ωεω,R

∫ ω−ωL

ω−ωM

dωsV (ωs) (Iω − ωs∂ωIω)

= − 1

∂ωεω,R
[U0Iω − U1∂ωIω] . (56)

with

U0 ≡
∫ ω−ωL

ω−ωM

dωsV (ωs) '
∫ ∞

−∞
dωsV (ωs) → 0, (57)

U1 ≡
∫ ω−ωL

ω−ωM

dωsωsV (ωs) '
∫ ∞

−∞
dωsωsV (ωs)

' π3/2

2k2⊥

(
Ĉ

|εs|2
+ χ0

)
k2‖sv

2
it. (58)

In deriving equations (57) and (58), it is noted that V (ωs) ∝ εs,i is odd func-
tion of ωs. Equation (56) is the desired differential equation for the saturated
spectrum, and gives

Iω =
2k‖svitωMγL(ωM )

U1
− 1

U1

∫ ωM

ω

γL∂ωεω,Rdω, (59)

which, after integrating over the fluctuation population zone, yields the overall
TAE intensity

ISat ≡
∫ ωM

ωL

Iωdω ' γL
U1
ω3
T ε

2
eff , (60)

with εeff ≡ 1 − ωM/ωL ∼ O(ε). Noting that |δBr|2 ' |kθδA‖|2 =
|ckθk‖/(ωkr)|2ISat, one then obtains the saturation level of the magnetic
fluctuations

|δBr|2 '
c2ε2ε2eff
2π3/2

ωT γLk
2
r

(Ĉ/|εs|2 + χ0)Ω2
ciρ

2
it

, (61)

which then yields, for typical parameters in burning plasma regime, the scaling
law for the magnetic perturbations,∣∣∣∣δBr

B0

∣∣∣∣2 ∼ mi

8τπ3/2e2µ0

γL
ωT

T 2
E

T 2
i

q2N−1
0 ε6R−2

0
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∼ 1.2× 1015Amq
2N−1

0 ε6R−2
0

T 2
E

T 2
i

γL
ωT

. (62)

For typical parameters of reactors, e.g., ITER [2] or CFETR [3], the expected
magnetic fluctuation level is |δBr/B0|2 ∼ O(10−8 ∼ 10−7). It is noteworthy
that, the obtained TAE magnetic perturbation, depends sensitively on the
local inverse aspect ratio ε, which is, however, not surprise, as TAE exist
due to toroidicity (∝ ε) induced SAW continuum gap, and the saturation
process determined by ion-induced scattering, is the TAE downward spectrum
cascading (by ∼ εωA) that lead to enhanced coupling to SAW continuum.

3.2.3 EP transport
The TAE induced fusion alpha particle transport, can be obtained from
nonlinear gyrokinetic transport theory [9, 18], with the expected magnetic
fluctuation level given by equation (62). Here, taking circulating EP as
an example, whose transport is mainly caused by resonance overlapping
induced EP orbit stochasticity [69]. The quasilinear transport equation for EP
equilibrium distribution function evolution is [18, 70]

∂tF0E = −
∑

k=k′+k′′

Λk′
k′′Jk′δLk′δHk′′ , (63)

with k = kZ r̂ = k′ + k′′ denoting the bounce averaged phase space zonal
structure modulation [26] in the radial direction, and the perturbed linear EP
distribution function, for well circulating EPs, can be given by [45, 71]

δHkE = − e

m
QkF0EJkδLk

∑
l,p

Jl(λ̂k)Jp(λ̂k)e
−i(l−p)(θ−θ0r)

ωk − k‖v‖ + lωtr
, (64)

with λ̂k = k⊥v̂d/ωtr denoting finite drift orbit width effects, and θ0r ≡
tan−1(kr/kθ). Substituting equation (64) into equation (63) and integrating
over velocity space, one then obtains,

∂tN0E ' −∂rDRes∂rN0E , (65)

with the resonant circulating EP radial diffusion rate given as

DRes ≡

〈
2π
∑
l

|δVEr,l|2J2
l (λ̂l)δ(ω − k‖v‖ + lωtr)

F0E

N0E

〉
, (66)

and |δVEr,l| ≡ ckθJk|δφk|lωtr/(B0ωk) being the resonant EP electric-field drift
velocity. Substituting the saturated TAE fluctuation given by equation (61)
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into equation (66), and noting again |δφ|2 = ω2δB2
r/(c

2k2θk
2
‖), one obtains,

DRes '
1

4

VA
k‖0

∣∣∣∣δBr

B0

∣∣∣∣2 , (67)

corresponding to the resonant EP transit time ω−1
tr,Res being the de-correlation

time. The scaling law for TAE induced circulating EP diffusion rate can be
derived as

DRes ∼ 1.3× 1031A1/2
m ε6q3N

−3/2
0E R−1

0

T 2
E

T 2
i

γL
ωT

. (68)

For typical parameters of a reactor-size tokamak, the TAE induced resonant
circulating EP diffusion rate can be estimated as DRes ∼ 1 − 10m2/s for
ε ∼ 1/6− 1/3.

3.2.4 Open questions
The present analysis of TAE saturation via nonlinear ion-induced scatter-
ing, extended the previous analysis using drift kinetic theory [35], and gave a
more quantitatively accurate estimation of the TAE saturation level and, thus,
fusion alpha particle transport rate. For a predictive ability of the impact on
fusion plasma performance, besides validation of the present analytical results
using first-principle-based large scale simulations, there are several factors
remain to be explored.

First, the present analysis neglected the nonuniformity of bulk plasma,
and focused on the scattering off ion quasi mode. It is shown in the nonlinear
parametric decay of kinetic Alfvén wave (KAW) that, bulk plasma nonuni-
formity may significantly affect the nonlinear process, by enhancing the ion
Compton scattering by an order of magnitude as |ω∗i| � |k‖svit|, and qual-
itatively breaking the parity of the decay KAW spectrum that may have an
implication on finite momentum transport [72]. As the TAE cascading process
of interest in the present review has a one-to-one correspondence to the KAW
parametric decay in slab geometry, we expect thermal plasma nonuniformity
may also have an important consequence on the TAE saturation, and will be
further explored [73].

Second, the nonlinearly generated ion quasi-mode in the present analysis,
or drift sound wave as bulk plasma nonuniformity is accounted for, are both
heavily ion Landau damped, thus, provide a channel for nonlinearly transfer
the alpha particle power to fuel deuterium-tritium ions, as originally proposed
and investigated in Ref. [63] based on the results from Ref. [35]. Deriving
the ion heating power from the present results and evaluating the implica-
tions to sustained burning, are of crucial importance for reactors with high
temperature plasma and thus low collisonality.

The third point to be explored is, from the derived local transport given by
equation (68), to evaluate the alpha particle global transport, and the steady
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state alpha particle as well as bulk plasma profile of reactors, by considering
the feedbacks of alpha particle driven instabilities to bulk plasmas via different
channels [48, 49, 74].

3.3 TAE scattering and damping by DW turbulence
The last nonlinear process to be discussed is the scattering by DW turbu-
lence. Microscopic DW turbulence driven by expansion free energy associated
with plasma nonuniformities is another significant low frequency fluctuation
in magnetically confined plasmas, and is crucial for thermal plasma transport
[75]. DWs typically have frequencies being comparable to plasma diamagnetic
frequency, and perpendicular wavelength being comparable to thermal ion
Larmor radius. With different free energy sources, DWs may be driven as ion
temperature gradient mode, trapped electron modes, and dominant different
frequency range of the spectrum. Effects of DWs on EP transport were inves-
tigated in Refs. [76, 77], and it is found that, the direct EP transport by DWs
can be negligible due to the scale separation between EP orbit size and typi-
cal DW perpendicular wavelength. On the other hand, EP may influence the
DWs stability via many mechanisms, such as thermal ion dilution [78], modi-
fication of curvature by increased pressure gradient [79], etc. For the reference
of EP stabilization of DW turbulence, interested readers may refer to a recent
review by Citrin et al [80].

With the two fundamental fluctuations coexisting, characterized by dis-
tinct spatial and temporal scales, and dominating transport of different energy
range, it is natural to consider their effects on each other. The nonlinear
interactions of DWs and SAW instabilities via the mediation of ZFS have
been proposed and investigated numerically, and was proposed to interpret
the experimental observation of confinement improvement with large frac-
tion of EPs [48–50, 81]. This indirect channel remains to be investigated with
more care due to the high challenge associated with the complex nonlinear
behaviours. It was proposed, in our recent work, that the DWs and SAW
instabilities, can interact with each other via direct nonlinear mode coupling
processes, which can lead to, e.g., suppression of TAE due to the scattering by
the finite amplitude electron DW (eDW) [47]. The “inverse” process of eDW
stability in the existence of finite amplitude TAE, on the other hand, shows
that TAE has negligible effects on the eDW stability [74]. The paradigm pro-
posed using TAE and eDW as example, can be generalized to include other
effects such as trapped electron contribution. Here, we will briefly review the
TAE scattering by finite amplitude eDW.

The TAE-eDW scattering process, can be understood as the test TAE “lin-
ear” stability in the presence of finite amplitude eDW, and can be considered
as a two-step process, i.e., in the first process, short wavelength upper and
lower kinetic Alfvén wave (KAW) sidebands are generated, with the frequency
comparable to TAE while high toroidal mode number determined by eDW;
which then couple with eDW and feed back on the stability of the test TAE, as
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Fig. 6 Cartoon of the two-step nonlinear process of TAE scattering by eDW. The first
process corresponds to short scale KAW sidebands generation due to eDW scattering, while
the second corresponds to feedback to the test TAE.

0 1 2

1/2

1

Fig. 7 Cartoon of upper and lower KAWs generation due to TAE-eDW scattering, and
coupling to continuum.

shown in Fig. 6. The damping of the mode-converted upper and lower KAWs,
as shown in Fig. 7, then lead to the damping of the test TAE.

3.3.1 KAW generation
We start from the upper sideband Ω+ generation channel due to test TAE Ω0

and eDW Ωs coupling, while the analysis for Ω− is similar. The linear and
nonlinear particle responses to Ω+, can be derived noting the k‖vte � ω+ �
k‖vti ordering, and one have, to the leading order,

δH
(1)
+i ' e

Ti
F0

(
1− ω∗i

ω

)
+
J+δφ+, (69)

δH
(1)
+e ' − e

Te
F0

(
1− ω∗e

ω

)
+
δψ+. (70)

The nonlinear ion response to Ω+ can be derived as

δH
(2)
+,i ' −i Λ

s
0

2ω0
J0Js

e

Ti
F0

(ω∗i

ω

)
s
δφsδφ0, (71)

with the linear ion response to Ω0 and Ωs noted. On the other hand, nonlinear
electron contribution to upper KAW can be neglected as Ωs is predomi-
nantly electrostatic. Substituting the particle responses into quasi-neutrality
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condition, we then have,

δψ+ = σ∗+δφ+ + i
Λs
0

2ω0
D+δφ0δφs, (72)

where σ∗k = [1 + τ − τΓk(1 − ω∗i/ω)k]/(1 − ω∗e/ω)k denotes the deviation
from ideal MHD condition due to plasma nonuniformity and/or FLR effects,
while D+ = τ(ω∗i/ω)sF+/(1 − ω∗e/ω)+ denotes nonlinear contribution with
F+ = 〈J0JsJ+FM0/N0〉v. The other equation for Ω+, can be derived from
nonlinear vorticity equation, by substituting linear particle responses to Ω0

and Ωs into Reynolds stress term

τb+

[(
1− ω∗i

ω

)
+

(1− Γ+)

b+
δφ+ −

(
V 2
A

b

k‖bk‖

ω2

)
+

δψ+

]

= −i Λ
s
0

2ω0
γ+δφ0δφs, (73)

with γ+ = τ [Γs − Γ0 + (ω∗i/ω)s(F+ − Γs)].
Combining equations (72) and (73), one obtains, the equation for upper

KAW generation due to Ω0 and Ωs coupling

τb+εA+δφ+ = −i(Λs
0/2ω0)β+δφsδφ0, (74)

where εA+ is the linear SAW/KAW operator given by equation (16) with
curvature coupling term neglected due to the interested TAE frequency range,
and

β+ = τ(Γs − Γ0) + τ
(ω∗i

ω

)
s

[
F+ − Γs −

(
k‖bk‖

ω2

)
+

τV 2
AF+

(1− ω∗e/ω)+

]
.(75)

The generation of lower KAW Ω− due to Ω∗
0 and Ωs coupling, can be

derived similarly as

τb−εA−δφ− = i(Λs
0/2ω−)β−δφsδφ

∗
0, (76)

with

β− = τ(Γs − Γ0) + τ
(ω∗i

ω

)
s

[
F− − Γs −

(
k‖bk‖

ω2

)
−

τV 2
AF−

(1− ω∗e/ω)−

]
. (77)

3.3.2 Feedback to Ω0 and consequence on TAE stability
The effect of eDW scattering on the test TAE stability, can be derived by
accounting for feedback of Ω± via nonlinear coupling to Ωs. Here, we give the
nonlinear contribution to Ω0 by nonlinear coupling between Ω+ and Ω∗

s, while
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the contribution due to Ω− and Ωs coupling can be derived similarly, and we
will only reinstate the effects in equation (85).

The nonlinear ion response to Ω0 can be derived as

δH
(2)
0i ' e

Ti
F0i

(ω∗i

ω

)
s

[
i
Λs
0

2ω0
JsJ+δφ

∗
sδφ+ +

(
Λs
0

2ω0

)2

J0J
2
s |δφs|2δφ0

]
+ δφ− contribution, (78)

with the second term from δH
(2)
+i contribution. The nonlinear electron response

to Ω0 is negligible. The quasi-neutrality condition then yields

δψ0 =
(
σ∗0 + α0|δφs|2

)
δφ0 − i(Λs

0/2ω0)D
+
0 δφ

∗
sδφ+ + δφ− contribution,(79)

with α0 = −(Λs
0/2ω0)

2τ(ω∗i/ω)sF2, F2 ≡ 〈J2
0J

2
sFMi/N0〉v mainly contribut-

ing to nonlinear frequency shift, while D+
0 = τ(ω∗i/ω)sF+/(1− ω∗e/ω)0.

The other equation for Ω0 can then be derived from nonlinear vorticity
equation, as

τb0

{[(
1− ω∗i

ω0

)
0

(1− Γ0)

b0
+ α+

0 |δφs|2
]
δφ0 −

(
V 2
A

b

k‖bk‖

ω2

)
0

δψ0

}
= i

Λs
0

2ω0
γ+0 δψ

∗
sδφ+ + δφ− contribution. (80)

Substituting equation (79) into (80), and neglecting the nonlinear fre-
quency shift while focusing on the stability of the test TAE due to scattering
by background eDW, one then obtains

τb0εA0δφ0 = i
Λs
0

2ω0
β+
0 δφ

∗
sδφ+ + δφ− contribution. (81)

Substituting δφ+ from equation (74) into (81), one obtains,

τb0εA0δφ0 =

[(
Λs
0

2ω0

)2

β+
0 δφ

∗
s

β+
τb+εA+

δφs

]
δφ0 + δφ− contribution, (82)

which can be solved noting the scale separation between δφ0 and δφs, as
sketched in Fig. 8. Thus, the nonlinear coupling processes occur in in a nar-
row region of the eDW localization. Expanding δφ0 = Φ0(x0) + Φ̃0(xs,x0)
with x0 = (R/n0, r/m0, 1/n0q

′), xs = (R/ns, r/ms, 1/nsq
′) and |Φ̃0|/|Φ0| ∼

O(|eδφs/Te|2) � 1, equation (82) becomes, after averaging over xs scale,

τb0εA0Φ0 =

〈(
Λs
0

2ω0

)2

β+
0 δφ

∗
s

β+
τb+εA+

δφs

〉
s

Φ0 + δφ− contribution, (83)
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Fig. 8 Cartoon of scale separation between TAE and eDW, with the dashed curve being
the sketched parallel mode structure of a TAE poloidal harmonic, while the solid curve being
the parallel mode structure of eDW with much smaller radial width than that of the TAE.

with 〈· · · 〉s denoting averaging over eDW scales

〈(· · · )|δφs|s〉s ≡ |Ans |2
∫ ∞

∞
dzs(· · · )|Φs(zs)|2. (84)

Equation (83) can then be solved noting that the stability induced by
Im(1/εA+) can be expressed as Im(1/εA+) = −πδ(εA+) ' −(π/4σ∗+)δ(z

2
s −

z2+) with z2+ = (1 − ω∗i/ω)+(1 − Γ+)(ω/ωA)
2
+/(b+σ∗+), which implies KAW

being absorbed locally, expanding β+ with respect to bs noting two scale
separation k2+⊥ ' k2s⊥ + 2ksrk0r, and properly reinstating the lower KAW
contribution, one then obtains,

τb0
[
εA0 + iν(k0rρi)

2
]
Φ0 = 0, (85)

with ν = ν+ + ν−, and

ν± ' π

(
Ωci

ω0

)2∑
ns

|Ans
|2
[(
τ +

σs
2Γs

)
∂Γs

∂bsθ

]2
bsθ ŝ

2

σ2
s±z±

∣∣∣∣∂Φs

∂zs

∣∣∣∣2
z±

. (86)

Equation (85) can be solved perturbatively in ballooning space, η. I.e., let-
ting Φ̂0(η) being the lowest order eigenmode satisfying b̂0ε̂A0(η, ∂η, ω0)Φ̂0(η),
and expanding ω0 = ω0r + iγAD with γAD being the eDW scattering induced
test TAE damping rate, equation (85) then gives,

2γAD

ω0r

〈
Φ̂0b̂0Φ̂0

〉
η
= −

〈
Φ̂0b̂0νb0θ ŝ

2η2Φ̂0

〉
, (87)
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with 〈· · · 〉η ≡
∫∞
−∞(· · · )dη. Noting equation (24) for TAE, we obtain

γAD

ω0r
= −1

4

νb0θ ŝ
2

√
−ΓlΓu

∼ O(10−2 − 10−1), (88)

as estimated using typical parameters, i.e., |Ωci/ω0r| ∼ O(102),
∑

ns
|Ans |2 ∼

|eδφs/Te|2 ∼ O(10−4), bsθ ∼ ŝ ∼ τ ∼ O(1) and 4
√
−ΓlΓu ∼ O(ε2) ∼

O(10−2 − 10−1). The eDW scattering induced TAE damping rate is compara-
ble to the TAE growth rate due to EP drive [5], and can significantly reduce
or completely suppress TAE fluctuations with sufficiently large eDW intensity.
This may imply improved fusion alpha particle confinement in the existence
of micro turbulence, and consequently, enhanced thermal plasma heating.

As the nonlinearly generated KAW quasi-modes are dissipated by predom-
inantly electron Landau damping [8, 9], the resulting electron heating rate can
be estimated as(

dβe
dt

)
AD

= 4|γAD|
∣∣∣∣δB⊥

B0

∣∣∣∣2 ' O(10−2 − 10−1)s−1, (89)

which, for typical parameters, can be comparable to the electron heating by
alpha particle slowing down, and potentially, contribute significantly to the
“anomalous” electron heating in burning plasmas.

The present analysis, using TAE scattering by ambient eDW as an exam-
ple to demonstrate the novel physics of direct cross-scale interaction among
meso/macro-scale SAW instabilities and micro-scale DW turbulence, and the
obtained results are expected to be, at least, qualitatively applicable to other
Alfvén eigenmodes such as reversed shear Alfvén eigenmode (RSAE), and
include the physics of finite temperature gradients or trapped electrons. These
application to more realistic scenarios can be investigated for a more thor-
ough understanding of the SAW stabilities and thus fusion alpha particle
confinement in reactors.

4 Summary
Using toroidal Alfvén eigenmode (TAE) nonlinear saturation due to mode-
mode coupling as example, we show that, nonlinear gyrokinetic theory is not
only powerful, but also necessary to investigate various crucial physics in the
nonlinear mode coupling processes of SAW instabilities. This necessity occurs
since SAW instabilities often have a small scale structure associated with the
SAW continuum related to equilibrium magnetic geometry and plasma nonuni-
formity of magnetically confined fusion devices. The nonlinear coupling is,
thus, dominated through perpendicular scattering [33]. Three main processes
developed in the past decade are briefly reviewed, i.e., the zonal field structure
(ZFS) generation by TAE [39], TAE spectral cascading due to ion induced
scattering [35, 36], and cross-scale interaction with electron drift wave (eDW)
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via direct nonlinear interaction [47]. The fundamental physics involved in the
three processes are reviewed in a pedagogical way, with parameter regimes for
them to occur and dominate discussed, and state-of-art developments as well
as open questions are also introduced. These understandings present a road
map for a comprehensive and quantitative study of SAW instability spectrum
in reactors, and provide guidance for large scale simulations using realistic
geometry and plasma parameters.

It is obvious that, the nonlinear mode coupling process reviewed in the
present work, and the self-consistent EP transport, should be considered on
the same footing for the comprehensive understanding of the SAW instability
nonlinear dynamics and self-consistent EP transport. The former, described by
the nonlinear radial envelope equation in the form of a nonlinear Schrödinger
equation, together with the latter described by the Dyson-Schrödinger model,
constitute a general theoretical framework for SAW nonlinear dynamics and
EP transport in burning plasma physics [5, 24, 25], and is the ongoing effort
of Center for Nonlinear Plasma Science (CNPS) collaboration.
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