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Abstract:  Fast magnetic reconnection (FMR) in collisionless plasma is often attributed to the 6 

off-diagonal electron Reynolds stress, which can give rise to a large induction electric field in the 7 

reconnection region. However, in MHD simulations of FMR, it is difficult to implement the full 8 

Reynolds stress, which is kinetic in nature. In this paper, an effective, or pseudo, resistivity, which 9 

only accounts for the kinetic effects relevant to FMR, is introduced through the relation between 10 

the electric field and the current density to investigate FMR. Justification of our approach is 11 

verified by full particle-in-cell simulations, and the corresponding physics is discussed. 12 
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1. Introduction  27 

Magnetic reconnection (MR) is an important plasma process that efficiently converts magnetic 28 

energy into plasma kinetic and thermal energies [1, 2] and is believed to play crucial roles in the 29 

evolution of the solar corona [3-5], geomagnetic tail [6-8], magnetosphere [9, 10], as well as 30 

laboratory fusion plasmas [11, 12].  31 

In collisionless plasma, a widely accepted physical mechanism for fast MR (FMR) is an 32 

increase of the effect of the off-diagonal (with respect to the ambient magnetic field) electron 33 

Reynolds stress in the diffusion region, which gives rise to a large reconnection electric field that 34 

strongly accelerates the charged particles in the region [13, 14]. However, the Reynolds stress is 35 

associated with the electron kinetic effects and can therefore not be easily implemented in fluid 36 

descriptions of the plasma. In many MHD models, FMR is attributed to anomalous resistivity 37 

arising from current-instability driven turbulence in the diffusion region [15, 16]. However, such 38 

an anomalous resistivity often involves artificially given (usually constant) turbulence level or is 39 

only current dependent. Speiser [17] introduced an effective conductivity for studying 40 

collisionless FMR without invoking turbulence. However, the model does not include the details 41 

of the particle motion that give rise to the effective conductivity, so that it is not clear how particles 42 

are accelerated. 43 

 In this paper, we introduce an effective, or pseudo resistivity for considering collisionless 44 

FMR. The PR is obtained by replacing the collision mean-free-time in the traditional collisional 45 

drag force with the transit time of electrons in the small diffusion region around the X point of the 46 

MR. The transit time is obtained by following the motion of test electrons in the region and, as to 47 

be expected, is space and time dependent. Validity of our ad hoc model is confirmed by full 48 

particle-in-cell (PIC) simulation. 49 

The rest of this paper is as follows. Section 2 presents our effective resistivity model and its 50 

properties. A theoretical argument justifying the effective resistivity is also given. Section 3 51 

presents the corresponding PIC simulation. Section 4 compares the results from the model and the 52 

simulation. Section 5 gives a summary of our work. 53 

 54 

2. Physical Mechanisms and Model Description 55 

Classically, plasma resistivity arises from inter-particle collisions that lead to momentum and 56 

energy exchange between the colliding particles. It therefore depends on the collision frequency or 57 
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the mean free path. In collisionless MR, particles in the small diffusion region around the X point 58 

experience strong electric and magnetic forces. A particle is first decelerated, and then accelerated 59 

as it enters and leaves the diffusion point due to the bent magnetic fields and the induction electric 60 

fields. It thereby exchanges energy with the fields. The interaction can thus lead to a local effective 61 

resistivity around the X point in a region of the order of the electron inertial length. The scenario is 62 

roughly similar to what occurs in a binary collision, namely the interaction takes place in a very 63 

small region around the center of mass or a massive particle, analogous to the X point in MR. 64 

We consider the dynamics of a charge particle along an X line (assumed to be in the z direction, 65 

perpendicular to the MR plane) of the diffusion region, where the magnetic field is nearly zero and 66 

the induction electric field Ez is strong. The change in the velocity of the particle can be written as 67 

[17] 68 

 /z zv qE t mδ δ= ,               (1) 69 

where q and m are the particle charge and mass, respectively, and tδ  is the transit time of the 70 

particle. Accounting for all the particles in the diffusion region, the corresponding change in the 71 

local current density is 72 

 2 /z z zJ nq v nq E t mδ δ δ= = ,             (2) 73 

where n is the local particle density. Thus, one can define an effective resistivity74 

 2/ /z zE J m nq tη δ≡ = ,               (3) 75 

which is valid only near the X point. One must however still determine the particle density and the 76 

transit time. 77 

To model the diffusion region in collisionless MR, we consider a two-dimensional (2D) plane 78 

( ,x y ) with the X line lying in the perpendicular, or z, direction at ( 0,0 ). The vacuum magnetic 79 

and electric fields in this region can be approximated by 80 

 0

ˆˆ

y x

y x
B L L

 +=  
 

x y
B ,              (4) 81 

 0 ˆE= −E z  ,                (5) 82 

where 0B  and 0E  are positive constants, xL  and yL  are the local characteristic lengths of yB  83 

and xB  in the x and y directions, respectively. That is, the induction electric field remains uniform 84 

in this region, and the magnetic field increases with the distance away from the X line (or X point 85 
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in the ( ,x y ) plane). 86 

We first consider a general case of the motion of a test electron in the diffusion region. 87 

Initially, the electron is at 0 0( , )x y  and its velocity components are 0 0xv > , 0 0yv > , 0 0zv > . 88 

The region considered is 2 2L L× . The fields and other parameters are illustrated in Figure 1. 89 

The configuration here differs from that of Ref. 17, where the diffusion region is 90 

one-dimensional. It is similar to that in Ref. 18, except that here more details are involved, such 91 

that the FMR process can be better understood. 92 

 93 

Figure 1.  Schematics of magnetic field lines and electron trajectories in the 2D 94 
diffusion region. The X line in the z direction is at (0,0).  95 

 96 

 An electron inside this box will be driven by the Lorentz and electric forces: 97 

 0 /x z xF qv B x L= − ,               (6)98 

 0 /y z yF qv B y L= ,               (7)99 

 0 0 0( / / )z x x y yF q E v B x L v B y L= + − ,                (8) 100 

The trajectory of the electron is then given by  101 

 
'

0 0 00 0
( ) [ ( '') ( '') ''] '

t t

x z
x

qx t x v v t B x t dt dt
mL

= + −∫ ∫         (9)102 

 
'

0 0 00 0
( ) [ ( '') ( '') ''] '

t t

y z
y

qy t y v v t B y t dt dt
mL

= + +∫ ∫           (10) 103 
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where m is now the electron mass. The electron velocity is given by  104 

 0 00
( ) ( ') ( ') '

t

x x z
x

qv t v v t B x t dt
mL

= − ∫ ,           (11)105 

 0 00
( ) ( ') ( ') '

t

y y z
y

qv t v v t B y t dt
mL

= + ∫ ,           (12)106 

 0 0 0 00
( ) [ ( ') ( ') / ( ') ( ') / ] '

t

z z x x y y
qv t v E v t B x t L v t B y t L dt
m

= + + −∫ .     (13) 107 

The initial and boundary conditions are 0(0)x x= , 0'(0) xx v= , 0(0)y y= , 0'(0) yy v= . Since 108 

the transit time of the electron in the small diffusion region is very short [19], we can assume that 109 

during the transient time the change 0zvδ  of 0zv  satisfies 0 0z zv vδ 
 or ( )zv t′  is constant in 110 

Eqs. (9)-(12). As to be numerically verified in Section 4, the corresponding change in vz is even 111 

smaller. Eqs. (9)-(13) then yield 112 

0 0( ) cosh( / ) sinh( / )d x d dx t x t v tτ τ τ= + ,           (14)113 

 0 0( ) cos( / ) sin( / )d y d dy t y t v tτ τ τ= + ,                 (15)114 

 0 0( ) sinh( / ) / cosh( / )x d d x dv t x t v tτ τ τ= + ,           (16)115 

 0 0( ) sin( / ) / cos( / )y d d y dv t y t v tτ τ τ= − + ,           (17)116 

 

0 0

2 2 2 2
0 0 0 0

0

2 2 2 2
0 0 0 0

0

( )

1 [( / )sinh ( / ) sinh(2 / ) / ]
2

1 [( / )sin ( / ) sin(2 / ) / ],
2

z z

x d d x d d
z

y d d y d d
z

qv t v E t
m

v x t v x t
v

v y t v y t
v

τ τ τ τ

τ τ τ τ

= +

− + +

+ − +

     (18) 117 

where 
0 0

x
d

z

mL
qv B

τ =  is a characteristic time for electrons in the diffusion region. From Eqs. (14) 118 

and (15), it is indicated that the electron oscillates in the y direction, but it is accelerated in the x 119 

direction.  If we assume 1τ  to be the time when the electron leaves the box in the x direction, 120 

from Eq. (14) and 1( )x Lτ = we get  121 

 ( ){ }2 2 2 2
1 0 00 0

lnd x dx d
v xL L v xτ τ ττ = ++ + −  .         (19) 122 

In order to see the acceleration process in more detail, we reasonably assume that thermal 123 

effects can be neglected. Thus, the initial in-plane velocity of an electron in the diffusion region is 124 
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nearly zero. Considering the separation of the electron motion in the x and y direction, we only 125 

need to examine the electron motion in the x direction.  With assumption / 2 peL c ω= , the 126 

transit time then becomes 127 

2 2
0

0

/ 2 ( / 2 )
= ln pe pe

d

c c x
x

ω ω
τ τ

+ −
 .          (20) 128 

Since 0x  can be anywhere inside the box, the averaged transit time is  129 

00
/

2
L

ddx L πτ τ τ= =∫ ,
    

             (21) 130 

so that the effective resistivity is given by 131 

 0
3 2

2 z
e

x

mv B
q n L

η
π

= .               (22) 132 

If the particle is farther away from the X line, 0xv  cannot be ignored, and the transit time is 133 

 1
0 2 20

1 ( )tan ln
L

d
L Ldx

L L L
δ δ δτ τ τ

δ δ
− + = = + + ∫  ,        (23) 134 

where 0x dvδ τ= . The corresponding effective resistivity is 135 

 2
1

2 2

1
( )tan ln

general
d

m
L Lnq

L L

η δ δ δτ
δ δ

−
=

+
+

+

.          (24) 136 

Outside the region, δ  is much larger (more precisely, 0xv  is much larger and 0zv  is smaller), 137 

making effective resistivity much smaller there. Since 0zv  is smaller outside the region, the 138 

assumption 0z zv vδ 
 may breakdown. That is, our interaction model is applicable only in the 139 

small diffusion region around the X line. 140 

 If we include the ion motion, the current in Eq. (2) can be rewritten as141 

 2 / /z z e e i inq m mδ τ τ= （+）J E  .            (25) 142 

where we have assumed that the plasma is quasi-neutral. Eq. (3) then becomes143 

 2

1e i
tot

i e e i

m m
nq m m

η
τ τ

=
+

.              (26) 144 

Substituting Eq. (22), we get 145 
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1

1 e ze
tot e

i zi

m v
m v

η η
−

 
= +  

 
 ,            (27) 146 

where zev  and ziv  are the local electron and ion velocities in the z direction. 147 

 148 

3. Simulation Model 149 

We have performed 2.5D PIC simulations for electrons on the (x,y) plane by assuming 150 

/ 0z∂ ∂ = . For convenience, we use the charge-conservation scheme (CCS) [20] instead of solving 151 

the Poisson equation, and the finite difference time domain method (FDTD) to solve the other 152 

Maxwell’s equations. The particles are driven by the electric and Lorenz forces and the 153 

corresponding equations used in the PIC simulations are  154 

t
∂

∇ × = −
∂
BE ,                   (28)155 

 0 0t
ε µ∂

∇ × = +
∂
EB J ,                                 (29) 156 

( )j
j j

d
q

dt
= + ×

p
E v B ,                     (30) 157 

where c  is the light speed, i i i e e e= n q +n qJ V V ,  jV  (j = i,e) is the bulk velocity of species j, jv  158 

and j j jm=p v  are the particle velocity and momentum, respectively. The variables are 159 

normalized as follows: 0/ id →x x , ( ) ( )0, ,/j j j jAiv →V  v V  v , 0ci t tω → , 0/ B →B B , 160 

0/ E →E E , 0/ J →J J , 0/n n n→ , 0/j e Ai jm v →p p , where 2
0 0 0 0/ / /i pi i id c c n q mω µ= = , 161 

0 0 0 0/Ai i iv B n mµ= , 0 0 /ci i iq B mω = , 0 0 0AiE v B= , and 0 0 0 0AiJ n q v= . 162 

Our 2D simulation domain is / 2 / 2x xD x D− ≤ ≤ , / 2 / 2y yD y D− ≤ ≤ , where 012.8x iD d= , 163 

06.4y iD d= , 00.01 idx dy d= = . Closed boundary condition is adopted in the y direction and 164 

periodic boundary condition is used in the x direction. The time step is 0 0.0002ci tω ∆ = , and the 165 

duration of the simulations is 0 40ci tω = , corresponding to 200,000 time steps. Nearly 82 million 166 

particles for each species are used in this simulation. We also assume 0 / 0.05Aiv c =  and 0.2β = . 167 

The ion-to-electron mass ratio /ie i eM m m=  is from 25 to 400, and the ion-to-electron initial 168 
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temperature ratio / 5ie i eT T T= = . 169 

We shall use the Harris equilibrium as the initial configuration. The initial magnetic field is 170 

given by 171 

0 0tanh( / ),    0x y zB B y b B B= = = ,               (31) 172 

and the initial density profile is 173 

 2
0 0/ cosh( / ) bn n y b n= + ,                (32) 174 

where 0 1.0B = , 0 0.5b = , 0 1.0n = , 0.2bn = , and 0b  is the width of the current sheet with the 175 

current intensity given by 176 

 2
0 0 0/ cosh( / )zI B b y b=  .                             (33) 177 

In order to shorten the initial stage in the simulation, we impose a small periodic excitation in 178 

the initial system, such that Eq. (31) and (33) become 179 

0 0tanh( / )+ cos(2 / )sin( / ) /x x y yB B y b x D y D Dεπ π π= ,      (34)180 

 2 sin(2 / )cos( / ) / ,     0y x y x zB x D y D D Bεπ π π= − = ,        (35)181 

 2 2 2 2
0 0 0/ cosh( / ) + cos(2 / ) cos( / )(1/ 4 / )z x y y xI B b y b x D y D D Dεπ π π= + ,   (36) 182 

where 0.01ε = . 183 

Pressure balance yields 184 

22
0(1 )

2 2
BBP β+ = + ,                                  (37) 185 

where  and P B  are the local thermal pressure and magnetic field, 2/P Bβ = , and P  and B are 186 

normalized by 2
0 0/ 2B µ .  187 

 188 

4. Numerical Results and Comparison  189 

First, we consider 25ieM = , i.e., the same as that for the Geospace Environment Modeling 190 

(GEM) MR challenge [13]. Figure 2 shows the evolution of the induction electric field and 191 

reconnected magnetic flux at the X line. We can see that MR occurs at 20 32t = − , followed by a 192 

nonlinear stage of the process. Figure 3 shows the current Jz and the magnetic field lines at 193 
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different times. During the MR, the current sheet is compressed around the X line, and then 194 

separated into two parts. 195 

The electric field in the z direction as from the 2D electron fluid momentum equation is 196 

( )1 eyze exzez
z ee ez z

e

m VE V
e n e x yt

 ∂Π∂Π ∂= − − − ×++ ⋅∇    ∂ ∂∂   
V BV ,      (38) 197 

where the pressure tensor is given by ( )( ) ( )e e em f v dv= − −∫ v V v VΠ , where ( )ef V  is the 198 

electron velocity distribution function. Figure 4 shows the contribution of each term in Eq. (38) in 199 

the current sheet when MR occurs. We see that the sum of the off-diagonal pressure tensors leads 200 

to 80% of the induction electric field, similar to that found in Ref. 13.  201 

 202 

 203 

Figure 2   Evolution of reconnecting magnetic flux and the induction electric field on 204 

the X line. Here ψ  is normalized by 0 / pi0B c ω , and zE  is normalized by 0 0AiB v . 205 
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 206 

Figure 3   The distribution of the current density in the out of plane 207 
direction superposed with magnetic field lines at different simulation 208 
times. 209 

 210 

Figure 4   Contribution of each term from Eq. (38) in the current 211 
sheet along the x direction (at y=0) at the peak reconnection time 212 
t=26. 213 

 214 

 In order to verify the assumption 0z zv v∆   used in Section 2, we compare the speeds of the 215 
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particles which are just before entering and after leaving the electron diffusion region. Figure 5 216 

shows the distribution of electron velocity variation ( )zf vδ  during t =28 to 29 in the peaked MR 217 

period. Here, 1 0z z zv v vδ = − , where 0zv and 1zv are the electron velocity when it is just before 218 

entering and after leaving the diffusion region, respectively. The mean of this distribution is 219 

0.0470, and the variance is 0.2937. Electrons with 0| /v | 0.2z zvδ ≤  constitute 78.33% of the total 220 

ejected electrons, implying that most of the electrons suffer little change in the z-direction velocity. 221 

In the earlier MR stage, such as from t = 18 to 19, the percent of electrons with 0| /v | 0.2z zvδ ≤  is 222 

90.96%. Thus, the velocity changes zv∆  for the majority of electrons are limited when they stay 223 

in the smaller diffusion region, so that our assumption in the derivation of the effective resistivity 224 

is justified. It is clearly also valid for ions, whose velocities are much less. 225 

 226 

 227 

Figure 5.   Distribution of zvδ  during t =28 to 29.  228 

 229 

Figure 6 shows the time evolution of the average energy per electron for different 230 

components. "entering" and "leaving" means for electrons just before entering and after leaving 231 

the electron diffusion region, respectively. We can see that the difference of the average energy 232 

per electron in the in-plane component for the "entering" and "leaving" electrons is relatively 233 

small at all times, which agrees with our assumption that the in-plane electric field is nearly zero 234 

in Eq. (5). The energy gain of electrons in the z component increases with development of MR 235 

during the period in the diffusion region. The energy gain is about 20% when MR reaches its 236 

peak, which means the net change of the velocity in the z direction is about 10%. Therefore, it is 237 

further confirmed that our assumption 0z zv v∆   is valid. The energy gain of electrons 238 
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disappears after the fast reconnection stage ends. This behavior can be attributed to the fact that in 239 

the period of FMR, the induced electric field in the z direction is strong around the X line. On the 240 

other hand, the magnetic field is weak in this region and they are not sufficient to alter the 241 

trajectory of the hot electrons, which leads to electrons continuously accelerated in the z direction.  242 

 243 

 244 

Figure 6. Time evolution of the average energy per electron for different 245 
components. "entering" and "leaving" means for electrons just before 246 
entering and after leaving the diffusion region, respectively. 247 

 248 

Figure 7 shows time evolutions of the effective resistivity in the electron diffusion region for 249 

different mass ratios Mie. Since larger Mie corresponds to a longer linear growth phase, we use 250 

larger initial excitation ( 0.05ε = ) for Mie=256 and 400 to shorten simulation time. The other 251 

parameters remain the same. The theoretical eη  and totη , as well as the simulation result 252 

/s z zE Jη = , are all normalized by 0 0 0/ ( )B n q . 253 

We can see that as MR enters into the fast reconnection phase, the effective resistivity 254 

exhibits quickly enhancement and the tendencies are almost the same for all the three effective 255 

resistivities. With increasing Mie, not only do the peak values of the effective resistivity decrease, 256 

but also the difference between eη  and totη  decreases, as can also be seen in Eq. (27). Since the 257 

PIC simulation involves larger noise level compared to the MHD simulation, the resistivity sη  258 

directly from simulation fitting the modeled effective resistivity are reasonably well. 259 

 260 

 261 
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 262 

Figure 7 Time evolutions of the effective resistivity from the model and PIC simulation for different Mie’s. The 263 
time interval between the points is 2dt = . 264 

 265 

We also present the electric field zE  and the current density zJ  in the z direction directly 266 

from the simulation in Figure 8. It is found that the changes of zE  and zJ  are not in phase 267 

with the effective resistivity sη . The effective resistivity further increases after the reconnection 268 

electric field zE  decreases. This is because the current density zJ  always decreases and the 269 

decreasing speed is proportional to the electric field zE , which is mainly attributed to the 270 

decrease of the electron density in the diffusion region. 271 

 272 

 273 

Figure 8 Time evolutions of the electric field and the current density in the z direction for different Mie’s. The 274 
time interval between the points is 2dt = . 275 

  276 

The inertial conductivity iσ  from Eq. (14) of Ref. [17] is 277 

1/22 2 2 3

2i
ne ne L Ln e
m m v mE

σ τ
 

= = =  
 

,        （39） 278 

where L is the length of the accelerating region, v is the particle velocity and E is the electric 279 

field [17]. Here m we take as the electron mass. It is evident that this model is not able to 280 
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implement into MHD because we first have to know the resistivity to calculate the electric field. 281 

Another problem is that the estimated resistivity from this model is about 5 times larger than the 282 

numerical results from /s z zE Jη = .  283 

Summary 284 

 This paper introduces a simple model for energy conversion in FMR. Using the simple 285 

equation E Jη= , we define a space-time dependent effective resistivity η that can be obtained 286 

from numerical solutions of test electron trajectories in the diffusion region. We find that η  rises 287 

with development of MR, reaching its maximum when MR reaches its peak. It then falls and 288 

finally reaches a low value. The results from the model agree fairly well with that from the PIC 289 

simulations. It is also found that with the increase of Mie, the peak value of effective resistivity 290 

tends to be smaller. 291 

We wish this paper can give a new view on anomalous resistivity in MHD simulation, whose 292 

idea is derived from a collisionless fast reconnection model, and the physical meaning is 293 

reasonable. 294 
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