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Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of
burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear
Alfvén waves and their self-consistent interaction with energetic particles in tokamak fu-
sion devices. More specifically, the review on the linear physics deals with wave spectral
properties and collective excitations by energetic particles via wave-particle resonances.
The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear
wave-energetic particle interactions. Both linear as well as nonlinear physics demon-
strate the qualitatively important roles played by realistic equilibrium nonuniformities,
magnetic field geometries, and the specific radial mode structures in determining the
instability evolution, saturation, and, ultimately, energetic-particle transports.
These topics are presented within a single unified theoretical framework, where experi-
mental observations and numerical simulation results are referred to elucidate concepts
and physics processes. Such a unified approach also allows drawing analogies between
magnetic fusion energy and neighboring fields of physics research; such as fluid turbu-
lence, condensed matter, nonlinear dynamics and complexity, fractional kinetics, and
accelerator physics.

PACS numbers: 52.35.-g, 52.35.Bj, 52.35.Mw, 52.55.Pi, 52.55.Tn, 52.35.Sb;
52.35.-g Waves, oscillations, and instabilities in plasmas and intense beams
52.35.Bj Magnetohydrodynamic waves (e.g., Alfvén waves)
52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects,
mode coupling, ponderomotive effects, etc.)
52.55.Pi Fusion products effects (e.g., alpha-particles, etc.), fast particle effects
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I. INTRODUCTION

Since the mid 20th century, mankind has pursued magnetic fusion energy (MFE) research, which has reached a
crucial stage with the construction of the International Thermonuclear Experimental Reactor (ITER) (Aymar et al.,
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1997; Tamabechi et al., 1991). The purpose of ITER is investigating the physics of burning plasmas, where deuterium-
tritium (D-T) fusion reactions

D + T → 4He(3.52MeV) + n(14.06MeV)

produce α-particles and neutrons. In ideal conditions for a fusion reactor, α-particles thermalize (slow down) due to
Coulomb collisions with the thermal plasma and sustain the fusion process by supplying the power input required to
keep the plasma in “ignition” condition. Thus, α-particles need to have sufficiently good confinement.
In toroidally symmetric magnetic fusion experimental devices (tokamaks); e.g., ITER, the geometry of the confining

equilibrium magnetic field B0 is conceived to ensure properly confined charged particle orbits, including fusion α-
particles. While transport due to classical collisional processes is sufficiently small, the concern is transports via
collective fluctuations driven unstable by α-particles via wave-particle resonances. Such collective instabilities may be
toroidal-symmetry breaking and, thus, could destroy the generalized toroidal motion of fusion α’s; leading to enhanced
α-particle loss. Such “anomalous” enhanced loss is, of course, detrimental to the success of MFE research.
In order to achieve wave-particle resonances, the α-particle characteristic dynamical frequencies need to match

the wave frequencies of the collective instabilities. As, typically, α-particle velocity-space distribution function is
isotropic and, after slowing down due to Coulomb collisions, decreases with energy; i.e., velocity-space gradient is
stabilizing, no collective fluctuations around the cyclotron frequency (or “gyrofrequency”) will be excited. That is,
the relevant instability drive is due to the finite real-space gradients of the distribution function (i.e., the expansion
free energy). The dynamical frequencies are, thus, associated with the guiding-center motion; i.e., transit, bounce,
and precessional frequencies in, e.g., a tokamak device. The corresponding wave frequencies then fall inside the
magnetohydrodynamic (MHD) regime (Alfvén, 1942, 1950); which are O(10−2) smaller than Ωi, the ion gyrofrequency,
for typical tokamak parameters. As to the three finite-frequency MHD modes, the most relevant one is the nearly
incompressible, anisotropic shear Alfvén wave (SAW); with dispersion relation ω = k‖vA. Here, k‖ = k ·B0/B0 is the
parallel wave vector and vA = B0/

√
4π̺0 is the Alfvén speed, with ̺0 the plasma mass density. The compressional/fast

Alfvén wave with ωf ≃ kvA tends to have frequencies at least O(10) higher than those of SAW and, generally, are
more difficult to excite. The slow sound wave with ωs ≃ k‖cs (cs is the sound speed), meanwhile, is also typically
stable due to significant ion Landau damping with Te ∼ Ti; where Te and Ti are, respectively, thermal electron and ion
temperatures. The above discussions are obviously applicable to energetic/fast (relative to the thermal background
plasma) charged particles produced by auxiliary heating sources; such as radio-frequency waves and/or neutral beam
injection. Collective excitations of SAW instabilities by energetic/fast particles (EPs) and the ensuing nonlinear
consequences on EP confinement as well as, on longer time scales, the confinement and stability of thermal background
plasmas are, thus, crucial issues for both present-day MFE devices and future burning-plasma experiments.

A. Historical review

Energetic particles in burning plasmas of fusion interest consist, as mentioned above, of electrically charged fusion
products as well as supra-thermal ions and electrons, generated by external power sources that are used for heating and
current drive or, more generally, for tailoring and controlling equilibrium plasma profiles. The possible detrimental
roles of SAWs on EP confinement in burning plasmas was brought to researchers’ attention in the MFE physics
community since the pioneering works by Kolesnichenko and Oraevskij (Kolesnichenko and Oraevskij, 1967), Belikov
et al. (Belikov et al., 1968, 1969), Rosenbluth and Rutherford (Rosenbluth and Rutherford, 1975), and by Mikhailovskii
(Mikhailovskii, 1975a,b). As the characteristic frequencies of EP motions in fusion devices are of the same order of
those typical of SAWs, and the SAW group velocity, meanwhile, is parallel to the ambient magnetic field, resonant
wave-particle interactions, thus, may, on the one hand, directly excite a variety of SAWs and, on the other hand, yield
an efficient transport channel for EPs.
In the 80s, increasing theoretical attention was devoted to the analysis of the effects of fusion α’s in burning plasmas;

e.g., in the works by (Kolesnichenko, 1980) and (Tsang et al., 1981). However, the problem of SAWs interactions with
EPs and of related transport processes became an issue of immediate practical interest, and not just a concern to be
eventually considered in reactor relevant burning plasmas, at the time of the first observation of the fishbone mode
instability in the PDX tokamak (McGuire et al., 1983); causing dramatic global losses of EPs due to a secular transport
process (White et al., 1983). This instability has been theoretically explained as resonant excitation of an internal
kink mode and its self-consistent non-linear interplay with the EP non-uniform source (Chen et al., 1984). After
fishbone observation and theoretical interpretation, MHD modes have been considered on the same footing as SAWs
concerning their possible effect on EPs confinement in fusion devices. Essential physics ingredients in these analyses
were recognized to be non-uniform equilibrium profiles of EP sources as well as of SAW continuous spectrum (Chen,
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1988, 1994; Chen et al., 1984; Cheng et al., 1985), the corresponding continuum damping by phase mixing (Grad,
1969), and specific equilibrium geometries of magnetized plasmas confined in toroidal devices, yielding frequency gaps
in the SAW continuum (D’Ippolito and Goedbloed, 1980; Kieras and Tataronis, 1982; Pogutse and Yurchenko, 1978).
An important theoretical result was that discrete Alfvén Eigenmodes (AEs), such as Toroidal Alfvén Eigenmodes

(TAEs), can exist essentially free of continuum damping in the frequency gaps of the SAW continuous spectrum (Cheng
et al., 1985). Experimental observations of TAEs (Heidbrink et al., 1991; Wong et al., 1991) and of lower frequency
AEs dubbed Beta induced Alfvén Eigenmodes (BAEs) (Heidbrink et al., 1993), and, most importantly, the evidence
that these modes may have significant impact on EP transport were the findings that finally have brought significant
and continuing attention of the MFE research community to the physics of Alfvén waves and EPs in burning plasmas.
In fact, only a small fraction of fusion α’s or EP losses can be tolerated in ITER without significantly degrading the
fusion yield or damaging the plasma facing components (Fasoli et al., 2007; ITER Physics Expert Group on Energetic
Particles, Heating and Current Drive, ITER Physics Basis Editors, 1999).
Another important theoretical prediction was the existence of energetic particle continuum modes (EPM) (Chen,

1994); i.e., non-normal modes of the SAW continuous spectrum, which emerge as discrete fluctuations at the frequency
that maximizes wave-EP power exchange above the threshold condition set by EP drive exceeding continuum damping.
In this respect, fishbones could be considered one special case and the first example of EPM. In the presence of EPM
and/or fishbones, the low critical level of tolerable EP losses in a fusion device can become more severe. In fact,
being non-normal modes, both fishbones and EPMs maintain maximum wave-EP power exchange and ensuing EP
transports through their nonlinear evolution by phase locking with resonant particles via frequency sweeping (Briguglio
et al., 2007, 1998; Vlad et al., 2004, 2013; Zonca et al., 2005). In turn, phase locking is responsible for the secular
transport process first introduced by (White et al., 1983) to explain fishbone induced EP losses. Intuitively, secular
losses of EPs are characterized by a different energy spectrum than EP diffusive losses and tend to be more critical,
since resonant EPs are typically lost before significant thermalization (Chen et al., 1988; White et al., 1983). The
self-consistent non-linear interplay of EP spatial distributions with the EPM radial mode structures plays a crucial
role in all these processes. Experimental observations of EPMs and corresponding EP transports have been reported
(Gorelenkov et al., 2000; Gorelenkov and Heidbrink, 2002) right after their theoretical prediction. Meanwhile, first
spectacular observations of these phenomena, dubbed abrupt large amplitude events (ALE) (Shinohara et al., 2001),
were reported in the JT-60U tokamak (Shinohara et al., 2004) and are among the clearest experimental evidences of
strong EP redistributions so far together with observations of EP losses/redistributions in the DIII-D (Duong et al.,
1993; Heidbrink and Sadler, 1994; Strait et al., 1993) and NSTX tokamaks (Fredrickson et al., 2009; Podestà et al.,
2011, 2009).
Since the early evidences of AEs (Heidbrink et al., 1993, 1991; Wong et al., 1991) and EPMs (Gorelenkov et al., 2000;

Gorelenkov and Heidbrink, 2002) in tokamak plasmas, a whole “zoology” of modes have been observed (Heidbrink,
2002), with a classification following the qualitative features of experimental measurements. All these fluctuations
can be actually understood and explained within the theoretical framework based on one single general fishbone-like
dispersion relation (GFLDR), first introduced for the description of the fishbone mode (Chen et al., 1984), and later on
derived for different branches of SAW fluctuations, demonstrating its general validity (Chen, 2008; Chen and Zonca,
2007a; Zonca et al., 2007a; Zonca and Chen, 2006, 2007). The usefulness of the GFLDR theoretical framework stands
in its capability of providing a simple description of the underlying physics and extracting the distinctive features of
the different AE/EPM branches that have been observed experimentally or in numerical simulations. Furthermore, the
GFLDR also naturally introduces the spatiotemporal scales of the process involved, thereby explaining the connection
between MHD fluctuations, SAWs and drift wave turbulence (DWT). The historical review of various experimental
observations of AE/EPM and their theoretical interpretations is further articulated in Secs. III and IV. Successful and
positive feedbacks between theory and experiment in this area were made possible by the development of impressive
diagnostic techniques as well as numerical simulation capabilities (cf. Sec. IV.C), accompanied by detailed physics
understanding. Meanwhile, one element of enrichment was brought by the fruitful exchanges between MFE tokamak
and stellarator expert communities (Kolesnichenko et al., 2011; Toi et al., 2011).
Of the two “routes” to nonlinear dynamics of EP-driven SAW instabilities (Chen and Zonca, 2013); i.e., nonlinear

wave-wave and wave-EP interactions (cf. Sec. V), the former one was historically addressed first in the classic
work by Hannes Alfvén, demonstrating the existence of the pure “Alfvénic state”, where SAW can exist in uniform,
incompressible MHD plasmas independently of their amplitude due to the cancellation of Reynolds and Maxwell
stresses and the incompressible plasma motion produced by SAW (Alfvén, 1942, 1950; Walén, 1944). However, in
MFE research, nonlinear SAW-EP interactions have attracted most of the interest until very recently because of the
important role of EP transports in burning plasmas.
Within the first “route”, it is illuminating to explore the various nonlinear wave-wave dynamics in terms of the

mechanisms that yield to breaking of the “Alfvénic state” (Chen and Zonca, 2013). The effect of plasma compressibility
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in the macroscopic MHD limit was investigated by (Sagdeev and Galeev, 1969), demonstrating the decay instability of
a SAW into an ion sound wave (ISW) and a back-scattered SAW. Later, plasma compressibility effects were explored
by (Hasegawa and Chen, 1976) for micro-scale fluctuations with wavelengths of the order of the thermal ion Larmor
radius. This analysis not only generalized former results about parametric decay instability of SAW into a back-
scattered SAW and an ISW, but demonstrated important consequences on plasma transport due to the different
features of scattered SAW fluctuation spectra at short wavelengths. These processes are discussed in Sec. V.B, while
Sec. V.C analyzes examples of processes breaking the “Alfvénic state” in toroidal geometry and responsible of cross-
scale couplings between MHD fluctuations, SAWs and DWT; i.e., of direct relevance to MFE and addressed in the
first theoretical analyses of wave-wave interactions among Alfvénic fluctuations in fusion plasmas (Hahm and Chen,
1995; Spong et al., 1994; Zonca et al., 1995), recently reviewed by (Chen and Zonca, 2013).

Within the second “route” to nonlinear dynamics of EP-driven SAW instabilities (cf. Sec. V.D), the first nonlinear
analysis of “thermonuclear Alfvén instability” was reported by (Belikov et al., 1974), using the quasilinear description
of a weakly turbulent plasma (Drummond and Pines, 1962; Vedenov et al., 1961a). This case shows the important
influence on MFE research of original works on nonlinear wave-particle dynamics in one-dimensional (1D) systems,
investigated by pioneers in the early 60s; e.g., (O’Neil and Malmberg, 1968), adopting the paradigmatic case of
the interaction of a supra-thermal electron beam with a plasma in a strong axial magnetic field. This simple system
provides the framework in which various processes were investigated and understood, such as mode dispersion relations,
Landau damping in a finite amplitude wave (Mazitov, 1965; O’Neil, 1965), and nonlinear behaviors due to wave-particle
interactions [e.g., (O’Neil et al., 1971)]. The interest for the beam-plasma system has been revived in the 90s, when it
was proposed as paradigm for interpreting experimental observation of AEs excitation by EPs and related non-linear
dynamics processes near marginal stability (Berk et al., 1996b, 1997b, 1992a; Breizman et al., 1997, 1993), based
on their one-to-one correspondence with the evolution of the “bump-on-tail” instability (Langmuir wave) in a 1D
plasma (Berk and Breizman, 1990a,b,c). This “bump-on-tail” paradigm has clear advantages of using a simple 1D
system for complex dynamics studies and has been extensively applied for comparisons of theoretical model predictions
with experimental observations, recently reviewed by (Breizman and Sharapov, 2011). There are however limitations
of the extent to which it can be used for interpreting burning plasma behaviors in toroidal systems. The nonlinear
dynamics due to the self-consistent interplay of fluctuations evolution and EP transports leads typically to secular
EP losses due to EPMs/fishbones and phase locking of fluctuations with resonant particles via frequency sweeping.
Theoretical analyses of these processes require an alternative “fishbone” paradigm (Chen and Zonca, 2013), proposed
by (White et al., 1983) for explaining fishbone induced EP losses and further developed in the analyses of nonlinear
EPM dynamics and ensuing EP transports (Briguglio et al., 1998; Vlad et al., 2004; Zonca et al., 2000, 2005), where
magnetic field geometry and plasma nonuniformities play major roles. Ultimately, it is possible to demonstrate the
unification of these two paradigms for nonlinear wave-EP interactions (Chen and Zonca, 2013) (cf. Sec. V.D), based
on the solution of the Dyson equation for the EP distribution function (Al’tshul’ and Karpman, 1965, 1966).

Due to the intrinsic difficulty of self-consistent nonlinear description of SAW interactions with EPs and of their
fluctuation spectra, EP transports in burning plasmas have been typically addressed by test-particle methods (Hsu
and Sigmar, 1992; Sigmar et al., 1992); i.e., assuming a given fluctuation spectrum and removing the possible feedback
of EP redistributions on the fluctuations themselves (cf. Sec. VI). As AE fluctuations are local in nature and have
generally small intensity [cf., e.g.. (Heidbrink, 2008)], EP redistributions by AEs are expected to be typically small,
unless stochastization threshold of EP motions in phase-space is reached in the presence of many modes. Realistic
predictions of test particle transport in ITER are, however, still not available. In fact, not only the threshold for
stochastic EP transport is very sensitive to details of the underlying physics and adopted model (White et al.,
2010a,b), but predicting EP redistributions and losses requires necessarily realistic sources, geometries and boundary
conditions. Such thorough and detailed calculation of AE spectra in ITER with comprehensive global gyrokinetic
and/or extended hybrid MHD-gyrokinetic codes (cf. Sec. II) will be likely available in the near future. Meanwhile, the
progress in computational capabilities and understanding of essential physics ingredients will soon allow first principle
based numerical simulations of self-consistent EP transports in fusion plasmas; i.e., including the secular losses due
to EPM/fishbones, which cannot be described by test-particle methods.

B. Scope of the present review

The first and thorough experimental review of SAW and EP physics in burning plasmas is given by (Heidbrink and
Sadler, 1994). This work was followed by that by (Wong, 1999), which is focused on experiments in the Tokamak
Fusion Test Reactor (TFTR) (Grove and Meade, 1985) but still provides a general overview of MFE research in this
area. A dedicated review of α-particle physics experiments in TFTR is given by (Zweben et al., 2000), while high
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performance D-T experiments in the Joint European Torus (JET) (Gibson and the JET Team, 1998) were stable to
SAW excited by fusion α’s (Sharapov et al., 1999) (cf. Sec. IV). Meanwhile, a joint activity of the international MFE
community has produced the first review of the physics of SAW and EPs in ITER plasmas in (ITER Physics Expert
Group on Energetic Particles, Heating and Current Drive, ITER Physics Basis Editors, 1999), which was updated
later on (Fasoli et al., 2007).

Basic theoretical reviews can be found in (Mahajan, 1995), analyzing the general linear properties of the SAW
fluctuation spectrum; and in (Chen and Zonca, 1995), with a discussion of the complications and twists of SAW
physics in realistic toroidal geometries. A general overview of both linear and nonlinear SAW and EP physics is given
by (Vlad et al., 1999), along with a discussion of numerical simulation results using the hybrid MHD-gyrokinetic
model (Park et al., 1992). The work by (Pinches et al., 2004a) mainly focuses on aspects of the interplay between
advancements in nonlinear theory, also reviewed by (Breizman, 2006), and comparisons with experimental data. Other
brief overviews are available, with emphasis on the self-consistent interaction of nonlinear SAW dynamics with EP
transport and complex behaviors in burning plasmas (Chen and Zonca, 2007a; Zonca et al., 2006).
Key issues for burning plasmas are summarized by (Heidbrink, 2002) and a general review of basic physics of Alfvénic

fluctuations and EPs in toroidal plasmas is given by (Heidbrink, 2008). An updated view of experimental results
since (Heidbrink, 2002; Wong, 1999) and of the further progress in nonlinear theory comparison with experimental
data is presented by (Breizman and Sharapov, 2011). For stellarators, a recent experimental review can be found in
(Toi et al., 2011), while theoretical aspects are reviewed by (Kolesnichenko et al., 2011), both with emphasis on the
“affinity and difference between energetic-ion-driven instabilities in 2D and 3D toroidal systems”.

The scope of the present review is to provide a comprehensive analysis of physics processes involved with SAW and
EP behaviors in burning plasmas within a unified and self-contained theoretical framework. As prevalent Alfvénic
fluctuations are in the MHD frequency range (|ω| ≪ Ωi), basic equations are derived from the nonlinear gyrokinetic
equation (Frieman and Chen, 1982) (cf. Sec. II). Meanwhile, the general fishbone like dispersion relation (GFLDR)
(cf. Sec. IV.A) provides the foundation of the unified theoretical framework used throughout this work and makes
it possible to identify and isolate the physics processes underlying SAW dynamics and EP physics, recognizing their
characteristic spatial and temporal scales.

Experimental observations and numerical simulation results are important elements of existing literatures in this
area, and are referred to in this work as means for elucidating concepts that are introduced theoretically. Thus, the
present review offers different levels of reading that are merged and integrated into the same narrative to address the
different aspects that may be of interest to theoreticians, modelers and/or experimentalists. At the same time, the
GFLDR theoretical framework manifests its usefulness by suggesting the interpretation of experimental observations
and numerical simulation results on the basis of the underlying physics, while various models and computation
techniques with different levels of approximation can be used to validate and verify theoretical predictions.

The application of the GFLDR theoretical framework to nonlinear SAW and EP dynamics (cf. Sec. V) allows
separating wave-wave and wave-EP nonlinear interactions based on the respective spatiotemporal scales, and unifying
the “bump-on-tail” and “fishbone” paradigms for nonlinear SAW-EP interactions based on the solution of the Dyson
equation for the EP distribution function (Al’tshul’ and Karpman, 1965, 1966). It also naturally yields to the
formulation of a general nonlinear Schrödinger equation with integro-differential nonlinear terms (cf. Sec. V.A),
which can be used to draw analogies between this area of MFE and neighboring fields of physics research; such as
fluid turbulence, condensed matter, nonlinear dynamics and complexity, fractional kinetics, and accelerator physics (cf.
Secs. V.D and V.E). This unified approach also elucidates the crucial role of EPs as mediators of cross scale coupling
and long time scale behaviors in burning plasmas (Zonca, 2008; Zonca et al., 2013a; Zonca and Chen, 2008a).
In spite of the broad range of topics discussed by this review, it is far from being complete. A summary of relevant

issues left out of this work is given in Sec. VII, along with elements for reflections on some of the major research
topics in the MFE field for the next decade or so, in the perspective of ITER operations.

II. BASIC EQUATIONS AND CONCEPTS

In this section, we consider a magnetized plasma in general geometry and briefly review the dynamic equations
for the description of low-frequency electromagnetic fluctuations, produced by the self-consistent charged-particle
motion in the fluctuating fields. The low-frequency ordering in magnetized plasmas is referred, as usual, to oscillation
frequencies that are much smaller than the ion cyclotron frequency Ωi, where Ω = eB0/(mc), with the subscript i
denoting ions, B0 denotes the strength of the local equilibrium magnetic field, e stands for the generic particle electric
charge and m for its mass. Similarly, in all what follows, subscript e refers to electrons and, when needed, subscript
E denotes energetic or fast (supra-thermal) particles, which may be ions and/or electrons.
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A self-consistent description of low-frequency electromagnetic fluctuations is based on the derivation of gyrokinetic
Maxwell equations (Antonsen and Lane, 1980; Catto et al., 1981; Frieman and Chen, 1982)1, expressed in terms of
moments of the gyrocenter Vlasov (Boltzmann) distribution. Within this approach, one can systematically decouple
(Rutherford and Frieman, 1968; Taylor and Hastie, 1968) the the nearly periodic particle gyromotion (Kruskal, 1962;
Northrop, 1963) from the fluctuation dynamics. This is achieved in two steps (Brizard, 1989; Dubin et al., 1983;
Hahm, 1988; Hahm et al., 1988), based on asymptotic decoupling of the fast gyromotion time scale from a set
of Hamilton equations by Lie-transform methods (Brizard, 1990; Littlejohn, 1982; Qin and Tang, 2004). First, the
guiding-center Hamilton equations are derived eliminating the gyroangle dependence associated with the gyromotion of
charged particles about equilibrium magnetic field lines. Second, the new gyrocenter Hamilton equations are obtained
eliminating the gyroangle dependence in the perturbed guiding-center equations due to the presence of electromagnetic
fluctuations. In this way (Brizard and Hahm, 2007), it is possible to construct the gyrocenter magnetic moment as
adiabatic invariant corresponding to the fast and nearly periodic particle gyromotion in the gyrocenter gyroangle,
which is an ignorable periodic coordinate, while the guiding-center magnetic moment adiabatic invariance is modified
by the introduction of low-frequency electromagnetic fluctuations (Taylor, 1967).
In the following, within the theoretical framework of nonlinear gyrokinetic theory (Frieman and Chen, 1982), we

discuss the dynamic equations governing the low-frequency response of a quasineutral, finite-β, magnetized plasma,
with β = 8πP/B2

0 defined as the ratio between kinetic and magnetic energy densities. We describe the low-frequency
plasma oscillations in terms of three fluctuating scalar fields, having chosen to work in the Coulomb gauge: the scalar
potential perturbation δφ; the parallel (to b = B0/B0) magnetic field perturbation δB‖; and the parallel (to b) vector
potential fluctuation δA‖.

A. Gyrokinetic ordering of physical quantities

The ordering of spatiotemporal scales and fluctuation strength is the usual one in gyrokinetic theory. The back-
ground plasma is described by means of the small parameter ǫB ≡ ρi/LB, with ρi denoting the ion Larmor radius
and

|ρi∇ lnB0| ∼ ǫB and

∣∣∣∣
1

Ωi

∂

∂t
lnB0

∣∣∣∣ ∼ ǫ3B . (2.1)

A similar ordering is introduced for the background Vlasov (Boltzmann) distribution function f0

|ρi∇ ln f0| ∼ ǫF and

∣∣∣∣
1

Ωi

∂

∂t
ln f0

∣∣∣∣ ∼ ǫ3F . (2.2)

The usefulness of having separate orderings, based on ǫB and ǫF , is the possibility of introducing ǫB/ǫF as an
auxiliary ordering parameter for exploiting the inverse aspect-ratio expansion in a/R0 ∼ ǫB/ǫF to simplify theoretical
description of toroidal magnetized plasmas, with a and R0 the torus minor and major radii, respectively. The time-
scale ordering of Eqs. (2.1) and (2.2) is consistent with the transport time-scale ordering (Hinton and Hazeltine, 1976),
as noted in (Frieman and Chen, 1982).
Spatial and temporal scales in the fluctuation fields (δφ, δA‖, δB‖) and distribution function (δf) are described in

terms of the ordering parameters (ǫ⊥, ǫω)

|k⊥ρi| ∼ ǫ⊥ ∼ 1 and

∣∣∣∣
ω

Ωi

∣∣∣∣ ∼ ǫω ≪ 1 , (2.3)

with k and ω the wave vector and angular frequency, and the subscript ⊥ indicating the component perpendicular to
b. The ordering for k‖ is obtained from the condition that strong wave-particle interactions may be described within
the gyrokinetic ordering, i.e., denoting by vti the ion characteristic (thermal) speed

ω ∼ k‖vti and

∣∣∣∣
k‖

k⊥

∣∣∣∣ ∼
ǫω
ǫ⊥

. (2.4)

1 See (Brizard and Hahm, 2007) for a recent and comprehensive review.
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We note that the ordering of Eqs. (2.3) and (2.4) may be applied to either thermal ions, as usual, or to supra-
thermal (energetic) particles, yielding to a broad range of frequency and wavelength spectra of fluctuations that can
be described within the present theoretical framework (cf. Secs. II.B, II.D and II.E as well as Sec. IV.B).
When investigating fluctuations of the Alfvén branch, the |k‖/k⊥| ratio reflects the frequency ratio of shear Alfvén to

compressional Alfvén waves. In most of this work (see Sec. II.D and II.E), we will assume that these frequency scales
are well separated; for this is the condition under which Alfvénic instabilities are most easily excited by both thermal
and supra-thermal particles in fusion plasmas. Meanwhile, when considering compressional Alfvén waves (CAWs),
the frequency ordering reads ω/Ωi ∼ |k⊥|vA/Ωi ∼ |k⊥ρi|/β1/2, with vA = B0/

√
4π̺m0 the Alfvén speed and ̺m0 the

plasma mass density, so that the oscillation frequency can no longer be considered small compared with Ωi for typical
conditions in fusion plasmas. In this case, a high-frequency gyrokinetic description of linear plasma dynamics may
still be derived (Chen and Tsai, 1983; Lashmore-Davies and Dendy, 1989; Qin et al., 2000, 1999a; Tsai et al., 1984),
but its discussion is outside the scope of the present review. Note that, while the ordering |k‖/k⊥| ≃ ǫω/ǫ⊥ ≪ 1
is consistent with gyrokinetic ordering, it is, in general, not necessary (Brizard and Hahm, 2007; Qin et al., 1998,
1999b).
The relative fluctuation levels are estimated by the ordering parameter

∣∣∣∣
δf

f0

∣∣∣∣ ∼
∣∣∣∣
δB⊥

B0

∣∣∣∣ ∼
∣∣∣∣∣
δ ˙̄X⊥

vti

∣∣∣∣∣ ∼ ǫδ ≪ 1 , (2.5)

with δ ˙̄X⊥ the perturbed gyrocenter velocity (cf. Eq. (2.25) below)

∣∣∣δ ˙̄X⊥

∣∣∣ ∼
∣∣∣∣
cδE⊥

B0

∣∣∣∣ ∼
∣∣∣∣v‖

δB⊥

B0

∣∣∣∣ ∼
∣∣∣∣ǫ⊥

e

Ti
δφ

∣∣∣∣ vti ∼
∣∣∣∣ǫ⊥

e

Ti

v‖

c
δA‖

∣∣∣∣ vti (2.6)

and Ti stands for the ion characteristic (thermal) energy. Finally, again, in most of this work it is assumed that SAW
and CAW frequencies are well separated (|k‖/k⊥| ≪ 1), so that the compressional component of the magnetic field
fluctuation satisfies approximately the perpendicular pressure balance (Chen and Hasegawa, 1991)

∇⊥

(
B0δB‖ + 4πδP⊥

)
≃ 0 . (2.7)

Thus, the compressional component of the magnetic field fluctuation2 δB‖ is ordered as

∣∣∣∣
δB‖

B0

∣∣∣∣ ∼ βǫδ ≪ 1 ⇒
∣∣∣∣µ

∇⊥δB‖

Ωi

∣∣∣∣ ∼ βǫδvti (2.8)

which apply in general for both low- and high-β magnetized plasmas. Here, µ = v2⊥/(2B0) is the magnetic moment.
In the next subsection, we summarize the dynamic equations governing the low-frequency response of a quasineutral,

finite-β, magnetized plasma, which apply for arbitrary β; i.e., both in space (Chen and Hasegawa, 1991), for β ∼ 1,
and laboratory plasmas (Hahm et al., 1988), for β ≪ 1. The simplified equations for β ≪ 1, more readily adopted for
the description of the drift-Alfvén wave (DAW) dynamics in tokamak plasmas of fusion interest, which are the main
focus of the present review, will be discussed in Sec. II.D. Finally, the further limiting case of the governing equations,
which may be generally adopted for investigating DAW excitation by energetic particles (EPs) in burning plasmas is
given in Sec. II.E.

B. Theoretical model and formal governing equations

Due to the gyrokinetic wavelength ordering, discussed in Sec. II.A, k2λ2D ∼ λ2D/ρ
2
i ∼ Ω2

i /ω
2
pi ≪ 1, with λD the Debye

length and ωpi the ion plasma frequency, Poisson’s equation becomes approximately the quasineutrality condition

∑
e 〈δf〉v = 0 , (2.9)

where
∑

implicitly indicates summation on all particle species and 〈. . .〉v denotes integration in velocity space.

2 This denomination is due to the fact that δB‖ modifies the magnetic energy density at order ǫδ.
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The equation for δB‖ is readily obtained from the perpendicular component of the low-frequency Ampère’s law
(without displacement current, since |k|2c2 ≫ |ω|2)

∇⊥δB‖ = κδB‖ +∇‖δB⊥ + (∇b) · δB⊥ +
4π

c

∑
e 〈b× v⊥δf〉v . (2.10)

Here, ∇‖ ≡ b · ∇, ∇⊥ ≡ ∇ − b∇‖, κ ≡ b · ∇b is the equilibrium magnetic field curvature and the perpendicular
magnetic field fluctuation can be expressed as

δB⊥ = ∇⊥δA‖ × b+ (b× κ)δA‖ + b×∇‖δA⊥ + (b×∇b) · δA⊥ . (2.11)

Last, the equation for δA‖ can be written in terms of the vorticity equation

∇ · δj = B0 ·∇
(
δj‖

B0

)
+∇ · δj⊥ = 0 . (2.12)

Here, the fluctuating parallel current density is expressed in terms of δA‖ via the parallel component of the low-
frequency Ampère’s law

δj‖ =
c

4π
b ·∇× (∇× δA) =

c

4π

{[
−∇2 + κ2 + (∇b) : (∇b)

]
δA‖ + (∇× b)‖ δB‖

+(∇b) : (∇δA⊥) +∇ · [(∇b) · δA⊥] + (κ ·∇b) · δA⊥ + (b ·∇δA⊥) · κ} , (2.13)

while the fluctuating perpendicular current is obtained from the perpendicular component of the force balance

∂

∂t
δ (̺mu) = −∇ · δP + δ

(
j ×B

c

)
. (2.14)

Here, as usual, we have introduced the fluctuating plasma mass density and flow

δ̺m =
∑

m 〈δf〉v and δ (̺mu) =
∑

m 〈vδf〉v , (2.15)

as well as the perturbed stress tensor δP

δP =
∑

m 〈vvδf〉v . (2.16)

Equation (2.14) is readily solved for δj⊥ and yields

(
1 +

δB‖

B0

)
δj⊥ =

c

B0
b×

[
∂

∂t
δ (̺mu) +∇ · δP

]
− j⊥0

δB‖

B0
+
(
j‖0 + δj‖

) δB⊥

B0
. (2.17)

Substituting back into Eq. (2.12), one obtains the general form of the vorticity equation

B0

(
b+

δB⊥

B0

)
·∇

(
δj‖

B0

)
+ δB⊥ ·∇

(
j‖0

B0

)
+ δB‖∇‖

(
δj‖

B0
+
j‖0

B0

)

− (j0 + δj) ·∇
(
δB‖

B0

)
+∇ ·

[
c

B0
b×

(
∂

∂t
δ (̺mu) +∇ · δP

)]
= 0 . (2.18)

Equations (2.9), (2.10) and (2.18) form the closed set of dynamic equations formally governing the low-frequency
response of a quasineutral, finite-β, magnetized plasma, once the perturbed particle distribution function δf is given
and the perpendicular magnetic field fluctuation is obtained by Eq. (2.11). Meanwhile, Eqs. (2.13) and (2.17) are
considered as definitions for δj‖ and δj⊥, and Eqs. (2.15) and (2.16) are used for δ (̺mu) and δP . In fact, given δA‖

and δB‖ = b · ∇ × δA, and noting the Coulomb gauge ∇ · δA = 0, δA⊥ is uniquely determined. By construction,
Eqs. (2.9), (2.10) and (2.18), for wavelengths that are much longer than the Debye length, are completely equivalent
to the gyrokinetic Maxwell equations (Brizard and Hahm, 2007), once the perturbed particle fluid moments are
expressed in terms of the perturbed gyrocenter fluid moments (Brizard, 1992). These equations are also equivalent
to the formulation adopted in most literatures, once the parallel Ampère’s law is employed in the vorticity equation,
Eq. (2.18).
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C. Ordering estimates of vorticity equation and physical time scales

Unlike most treatments available in the literature, the present theoretical framework does not assume any particular
ordering of the perpendicular wavelength with respect to characteristic equilibrium spatial scales: this is the reason
why Eqs. (2.10), (2.11) and (2.13) maintain terms that depend on equilibrium geometry, which may be important
when treating long wavelength modes (Brizard and Hahm, 2007; Qin et al., 1998, 1999b). However, while the nonlinear
formal kinetic equations governing collisionless plasmas in the drift kinetic limit (vanishing Larmor radius) are given
by (Kulsrud, 1983), expressions of the perturbed particle fluid moments in terms of the perturbed gyrocenter fluid
moments (Brizard, 1992), valid for general low-frequency electromagnetic fluctuations and at arbitrary wavelengths
are still not available at present. Thus, the formulation of Eqs. (2.9), (2.10) and (2.18) remains of little use for
practical applications3. Nonetheless, it allows a detailed discussion of the relative importance of various contributions
and, ultimately, the derivation of a set of reduced nonlinear equations, which will be used in the present work.
The first term in the vorticity equation, Eq. (2.18), represents the linear magnetic field line bending, which we

denote to be O(1). The second one is its nonlinear extension, related with the perpendicular Maxwell stress, ordered
as ∼ ǫ⊥ǫδ/ǫω within the gyrokinetic ordering introduced in Sec. II.A. The third term, representing the kink drive, is
of order ∼ ǫF /ǫ⊥. Meanwhile, the fourth to seventh terms containing magnetic field compressions are, respectively, of
order βǫδ, βǫB/ǫ⊥, β

2ǫF /ǫB and β2ǫ⊥ǫδ/ǫω. The last two terms in Eq. (2.18) represent the plasma inertia response
and the stress tensor contribution, which includes the usual Reynolds stress as well as the divergence of the nonlinear
diamagnetic current. The linear plasma inertia response is of order ∼ ω2/k2‖v

2
A, whereas its nonlinear contribution

is an order ∼ ǫδ/ǫ⊥ higher. The stress tensor linear contribution is of the same order as the inertia term, while the
nonlinear pressure stress tensor response is ∼ (ǫδǫ⊥/ǫω)(ω

2/k2‖v
2
A); the same as the Maxwell stress.

From these estimates of the relative importance of various contributions in Eq. (2.18), we note that while the
perpendicular Maxwell stress and the pressure stress tensor contribution are of the same order, ∼ ǫ⊥ǫδ/ǫω, the inertia
(polarization) nonlinearity is of order ∼ ǫδ/ǫ⊥. Therefore, we can anticipate that, for ǫ2⊥ ∼ ǫω, there will be a
transition between nonlinear dynamics dominated by the polarization response (Sagdeev and Galeev, 1969), where
nonlinear MHD description is reasonably applicable, to a regime where dominant nonlinear interactions are due to the
pressure stress tensor and Maxwell stress, which is the typical condition of gyrokinetic plasma behaviors (Hasegawa
and Chen, 1975, 1976). This change in nonlinear dynamic behavior, first pointed out by (Hasegawa and Chen, 1976)
for kinetic Alfvén waves (KAWs), will be further discussed in Sec. V.B and has important consequence on the spectral
features of Alfvén waves and related transport processes (Chen and Zonca, 2011).
Applying the same orderings to other terms in Eq. (2.18), it can be also concluded that, in tokamaks of current

interest, where β<∼ O(ǫB/ǫF ) ∼ O(10−1), the linear terms containing magnetic field compressions, ∝ δB‖, are ∼
βǫB/ǫ⊥ and ∼ β2ǫF /ǫω ∼ β2ǫF /ǫB<∼ β and, hence, generally negligible. However, more careful considerations are
needed concerning the nonlinear behaviors. For ǫω > ǫ2⊥, the polarization nonlinearity overwhelms the Maxwell stress
and the pressure stress tensor nonlinearity and the nonlinear magnetic field compression contribution is negligible
provided that

O(ǫδ/ǫ⊥) ≫ O(βǫδ;β
2ǫ⊥ǫδ/ǫω) ⇒ O(ǫ−1

⊥ ) > O(ǫ1/2ω /ǫ⊥) > O(1) > β ,

which is readily satisfied for laboratory plasmas of fusion interest. In the opposite limit, ǫω < ǫ2⊥, Maxwell stress and
pressure stress tensor are also typically larger than the nonlinear magnetic field compression contribution, since

O(ǫ⊥ǫδ/ǫω) ≫ O(βǫδ;β
2ǫ⊥ǫδ/ǫω) .

However, for long wavelength incompressible shear Alfvén waves (SAW) in uniform plasmas, satisfying ω2 = k2‖v
2
A,

Reynolds and Maxwell stresses cancel exactly, yielding the well known properties of the Alfvénic state (Alfvén, 1942,
1950; Elsasser, 1956; Hasegawa and Sato, 1989; Walén, 1944), discussed in Sec. V.B. Although a realistic system
can only approach the Alfvénic state, it is in this case important to make sure that residual effects of non exact
cancellations of Reynolds and Maxwell stresses remain more significant than the δB‖ nonlinear term.
Since it is possible to formally write ω = ω0 + i∂t, with ω0 the typical (linear) mode frequency, significance of the

nonlinear terms also depends on the relative time scales of the phenomena they produce in the dynamic evolution
of the system. Ignoring the nonlinear magnetic field compression contribution for ǫω < ǫ2⊥, thus, sets a minimum

3 Obviously, the perturbed particle fluid moments may be computed directly from the particle distribution function, reconstructing it
numerically from the gyrocenter distribution function (Brizard and Hahm, 2007).
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constraint on both the linear (γL) and nonlinear (τ−1
NL) rates; i.e.,

|γL/ω0| ∼ |ω0τNL|−1 ≫ O(βǫδ;β
2ǫ⊥ǫδ/ǫω) .

One, thus, needs to keep these self-consistency requirements in mind when making numerical simulations or the-
oretical analyses either close to marginal stability condition and/or examining long time-scale behaviors. In fact,
nonlinear Alfvén wave behaviors and self-consistent interactions with EPs in toroidal plasmas of magnetic fusion in-
terest (see Sec. V) are characterized by τNL ∼ γ−1

L ∼ ǫBǫ
−1
F β−1ω−1 ≪ ǫ−1

B ǫ−1
ω Ω−1. For typical low-β toroidal plasmas

[β<∼ O(ǫB/ǫF ) ∼ O(10−1)], which are the main focus of this work, magnetic field compression terms in Eq. (2.18)
typically affect the mode dynamics on time scales that are longer than τNL. Thus, they can be consistently neglected
in the present analysis. However, these terms may become important when considering longer time scale behaviors,
e.g., τNL ∼ ǫ−1

ω ω−1, where β2 ≪ ǫω/ǫ⊥ may not be so well satisfied in tight aspect ratio tokamaks (Cox and MAST
Team, 1999; Ono et al., 2000). These self-consistency requirements on linear and nonlinear rates must also be obeyed
when looking at mode nonlinear dynamics to explore the global variations of plasma equilibrium on the transport
time scale [see Eqs. (2.1) and (2.2)]. Although this is an important issue at the forefront of magnetic fusion research,
it is outside the scope of the present review.
In the next subsection, the reduced nonlinear gyrokinetic form of governing equations are derived specifically for

low-β plasmas, which may be readily adopted for the description of the DAW dynamics (Chen et al., 1978; Frieman
and Chen, 1982; Hahm et al., 1988; Hasegawa and Chen, 1976; Mikhailovskii and Rudakov, 1963; Scott, 1997; Tang
and Luhmann Jr., 1976; Tang et al., 1980) in tokamak plasmas.

D. Reduced equations for low-β drift Alfvén waves

Since all the works under the present review are limited to time scales

|ω0τNL|−1 ∼ |γL/ω0| ≫ ǫω ,

we may, as noted in the preceding subsection, self-consistently neglect the magnetic compression δB‖ terms and,
following (Chen et al., 2001), derive the nonlinear gyrokinetic vorticity equation by taking the moments of the
nonlinear gyrokinetic equation of (Frieman and Chen, 1982). Note that this is equivalent to describing the gyrocenter
Hamiltonian up to ∼ ǫδ linear terms. For longer time scales, we need to include ∼ ǫ2δ terms to ensure the exact
conservation of the gyrokinetic energy (Brizard and Hahm, 2007).
It can be readily shown that the particle distribution function f can be written as:

f = e−ρ·∇

[
F̄ − e

m

(
∂F̄

∂E +
1

B0

∂F̄

∂µ

)
〈δLg〉

]
+

e

m

[
∂F̄

∂E δφ+
1

B0

∂F̄

∂µ
δL

]
, (2.19)

where F̄ is the gyrocenter distribution function (Brizard and Hahm, 2007), e−ρ·∇ is the transformation from guiding-
center to particle coordinates, ρ ≡ Ω−1b × v, 〈· · · 〉 denotes gyrophase averaging, E = v2/2 is the energy per unit
mass, µ is the magnetic moment adiabatic invariant µ = v2⊥/(2B0) + . . . and,

δLg = δφg −
v‖

c
δA‖g = eρ·∇δL = eρ·∇

(
δφ− v‖

c
δA‖

)
. (2.20)

In Eq. (2.19), all terms that are not acted upon by e−ρ·∇ are the adiabatic response of the particle distribution function,
the other terms obviously representing the non-adiabatic response of the guiding-center distribution (Antonsen and
Lane, 1980; Brizard and Hahm, 2007; Catto et al., 1981; Frieman and Chen, 1982). Up to order O(ǫδ), one can further
reduce Eq. (2.19) to the following decomposition for the fluctuating particle distribution function (Frieman and Chen,
1982)

δf = e−ρ·∇

[
δg − e

m

1

B0

∂F̄0

∂µ
〈δLg〉

]
+

e

m

[
∂F̄0

∂E δφ+
1

B0

∂F̄0

∂µ
δL

]
, (2.21)

where the fluctuating gyrocenter distribution function δF̄ (Brizard and Hahm, 2007) is related to the non-adiabatic
response δg (Frieman and Chen, 1982) as

δF̄ = δg +
e

m

∂F̄0

∂E 〈δLg〉 , (2.22)
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and δg obeys the following nonlinear gyrokinetic equation
(
∂

∂t
+ v‖∇‖ + vd ·∇⊥

)
δg = −

(
e

m

∂

∂t
〈δLg〉

∂F̄0

∂E +
c

B0
b×∇ 〈δLg〉 ·∇F̄0

)
− c

B0
b×∇ 〈δLg〉 ·∇δg . (2.23)

Here, the magnetic drift velocity vd is

vd =
b

Ω
×
(
µ∇B0 + κv2‖

)
≃

(
µB0 + v2‖

)

Ω
b× κ , (2.24)

where ∇B0 ≃ κB0 in the low-β limit and is consistent with well-known cancellations in the linear vorticity equation,
arising from the perpendicular pressure balance, Eq. (2.7), and plasma equilibrium condition (Hasegawa and Sato,
1989). In the long wavelength limit, Eq. (2.23) has to be slightly modified to account for the perturbed gyrocenter
motion at O(ǫδ) being given by (Brizard and Hahm, 2007)

δ ˙̄X⊥ =
c

B0
b×∇ 〈δLg〉+

v‖

B0
κ
〈
δA‖g

〉
=

c

B0
b×∇ 〈δφg〉+ v‖

〈δB⊥g〉
B0

, (2.25)

with 〈δB⊥g〉 = ∇× b
〈
δA‖g

〉
. As shown by (Qin et al., 1998, 1999b), this distinction in the long wavelength limit is

important for the linear response only, for the nonlinear E × B convection and nonlinear line bending are small at
ǫ2⊥ < ǫω (see Sec. II.B).
The following nonlinear gyrokinetic vorticity equation (Chen et al., 2001) can then be derived from Eq. (2.23) acted

upon by
∑
e e−ρ·∇ and integrated in velocity space;

B0

(
∇‖ +

δB⊥

B0
·∇
)(

δj‖

B0

)
−∇ ·

∑〈
e2

m

2µ

Ω2

(
B0

∂F̄0

∂E +
∂F̄0

∂µ

)(
J2
0 − 1

λ2

)〉

v

∇⊥
∂

∂t
δφ

−
∑

ecb×∇

〈
2µ

Ω2
F̄0

(
J2
0 − 1

λ2

)〉

v

·∇∇2
⊥δφ+

c

B0
b× κ ·∇

∑〈
m
(
µB0 + v2‖

)
J0δg

〉
v

+δB⊥ ·∇
(
j‖0

B0

)
+
∑

e

〈
J0

[
c

B0
b×∇ (J0δφ) ·∇δg

]
− c

B0
b×∇δφ ·∇ (J0δg)

〉

v

+
c

B0
b×∇δφ ·∇

[
∇ ·

∑〈
e2

m

2µ

Ω2

∂F̄0

∂µ

(
1− J2

0

λ2

)〉

v

∇⊥δφ

]
= 0 . (2.26)

Here, J0 is the Bessel function of argument λ and λ2 = 2µB0k
2
⊥/Ω

2. Nonlinear plasma behaviors enter implicitly,
in the pressure curvature coupling with δg, and explicitly, through the perpendicular Maxwell stress (nonlinear line
bending) and the next to last term on the left hand side, which can be shown to be connected with nonlinear
diamagnetic response and gyrokinetic generalization of the Reynolds stress. Note that Eq. (2.26) is pertinent to the
short wavelength regime (ǫ2⊥ > ǫω), consistent with the gyrokinetic ordering discussed in Sec. II.A. In the ǫ2⊥

<∼ ǫω
long-wavelength limit, it is necessary to include an additional term on the left hand side of Eq. (2.26), due to the
nonlinear polarization response; i.e.,

− c2

4π
∇ ·

(
δ̺m
̺m0v2A

∇⊥
∂

∂t
δφ

)
. (2.27)

Meanwhile, the quasineutrality condition Eq. (2.9) can be rewritten as

∑〈
e2

m

∂F̄0

∂E

〉

v

δφ+∇ ·
∑〈

e2

m

2µ

Ω2

∂F̄0

∂µ

(
J2
0 − 1

λ2

)〉

v

∇⊥δφ+
∑

〈eJ0(λ)δg〉v = 0 . (2.28)

The presence of J0 and of velocity space integrals involving δg in Eq. (2.26) as well as in the quasineutrality condition,
Eq. (2.28), shows that these governing gyrokinetic equations for DAWs are integro-differential equations. Given that
δB⊥ = [∇ × (bδA‖)]⊥ and δB‖ = (∇× b)‖ δA‖

4, these equations are closed by the nonlinear gyrokinetic equation,

Eq. (2.23), along with Eq. (2.25), and by the reduced form of the parallel Ampère’s law, Eq. (2.13),

δj‖ =
c

4π
b ·∇× (∇× δA) =

c

4π

[
−∇2 + κ2 + (∇b) : (∇b) + (∇× b)

2
‖

]
δA‖ . (2.29)

4 Note that δB‖ obviously includes a further contribution due to δA⊥, which ensures that Eq. (2.7) is fulfilled; this contribution is assumed
to be accounted for implicitly, when using the expression of magnetic drifts given by Eq. (2.24), as discussed by (Chen and Hasegawa,
1991).
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Equations (2.26) to (2.29) are the governing gyrokinetic equations for low-β DAWs, adopted throughout this work to
investigate their nonlinear dynamics on time scales γLτNL ∼ 1.
Equations (2.26) to (2.29) need to be supplemented by equations governing zonal structures, i.e. for fluctuations

that have k‖ ≡ 0 identically in the whole plasma5 and play crucial roles in regulating the DAW dynamics, as shown in
Sec. V. First, we note that Eqs. (2.26) and (2.28) are not independent for δφz (Chen et al., 2001), with the subscript
z standing for zonal. While Eq. (2.26) governs the evolution of δφz , δA‖z is governed by Eq. (2.29), with the zonal

current δj‖z computed from the solution of Eq. (2.23). Assuming, consistently throughout this review, that δj‖ is
carried by electrons and that k2⊥δ

2
e ∼ ǫ2⊥δ

2
e/ρ

2
i ≪ 1, with δe = c/ωpe the collisionless skin depth and ωpe the electron

plasma frequency, Eq. (2.29) for the zonal current becomes essentially δj‖ze ≃ 0, which reads

∂

∂t
δA‖z =

(
c

B0
b×∇δA‖ ·∇δψ

)

z

, (2.30)

after a straightforward calculation of δfze from Eq. (2.23), with δψ defined by

b ·∇δψ ≡ −1

c

∂

∂t
δA‖ , (2.31)

for given δA‖ with k‖ 6= 0. Note that Eq. (2.30) can also be readily derived from massless electron force balance
along B0. When considering DAWs excited by EPs, Eq. (2.26) can be further reduced, and this is done in the next
subsection.

E. Drift Alfvén waves excited by energetic particles in low-β fusion plasmas

In burning plasmas of fusion interest, EPs are characterized by an energy density, which is comparable to that
of the thermal plasma, so that βE ∼ β. However, due to the significantly higher energy T0i/T0E = O(10−2), the
EP density is typically low, n0E/n0i ∼ T0i/T0E. Thus, it is generally possible to consider reactor relevant plasmas
consisting of two components (Chen et al., 1984): a core or thermal plasma component, essentially providing an
isotropic Maxwellian background made of electrons (e) and ions (i), and an energetic component (E), which is often
anisotropic and non-Maxwellian.
A detailed discussion of the general wavelength and frequency orderings for the case of DAWs resonantly excited

by EPs in space-plasmas was given by (Chen and Hasegawa, 1991) and later specialized by (Zonca and Chen, 2006)
to low-β laboratory plasmas, where

n0E/n0i ∼ T0i/T0E = O(10−2)<∼ βi ∼ βE<∼ O(10−1) . (2.32)

Meanwhile, most unstable EP driven modes are characterized by |kθρE |<∼ 1 (Berk et al., 1992b; Chen, 1994; Fu and
Cheng, 1992; Tsai and Chen, 1993), where ρE is the EP Larmor radius. More precisely, in this inequality ρE represents
the characteristic EP magnetic drift orbit width, corresponding to the relevant wave-particle resonance and typically
larger than the EP Larmor radius. Finally, thermal electrons typically have vte ≫ vA, corresponding to β ≫ me/mi,
and, hence, can be approximated as a massless fluid. These orderings, in addition to the general gyrokinetic orderings
of Sec. II.A and the low-β assumption used in Sec. II.D, allow us to further simplify Eqs. (2.26) and (2.28), while
maintaining an accurate description of nonlinear dynamics of SAW excited by EPs in burning plasmas.
From Eq. (2.23), the thermal electron response as a massless fluid is readily obtained as

(
b+

δB⊥

B0

)
·∇δge = −

(
e

mec

∂δA‖

∂t

∂F̄0e

∂E +
δB⊥

B0
·∇F̄0e

)
. (2.33)

Here, e denotes the electron charge as positive number and the part of core electron response due to particles that
populate the phase space near the trapped to circulating particle boundary has been neglected. Using Eq. (2.33)
for a Maxwellian electron core and recalling Eq. (2.31), the quasineutrality condition, Eq. (2.28) acted upon by
(b+ δB⊥/B0) ·∇, can be cast as

n0ee
2

T0e

[
b ·∇ (δφ− δψ) +

δB⊥

B0
·∇δφ

]
=

(
b+

δB⊥

B0

)
·∇

∑

6=e

(
e 〈δf〉v + e

〈
F̄0

〉
v

)
, (2.34)

5 See (Diamond et al., 2005) for a recent review on the physics of zonal structures.
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where
∑

6=e denotes summation on particle species except for core electrons and equilibrium charge neutrality has
been used explicitly. Note that Eq. (2.34) is just the extended Ohm’s law

(
b+

δB⊥

B0

)
· δE = −

(
b+

δB⊥

B0

)
· ∇Pe
n0ee

, (2.35)

having assumed isothermal electron response. Furthermore, the ordering of Eq. (2.32) allows ignoring the contribution
of EPs to the plasma density6, while the wavelength ordering |kθρE |<∼ 1 indicates that ǫ⊥ ≪ 1 for the core plasma
component. Thus, the quasineutrality condition, Eq. (2.28) or Eq. (2.34), at the lowest order reduces to the ideal
MHD approximation δE‖ = 0 or δφ = δψ.
The gyrokinetic vorticity equation is also greatly simplified with the additional ordering introduced in this subsection

and readily yields

B0

(
∇‖ +

δB⊥

B0
·∇
)(

δj‖

B0

)
− c2

4π
∇ ·

{[(
1 +

δ̺m
̺m0

)
1

v2A
+

3π

B2
0

(
P0⊥i

Ω2
i

+
P0⊥E

Ω2
E

)
∇2

⊥

]
∇⊥

∂

∂t
δφ

}

+
c2

4π
b×∇

[
4π

B2
0

(
P0⊥i

Ωi
+
P0⊥E

ΩE

)]
·∇∇2

⊥δφ+
c

B0
b× κ ·∇

∑〈
m
(
µB0 + v2‖

)
J0δg

〉
v
+ δB⊥ ·∇

(
j‖0

B0

)

+
∑

6=e

ec

2Ω2

{
b×∇

(
∇2

⊥δφ
)
·∇ 〈µδg〉v − b×∇δφ ·∇

〈
µ∇2

⊥δg
〉
v
−∇2

⊥ [b×∇δφ ·∇ 〈µδg〉v]
}
= 0 . (2.36)

Here, we have used the definition P0⊥ =
〈
mµB0F̄0

〉
v
and have adopted the long wavelength limit for both thermal

and energetic ions. In this way, note that energetic ions7, even though they do not contribute to plasma inertia due
to Eq. (2.32), contribute to both finite Larmor radius correction to the plasma inertia (KAW) (Briguglio et al., 1998)
(see Sec. IV.B.3) as well as to the diamagnetic response (Lauber et al., 2012; Wang et al., 2011) (see Sec. IV.B.2),
for these terms depend explicitly on perpendicular pressure. Note, also, that we have omitted the long wavelength
formal expansions of pressure gradient curvature coupling and nonlinear stress tensor for simplicity of notation and
clarity of physics presentation.
In the case of highly energetic ions, the supra-thermal particle density is usually very low and βE < βi; thus, their

contribution to KAW and diamagnetic terms can be formally neglected in Eq. (2.36), which further reduces to

B0

(
∇‖ +

δB⊥

B0
·∇
)(

δj‖

B0

)
− c2

4π
∇ ·

{[(
1 +

δ̺m
̺m0

)
1

v2A
+

3π

B2
0

(
P0⊥i

Ω2
i

)
∇2

⊥

]
∇⊥

∂

∂t
δφ

}

+
c2

4π
b×∇

[
4π

B2
0

(
P0⊥i

Ωi

)]
·∇∇2

⊥δφ+
c

B0
b× κ ·∇

∑〈
m
(
µB0 + v2‖

)
J0δg

〉
v
+ δB⊥ ·∇

(
j‖0

B0

)

+
∑

6=e

ec

2Ω2

{
b×∇

(
∇2

⊥δφ
)
·∇ 〈µδg〉v − b×∇δφ ·∇

〈
µ∇2

⊥δg
〉
v
−∇2

⊥ [b×∇δφ ·∇ 〈µδg〉v]
}
= 0 . (2.37)

Here, the nonlinear term is due to thermal ions only. It is also worthwhile noting that βE < βi is expected in reactor
relevant plasma conditions, where βE ∼ (τsd/τE)βi and the energetic ion (collisional) slowing down time on thermal
electrons, τsd, is short compared to the thermal energy confinement time τE . In the drift kinetic limit (vanishing
Larmor radius), assuming J0 = 1 in the pressure gradient curvature coupling term, Eq. (2.37) correctly describes both
small and large magnetic drift orbit limit for supra-thermal ions, reproducing their nearly adiabatic response to short
wavelength modes (Zonca and Chen, 2006). Since magnetic drift orbits of highly supra-thermal particles are typically
much larger than their Larmor radius, considering the drift-kinetic limit and the possibility of large magnetic drift
orbit energetic ions can be done in a physically consistent fashion and adequately renders both resonant as well as
non-resonant supra-thermal particle dynamics (Zonca and Chen, 2006). This is crucial for the validity of many of the
hybrid MHD-gyrokinetic descriptions of SAW excitations by energetic ions (Briguglio et al., 1995, 1998; Park et al.,
1999, 1992; Todo and Sato, 1998; Todo et al., 1995), which have provided the first successful numerical simulation
approach to this problem.
In the linear limit, Eq. (2.37) coincides with the gyrokinetic vorticity equation discussed by (Qin et al., 1998,

1999b) and, dropping KAW and diamagnetic terms as well, with the reduced form of the linear kinetic-MHD model
by (Brizard, 1994).

6 In doing so, some attention must be paid for applications to present day experiments, where supra-thermal particles may not be as
energetic and low-density as estimated in Eq. (2.32).

7 Supra-thermal electrons, if present, give a negligible contribution to KAW and diamagnetic terms.
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F. Remarks on drift Alfvén wave equations adopted in numerical simulations

In the limit, as discusses in Sec. II.B, that one may self-consistently neglect the δB‖ magnetic compression terms,
a complete gyrokinetic description can then be obtained in terms of (δφ, δA‖) by means of Eqs. (2.9) and (2.29) with

δj‖ =
∑

e
〈
v‖δf

〉
v

; (2.38)

i.e., the quasineutrality condition, and the parallel Ampère’s law. This approach has been adopted as basis for recent
developments of nonlinear gyrokinetic codes, which are able to address the physics of Alfvén waves and EPs in burning
plasmas (Bass and Waltz, 2010; Bottino et al., 2011; Chen and Parker, 2001, 2007; Deng et al., 2012a; Görler et al.,
2011; Holod et al., 2009), and whose simulation results can then be compared with hybrid kinetic-MHD (Briguglio
et al., 1995, 1998; Park et al., 1999, 1992; Todo, 2006; Todo and Sato, 1998; Todo et al., 1995, 2005; Wang et al.,
2011) and gyrofluid codes (Kendl et al., 2010; Spong et al., 1992, 1994).
In the long wavelength limit (cf. Sec. II.E), Eqs. (2.26) to (2.29) reduce to Eqs. (2.34) to (2.37) and recover reduced

MHD as a well-known limiting case of nonlinear gyrokinetic theory (Brizard, 1992; Hahm et al., 1988) and, with
the inclusion of supra-thermal particles, they yield the hybrid MHD-gyrokinetic description of SAW excitations by
energetic ions (Briguglio et al., 1995, 1998; Park et al., 1999, 1992; Todo and Sato, 1998; Todo et al., 1995). Equations
(2.34) to (2.37) in the long wavelength limit also describe kinetic interactions of low-frequency DAWs with thermal
plasma (Wang et al., 2011), which also play crucial roles in linear as well as nonlinear physics of toroidal plasmas (cf.
Secs. IV.B.2 and V.C).
On longer time scales ∼ ǫ−1

B ǫ−1
ω Ω−1 ∼ ǫ−2

ω Ω−1, δB‖ may still be explicitly solved for via perpendicular pressure
balance Eq. (2.7) and nonlinear magnetic field compression effects can be neglected, provided that the self-consistency
requirements on linear and nonlinear rates are satisfied. However, Eq. (2.23) is not sufficiently accurate on these
time scales and the gyrokinetic Lagrangian field theory (Brizard, 2000; Sugama, 2000) is needed for a self-consistent
description of nonlinear gyrokinetic equation and (δφ, δA‖, δB‖) field equations, yielding exact conservation laws. The
corresponding form of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities and exact conservation
properties has been given by (Scott, 2010).
Within the same theoretical framework, the fluid equation approach, discussed in Sec. II.B can be equivalently

adopted, based on the continuity equation and the force balance equation, Eq. (2.14), where the stress tensor is
computed from the particle distribution function, obtained by solution of the nonlinear gyrokinetic equation, as
specified by Eq. (2.16). The fluctuating current, meanwhile, is obtained from δj = (c/4π)∇ × δB and δE from a
suitable form of kinetic Ohm’s law, e.g., derived from Eq. (2.34) (Vlad et al., 2011; Wang et al., 2010a).
Finally, we note that many linear codes exist, which can investigate the stability properties of DAWs in burning

plasmas. It is beyond the scope of the present work to give a comprehensive survey of them. Relevant linear simulation
results will be discussed in the corresponding parts of Secs. IV.B and IV.C. Here, as noted in Sec. II.E, we merely
remind that the linearized Eqs. (2.34) to (2.37) in the long wavelength limit reproduce the model equations discussed
by (Qin et al., 1998, 1999b) and used for numerical simulation of Alfvénic modes excited by fast ions (Lauber et al.,
2009, 2007, 2005).

III. LINEAR ALFVÉN WAVE PHYSICS IN ONE-DIMENSIONAL NONUNIFORM PLASMAS

Shear Alfvén waves (SAWs) are anisotropic electromagnetic waves existing in magnetized plasmas, which have
parallel wavelengths, λ‖ ∼ L‖, comparable to the system size along the equilibrium magnetic field, B0. They can,
however, have a wide range in the perpendicular wavelengths λ⊥, ρi < λ⊥ < L⊥, with ρi the ion Larmor radius
and L⊥ the system size perpendicular to B0. The SAW frequency is ω ≃ k‖vA ∼ O(vA/L‖) much less than the ion
cyclotron frequency Ωi, with vA = B0/

√
4π̺m0 the Alfvén speed. Here, notations are those introduced in Sec. II.

SAW dynamics is, hence, of low frequency and macroscopic scales and, therefore, may cause significant perturbations
in the bulk of the plasma. Furthermore, SAW dynamics is nearly incompressible, whereas compressional Alfvén (CAW)
and slow sound waves tend to be stabilized by finite magnetic and/or plasma compression as well as finite ion Landau
damping. These are the primary reasons why shear Alfvén waves play many important roles in laboratory and space
plasmas. Some examples are (1) heating of laboratory (Chen and Hasegawa, 1974a; Grossman and Tataronis, 1973;
Hasegawa and Chen, 1974; Tataronis, 1975) and solar corona plasmas (Ionson, 1982); (2) resonant interactions with
energetic ions produced during high-power neutral beam and/or radio-frequency laboratory heating experiments or
with alpha particles produced in D-T fusion plasmas (Belikov et al., 1968, 1969; Chen, 1988; Fu and Van Dam, 1989a,b;
Kolesnichenko, 1980; Kolesnichenko and Oraevskij, 1967; Mikhailovskii, 1975a,b; Rosenbluth and Rutherford, 1975;



16

Tsang et al., 1981), which is the main subject of this review work; (3) cross-field transport in magnetospheric plasmas;
e.g., the dayside magnetopause (Hasegawa and Mima, 1978); and (4) acceleration of electrons along the auroral field
lines (Hasegawa, 1976).
One of the unique and most important properties of SAW is that its group velocity vg is directed along B0; i.e.,

vg ≃ vA. In nonuniform plasmas with spatially varying vA this property can then lead to singular oscillations at
the local SAW frequency, for the wave energy is “confined” to the local field line. As the local SAW frequency
varies continuously, we then have oscillations which constitute the so-called shear Alfvén continuous spectrum or
SAW continuum (Grad, 1969). The existence of SAW continuum then suggests that at the layer where the frequency
of the applied radio-frequency source matches the local SAW frequency, the wave equation has a singular point;
leading to resonant wave absorption and the Alfvén wave heating scheme (Chen and Hasegawa, 1974a,b; Grossman
and Tataronis, 1973; Hasegawa and Chen, 1974). That the wave solution becomes singular is, of course, due to
the inadequacy of ideal MHD approximation. Including microscopic kinetic effects, such as finite ion Larmor radii,
removes the singular behaviors by allowing small but finite vg across B0. That is, we have the linear mode conversion
of resonant SAW to the kinetic Alfvén wave (KAW) (Hasegawa and Chen, 1975, 1976).
These fundamental concepts and processes of SAW in nonuniform plasmas are reviewed in this section, using

the simplified description of a 1D plasma equilibrium. We also discuss the existence of Global Alfvén Eigenmodes
(GAE) (Appert et al., 1982; Goedbloed, 1984; Mahajan et al., 1983; Ross et al., 1982) as global modes in a cylindrical
plasma.

A. Shear Alfvén Waves: continuous spectrum and Global Alfvén Eigenmodes

We consider the simple configuration of a 1D plasma slab confined in straight magnetic field (Chen and Hasegawa,
1974a; Goedbloed, 1984). The equilibrium quantities (plasma density, pressure and magnetic field) are assumed to
vary only along the x direction (̺0 = ̺0(x), P0 = P0(x),B0 = B0(x)) and the equilibrium magnetic field is assumed
to have a shear component,

B0(x) = B0y(x)ey +B0z(x)ez . (3.1)

Introducing the standard notation for the displacement vector δu ≡ ∂tδξ, the force balance equation Eq. (2.14) can
be written as

̺m0
∂2

∂t2
δξ = −∇

(
δP +

B0δB‖

4π

)
+

1

4π
(B0 · ∇)2δξ − 1

4π
B0(B0 · ∇)(∇ · δξ) . (3.2)

Using unit vectors (ex, e⊥, b), with e⊥ ≡ b× ex, and standard Fourier plane wave representation, δξ‖ can be solved
in terms of δξx and δξ⊥. Equation (3.2) then yields

δξ⊥(x) =
iαk⊥

αk2⊥ −DA

dδξx
dx

, (3.3)

d

dx

(
B2

0DAα

αk2⊥ −DA

dδξx
dx

)
−B2

0DAδξx = 0 , (3.4)

where DA ≡ (ω2/v2A)− k2‖, k‖ = (kyB0y + kzB0z)/B0, k⊥ = (kyB0z − kzB0y)/B0, and

α(x) ≡ 1 +
Γβω2

2ω2 − Γβk2‖v
2
A

, (3.5)

where Γ stands for the ratio of specific heats. Equation (3.4) describes SAWs coupled with fast and slow magneto-
acoustic waves by equilibrium nonuniformities. It has to be noted that the differential equation, Eq. (3.4) is singular
at the points where B2

0DAα = 0, which correspond to the appearance of two continuous spectra defined by

ω2 = ω2
A(x) ≡ k2‖(x)v

2
A(x) , (3.6)

and

ω2 = ω2
S(x) ≡

v2S(x)k
2
‖(x)

1 + v2S(x)/v
2
A(x)

, (3.7)
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with v2S(x) = ΓP0(x)/̺m0(x) representing the sound speed.
To further gain some insights into properties of SAWs and the continuous spectrum, we further assume that while

the equilibrium plasma density varies along x, ̺0 = ̺0(x), the equilibrium magnetic field has no shear and is uniform;
B0 = B0ez, with the plasma being confined by two perfectly conducting plates at z = 0 and z = L (Chen and Zonca,
1995). Moreover, let us adopt the slow sound wave approximation [Γβ → 0, or α → 1 in Eq. (3.4)] to reduce Eq. (3.4)
to the description of the coupled SAWs and CAWs. This approach is the same as that adopted by (Chen, 1990) for
the theoretical description of ultra-low frequency magnetic pulsations in the Earth’s magnetosphere. Note that in this
limit it is sufficient to consider the perpendicular components of the force balance equation, Eq. (3.2), which does not
depend on the parallel component of the displacement δξ‖,

DAδξ⊥ = ∇⊥

(
δB‖

B0

)
, (3.8)

with the parallel component of the perturbed magnetic field given by δB‖/B0 = −∇ · δξ⊥. Meanwhile, ∇⊥ =
eyiky + ex(∂/∂x) and the local shear Alfvén operator DA is now expressed as DA ≡ ω2/v2A + ∂2z . Following (Chen
and Zonca, 1995), all perturbed fields f are assumed to be decomposed in the complete orthonormal set of shear
Alfvén eigenfunctions ψAℓ(z|x) = (2/Lv2A)

1/2 sin kℓz, with kℓ = ℓπ/L and ω2
Aℓ(x) = k2ℓ v

2
A(x) defining the local SAW

continuous spectrum frequency; i.e.,

f(r, t) = e−i(ωt−kyy)
∞∑

ℓ=1

f̂ℓ(x0, x1)ψAℓ(z|x1) . (3.9)

Note that in Eq. (3.9), the existence of continuous frequency spectra, with a corresponding singular eigenfunction
behavior, has been explicitly taken into account by introducing “fast” x0 (singular) and “slow” x1 (equilibrium) radial
variables. The existence of two spatial scales (x0 and x1) can be used to solve Eq. (3.8) via asymptotic expansions of

the fluctuating fields f̂ℓ = f̂
(0)
ℓ + f̂

(1)
ℓ + . . ., where |f̂ (1)

ℓ /f̂
(0)
ℓ | ≈ |∂x1

/∂x0
| etc. With the definition of Eq. (3.9) applied

to δξx, and considering that |DA| ≪ k2y (i.e., k2‖ ≪ k2y) for a typical SAW, Eq. (3.8) becomes, at the lowest order,

[
∂

∂x0
ǫAℓ

∂

∂x0
− k2yǫAℓ

]
δξ̂

(0)
xℓ = 0 , (3.10)

where ǫAℓ = ω2 − ω2
Aℓ(x). Equation (3.10) has solutions which become singular at the radial positions xRℓ where the

“local dispersion relation”, ǫAℓ = 0 [ω2 = ω2
Aℓ(xRℓ)], is satisfied; i.e., at those positions where the SAW continuous

spectrum is resonantly excited. A natural definition of the “fast” (singular) variable is x0 ≡ x − xRℓ, since ǫAℓ =
ǫ′Aℓ(x1)x0. In this way, it is readily shown that eq. (3.10) has solutions of the form

δξ̂
(0)
xℓ =

Cℓ(x1)

ǫ′Aℓ(x1)
ln (x0) . (3.11)

Meanwhile, Eq. (3.8) can be used to demonstrate that, at the lowest order, ∇ · δξ(0)⊥ℓ = 0, from which

δξ̂
(0)
yℓ =

i

ky
∂x0

δξ̂
(0)
xℓ =

iCℓ(x1)

kyǫ′Aℓ(x1)

1

x0
. (3.12)

Using Eq. (3.12) along with the y-component of Eq. (3.8), it is possible to show that δB‖ is given by

δB‖ = e−i(ωt−kyy)
∞∑

ℓ=1

δb̂‖ℓ(x1)ψAℓ(z|x1) , (3.13)

where δb̂‖ℓ are functions of the “slow” (equilibrium) radial variable x1 only; i.e.,

δb̂‖ℓ(x1)

B0
=

ǫ′Aℓ(x1)x0
ikyv2A(x1)

δξ̂
(0)
yℓ =

Cℓ(x1)

k2yv
2
A(x1)

. (3.14)

In a non-uniform plasma, Eqs. (3.11), (3.12) and (3.14) show that SAWs and CAWs are coupled together and give
origin to singular solutions corresponding to the “local” SAW oscillations with continuous spectrum ω2 = ω2

Aℓ(x).
In fact, SAW group is directed along the magnetic field lines (z-direction in the present case), whereas the CAW
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generally carries energy across the field itself. Thus, the latter one “piles up” wave energy at the radial location where
the SAW spectrum is resonantly excited, explaining the origin of “local singular oscillations” (Chen and Zonca, 1995).
Resonant excitation allows us to introduce the concept of SAW resonant absorption (Chen and Hasegawa, 1974a,b).

In fact, a finite amount of wave energy can be absorbed at the resonant layer, xRℓ and the time-averaged energy
absorption rate, d〈W 〉/dt, is given by the Poynting energy flux into the infinitely narrow layer at xRℓ

d〈W 〉
dt

=
Ly
8
k2y

∞∑

ℓ=1

|ωAℓ(xRℓ)|
|ǫ′Aℓ(xRℓ)|

∣∣∣δb̂‖ℓ(xRℓ)
∣∣∣
2

=
LyL

8k2y
B2

0

∞∑

ℓ=1

|ω′
Aℓ(xRℓ)|ℓ2

∣∣∣∆δξ̂(0)xℓ

∣∣∣
2

/
(
L3v2A

)
. (3.15)

Here, ∆δξ̂
(0)
xℓ is the jump of δξ̂

(0)
xℓ across the singular layer [cf. Eq. (3.11)]

∆δξ̂
(0)
xℓ = −iπ sgn

(
ω

ǫ′Aℓ(xRℓ)

)
Cℓ(xRℓ)

ǫ′Aℓ(xRℓ)
.

Thus, Eq. (3.15) demonstrates resonant energy absorption at a rate ∝ ω′
Aℓ. In turn, the resonant energy absorption

of a given initial perturbation takes place on time scales ≈ (ω′
Aℓ∆x)

−1
, with ∆x the perturbation “radial” extent8.

The existence of the resonant energy absorption mechanism becomes evident also when one analyzes the time
asymptotic response of the system to initial perturbations. In fact, as ωAℓt→ ∞, one essentially has |∂x| ≫ |ky | and,
thus, the relevant equation that describes the time asymptotic response is [cf. Eq. (3.10)]:

∂x
[
∂2t + ω2

Aℓ(x)
]
∂xδξ̂xℓ(x, t) = 0 . (3.16)

Equation (3.16) can be straightforwardly integrated once and it yields

∂xδξ̂xℓ(x, t) = Ĉℓ(x)e
±iωAℓ(x)t , (3.17)

where Ĉℓ(x) depends on equilibrium non-uniformities. Now, note that ∂x ∼= ±iω′
Aℓ(x)t as ωAℓt→ ∞ and, thus,

δξ̂xℓ(x, t) = ∓i Ĉℓ(x)
ω′
Aℓ(x)t

e±iωAℓ(x)t . (3.18)

Meanwhile, noting Eq. (3.12), one readily derives

δξ̂yℓ(x, t) = (i/ky) Ĉℓ(x)e
±iωAℓ(x)t . (3.19)

Equations (3.17) and (3.19) give us further insight in the dynamics associated with the resonant excitation of the SAW

continuum and resonant wave absorption: the δξ̂xℓ component exhibits the characteristic (1/t) decay via phase mixing

of the continuous spectrum (Barston, 1964; Grad, 1969; Sedlác̆ek, 1971), whereas δξ̂yℓ shows undamped oscillations
at frequencies corresponding to the SAW continuum.
These theoretical discussions on SAW continuous spectrum and phase mixing are nicely demonstrated by the

satellite observations of magnetic field fluctuations in the Earth’s magnetosphere (Engebretson et al., 1987). Figure
1 shows a color frequency-time spectrogram of AMPTE CCE magnetic field data for the interval 02 : 30 to 17 : 30
March 6, 1987. The satellite orbit was radially outward from about 4RE (Earth radius) and reached its apogee at
9.1RE around 10 : 00 UT. Power at frequencies from 0 to 80 mHz in each of the three orthogonal components is
color coded according to the color bar shown at the right side of the figure. From top to bottom the components are
BR, radially outward from the center of the Earth; BE , magnetically eastward; and BN points approximately along
local magnetic field lines. Thus, BR, BE and BN correspond to, respectively, δBx(δξ̂x), δBy(δξ̂y), δB‖. In Fig. 1, the
center (BE) panel clearly shows the continuous spectra of the various SAW harmonics along the field line. Meanwhile,
there are no such clear spectral structures in BR, due to ∝ 1/t phase mixing, Eq. (3.17), as well as in BN , as the
compressional MHD waves are associated with solar-wind perturbations at the magnetospheric boundary (Chen and
Hasegawa, 1974a,b). The same behaviors, including the ∝ 1/t amplitude decay, have also been demonstrated by ideal
MHD initial value numerical simulations of Alfvén wave dynamics in a cylindrical plasma (Vlad et al., 1999).
In addition to the local oscillations of the SAW continuum, a Global Alfvén Eigenmode (GAE) (Appert et al., 1982;

Goedbloed, 1984; Mahajan et al., 1983; Ross et al., 1982) may also exist in a 1D nonuniform plasma. Such global

8 Here, “radial” stands for the direction of nonuniformity, which is generally identified as the gradient of the equilibrium magnetic flux.
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FIG. 1 Three-component dynamic power spectrum of magnetic field data from AMPTE CCE satellite for a full orbit from
02 : 30 to 17 : 30 UT March 6, 1987 (Engebretson, 2011). The geomagnetic BR, BE , and BN coordinate system used is
described in the text. The colored panel represents ∆B, the difference in field magnitude between the observed total field and
the value determined from the International Geomagnetic Reference Field (IGRF) 1980 model. Apogee is at the center of the
figure. Original data where published and discussed in (Engebretson et al., 1987).

modes, if destabilized by energetic particles, could affect charged particle confinement over a large region of the plasma.
Equation (3.15) demonstrates that, in order to minimize damping due to coupling with the SAW continuum, global
mode structures are preferentially excited near regions where the resonant energy absorption rate ∝ ω′

Aℓ vanishes;
i.e., near an extremum of the SAW continuous spectrum (cf. Sec. IV for further discussions). Detailed analyses of
the mode structures, frequencies, and stability properties can be found in (Appert et al., 1982; Goedbloed, 1984;
Mahajan, 1995; Mahajan et al., 1983; Ross et al., 1982).
Global Alfvén Eigenmodes are generally considered to be benign in tokamak plasmas, because, in a two-dimensional

(2D) equilibrium, toroidicity acts as a stabilizing effect (Cheng et al., 1988; Fu et al., 1989; Li et al., 1987; Weiland
et al., 1987). In fact, different poloidal harmonics are coupled together and GAEs are very easily damped due to their
coupling with the SAW continuous spectrum.

B. Kinetic Alfvén Waves

Equations (3.18) and (3.19) suggest that the radial wave-vector is

|kx| ∼= |ω′
Aℓ(x)t|

and, thus, |kx| → ∞ as t → ∞; i.e., the wave function becomes singular in the asymptotic time limit, in agreement
with eq. (3.11). The wave function singularity that emerges in the asymptotic time limit is a clear indication of the
break down of the ideal MHD model, which fails when very short scale perturbations are excited. Typically, the most
relevant new (with respect to the ideal MHD model) dynamics that appear on short scales are associated with charge
separation, i.e., with the finite parallel electric field fluctuations (δE‖) due to, e.g., finite ion Larmor radius (ρi),
small but finite electron inertia and finite plasma resistivity. In the presence of finite δE‖, additional effects due to
wave-particle interactions appear, which yield collisionless wave dissipation (Landau damping). Incorporating such
“kinetic” effects essentially allows finite energy propagation across the resonant surfaces x = xRℓ. Thus, wave energy
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will no longer “pile up” at these radial locations and, as a consequence, all wave-function singularities are removed
on short scales.
A dedicated monograph on the Kinetic Alfvén Wave (KAW) is given by the recent book by (Wu, 2012). Here, we

limit our discussion to the case in which me/mi ≪ βe ≪ 1 (with βe being the ratio between the electron kinetic and
magnetic pressures), i.e., the electron thermal speed is much larger that the Alfvén velocity. Furthermore, for the
sake of simplicity, we also assume (k2x+ k2y)ρ

2
i ≡ k2⊥ρ

2
i ≪ 1. It is then possible to show that Eq. (3.10) becomes (Chen

and Zonca, 1995; Hasegawa and Chen, 1975, 1976)

[
ω2∇2

⊥ρ
2
K∇2

⊥ +∇⊥ · ǫAℓ∇⊥

]
δξ̂xℓ = 0 , (3.20)

where

ρ2K =

[
3

4
(1− iδi) +

Te
Ti

(1− iδe)

]
ρ2i − i

c2η

4πω
. (3.21)

Here, δi and δe indicate, respectively, ion and electron Landau damping contributions, whereas the term proportional
to η is due to finite plasma resistivity. Equation (3.20) is readily derived from the linearized Eqs. (2.34) to (2.37),
dropping magnetic curvature and diamagnetic terms in the vorticity equation, and adding resistive dissipation in the
parallel Ohm’s law (cf. Sec. IV.B for more detailed derivations).
In Eq. (3.20), the singularity at ǫAℓ = 0 is clearly removed by the term including the 4th order derivative, which

is also proportional to ρ2K ≪ 1, indicating the formation of a “boundary layer” around the SAW resonant surface.
In fact, Eq. (3.20) describes the mode-conversion of a long wavelength MHD mode (the SAW) to a short wavelength
kinetic mode: the KAW (Hasegawa and Chen, 1975, 1976). The rate at which KAWs are excited is exactly that
of Eq. (3.15). Thus, the resonant energy absorption rate of SAW may be interpreted as a power transfer to short
wavelength modes, which, eventually, may be absorbed by the background plasma. Note, however, that resonant
absorption of the MHD wave and KAW dissipation are mutually independent processes. Indeed, Eq. (3.15) itself is
independent on the details of the dissipation mechanism9.
The WKB local dispersion relation of KAW’s is

ω2 =
(
1 + k2⊥ρ

2
K

)
ω2
Aℓ . (3.22)

Equation (3.22) indicates that KAW’s are propagating for ǫAℓ > 0 and become cut-off for ǫAℓ < 0. Assuming that
ωAℓ(x) ≃ ωAℓ(xRℓ)(1 + κζ) near the resonance absorption layer, with ζ = x− xRℓ and κ = (d/dxRℓ) lnωAℓ(xRℓ) > 0,
Eq. (3.20) becomes (Hasegawa and Chen, 1976)

(
ρ2K

d2

dζ2
+ κζ

)
δξ̂xℓ = δξ̂xℓ0 . (3.23)

General solutions of Eq. (3.23) are written in terms of Airy functions and have the following form away from the SAW
resonant absorption (mode conversion) layer

δξ̂xℓ =
δξ̂xℓ0
κζ

ζ < 0 , (3.24)

δξ̂xℓ =
δξ̂xℓ0
κζ

− π1/2δξ̂xℓ0
(κρK)2/3

(
ρ
2/3
K

κ1/3ζ

)1/4

exp



i


2
3

(
κ1/3ζ

ρ
2/3
K

)3/2

+
π

4





 ζ > 0 . (3.25)

Equation (3.24) represents the behavior of the long wavelength SAW, while Eq. (3.25) shows both long wavelength
SAW and short wavelength KAW after mode conversion at ζ = 0 (x = xRℓ).
That KAW possesses finite δE‖ not only modifies the linear wave properties but also, perhaps more significantly,

the nonlinear particle and wave dynamics. More specifically, δE‖ may lead to phase space transports; i.e., heating,
acceleration and cross-field transports (Chen, 1999; Hasegawa and Chen, 1976). In addition, KAW could break
the so called nonlinear pure “Alfvénic state” (Alfvén, 1942, 1950; Elsasser, 1956; Hasegawa and Sato, 1989; Walén,
1944) (cf. Sec. V.B) and leads to enhanced rates of nonlinear mode-coupling effects; such as parametric decay

9 The linear effects of nonlocal absorption of KAW are discussed in Sec. IV.C, while some of the nonlinear consequence of this interesting
phenomenon are briefly presented in Sec. VII.
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instabilities (DuBois and Goldman, 1965, 1967; Kaw and Dawson, 1969; Nishikawa, 1967) (cf. Sec. V.B) as well as
generation of convective cells or zonal structures (Hasegawa et al., 1979) (cf. Secs. V.B and V.C).
In the presence of non-ideal terms, as, e.g., resistivity or finite Larmor radius effects, other discrete, closely spaced

(in frequency), localized (in radius) kinetic GAE modes (KGAEs) also exist in addition to GAEs (Mahajan, 1995) (cf.
Sec. III.A). These modes “replace” the Alfvén continuous spectrum, due to the trapping of KAW as a bound state
in the radial region where the mode frequency exceeds the local SAW continuum frequency. That non-ideal effects
discretize the SAW continuum is a general result that will be further discussed in Sec. IV.B. Meanwhile, observing
the coarse nature of the SAW continuous spectrum depends on the spatiotemporal scales of the processes involved,
which may either be the experimental measurements of the system response or the intrinsic space and time scales of
the (often nonlinear) dynamics.

IV. LINEAR ALFVÉN WAVE PHYSICS AND WAVE-PARTICLE INTERACTIONS IN TWO-DIMENSIONAL TOROIDAL

PLASMAS

In Sec. III, shear Alfvén waves (SAWs) were introduced as anisotropic electromagnetic waves in magnetized plasmas,
satisfying the dispersion relation

ω2 = k2‖v
2
A = ω2

A , (4.1)

with k‖ the parallel (to B0) wave vector. In non-uniform plasmas, gradients across magnetic surfaces cause the SAW
frequency to become dependent on the spatial location. Thus, the SAW frequency spectrum becomes a continuum,
characterized by phase mixing and singular absorption, in exact analogy with collisionless dissipation in Vlasov
plasmas, as emphasized by Grad (Grad, 1969) (cf. Sec. III).
In higher dimensionality systems, such as nearly two-dimensional (2D) or three-dimensional (3D) toroidal devices,

the main additional complication is due to the modulations of vA along B0. This causes the loss of translational
symmetry for SAWs traveling along B0 and sampling regions of periodically varying vA. Similarly to electron wave
packets traveling in a one-dimensional periodic lattice of period L [cf., e.g., (Kittel, 1971)], SAWs in toroidal systems
are characterized by gaps in their continuous spectrum, corresponding to the formation of standing waves at the Bragg
reflection condition; i.e.,

2L = ℓλ , λ ≡ 2π

k
, ℓ ∈ N , (4.2)

In toroidal systems, L = 2πL0 corresponds to the connection length; i.e., the length of a magnetic field line connecting
two distinct points on the same magnetic surface where the SAW frequency (or another equilibrium physical quantity
of interest) is the same. Thus, Eq. (4.2) becomes

k‖ =
ℓ

2L0
, ω2 =

ℓ2v2A
4L2

0

, ℓ ∈ N , (4.3)

with vA being a “typical” value of the Alfvén speed on the reference magnetic surface.
In the study of Alfvén wave propagation in tokamak plasmas, the existence of gaps in the continuous spectrum,

due to the toroidal geometry, was discussed by (D’Ippolito and Goedbloed, 1980; Kieras and Tataronis, 1982; Pogutse
and Yurchenko, 1978). In this case, given that L0 ≃ qR0 for circular plasmas with large aspect-ratio R0/a [see Sec.
II, remark following Eq. (2.2)], R0/a being the plasma major/minor radius and q the safety factor (representing
the pitch of equilibrium magnetic field lines winding on a given flux surface), the dominant frequency gap occurs at
vA/(2qR0) and is due to the finite curvature of the system (Kieras and Tataronis, 1982). Other gaps also generally
exist at ω = ℓvA/(2qR0), due to either non-circularity of the magnetic flux surfaces (ℓ = 2, 3, . . .) (Betti and Freidberg,
1991), to anisotropic trapped energetic ion population (ℓ = 1, 2, 3, . . .) (Van Dam and Rosenbluth, 1998) or to finite-β
(mainly ℓ = 2, with β the ratio between kinetic and magnetic pressures) (Zheng and Chen, 1998a,b). A low-frequency
gap, corresponding to ℓ = 0, also exists because of finite plasma compressibility (Chu et al., 1992, 1993; Turnbull

et al., 1993) at ω ≃ β
1/2
i vA/R0 ≪ vA/R0.

In order to nullify or minimize continuum damping, discrete shear Alfvén eigenmodes (AEs) must be localized in the
SAW continuum frequency gaps and/or around radial positions where (d/dr)ωA(r) = 0 (cf. Sec. III). The degeneracy
of AE mode frequency with the continuous spectrum is removed by equilibrium non-uniformities, which make it
possible for these fluctuations to exist as discrete modes. Continuing further the analogy with the one-dimensional
periodic lattice case [cf., e.g., (Kittel, 1971)], discrete AE can be localized in the continuum frequency gaps because
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of MHD and/or kinetic effects due to both thermal and/or supra-thermal particles, which play the role of “defects”
(Chen and Zonca, 2007a; Zonca et al., 2006). The particular role of supra-thermal particles in the resonant excitation
of SAWs was noted already by (Belikov et al., 1968, 1969; Kolesnichenko and Oraevskij, 1967; Mikhailovskii, 1975a,b;
Mikhailovskii and Shuchman, 1976; Rosenbluth and Rutherford, 1975; Tsang et al., 1981), along with the possible
detrimental effects of collective SAW fluctuations as well as of lower frequency MHD modes (Chen et al., 1984; Coppi
and Porcelli, 1986; McGuire et al., 1983; White et al., 1983) on supra-thermal particle confinement (see Sec. I.A). In
toroidal geometry, the wave-particle resonance conditions are different for circulating particles (which move along B0

without changing sign of v‖) and those that are trapped between magnetic mirror points. For the circulating particles,
the resonance condition is

ω − k‖v‖ − ℓωt − nω̄d = 0 , ℓ ∈ Z , (4.4)

with (...) indicating orbit averaging (see Sec. IV.B), ωt ∼ v‖/(qR0) the particle transit frequency around the torus,
n the toroidal mode number, and ω̄d the toroidal precession frequency, which is typically negligible for circulating
particles. Meanwhile, Eq. (4.4), for trapped particles, becomes

ω − nω̄d − ℓωb = 0 , ℓ ∈ Z , (4.5)

with ωb the bounce frequency between magnetic mirror points. These resonant conditions are functions of the
invariants of particle motions (see Sec. IV.B for details) and bear the information of plasma equilibrium geometry
and nonuniformities. Another crucial effect associated with plasma equilibrium geometry and nonuniformities is the
wave particle energy exchange mainly due to vd · δE⊥, since δE‖ ≃ 0 and δB‖ ≃ 0 in highly conducting, high
temperature β ≪ 1 fusion plasmas (see Sec. II.E). This means that both resonant and non-resonant supra-thermal
particle responses enter via magnetic drifts in most conditions of practical interest (Zonca and Chen, 2006).
Discrete AEs existing in the various frequency gaps have, accordingly, been given different names. The first

example is the Toroidal AE (TAE) (Cheng et al., 1985) for ω ≃ vA/(2qR0). This is a particularly important case, for
it was the first demonstration of the existence of AEs in toroidal plasmas, thereby fixing a paradigm for subsequent
AE investigations. Other examples are the Ellipticity induced AE (EAE) (Betti and Freidberg, 1991, 1992) for
ω ≃ vA/(qR0) and Non-circular triangularity (or other shaping effects) induced AE (NAE) (Betti and Freidberg,
1991, 1992) for ω ≃ ℓvA/(2qR0) and ℓ ≥ 3, as shown by Eq. (4.3). The low frequency SAW continuum frequency

gap at ω ≃ β
1/2
i (7/4 + Te/Ti)

1/2vA/R0 (Kotschenreuther, 1986; Mikhailowskii, 1973; Zonca et al., 1996) deserves a
special note since, in this case, the mode frequency can be comparable with thermal (core) ion diamagnetic (ω∗pi)
and/or transit (ωti) frequencies; i.e., |ω| ∼ ω∗pi ∼ ωti. We could generally refer to this frequency gap as the Kinetic
Thermal Ion (KTI) gap (Chen and Zonca, 2007a). In fact, the ideal MHD accumulation point, ω = 0 at k‖ = 0
from Eq. (4.3), is shifted by either the ion diamagnetic drift, as in the Kinetic Ballooning Mode (KBM) case (Biglari
and Chen, 1991), or by parallel and perpendicular ion compressibility, as for the Beta induced AE (BAE) (Heidbrink
et al., 1993; Turnbull et al., 1993), or, more generally, by the combined effects of finite ion temperature gradient
(∇Ti) and wave-particle resonances with thermal (core) ions, as for the Alfvén Ion Temperature Gradient driven
mode (AITG) (Zonca et al., 1999). For the AITG, the shear Alvén continuum accumulation point could be shifted to
the complex ω plane (Kotschenreuther, 1986; Mikhailowskii, 1973; Zonca et al., 1996) and, thus, become unstable for
modes with sufficiently short wavelength (λ⊥>∼ ρi, the ion Larmor radius). The mode localization condition inside the
frequency gap [cf. the discussion above, following Eq. (4.3)] then leads to the excitation of unstable discrete AITG
even in the absence of supra-thermal particle drive (Nazikian et al., 2006; Zonca et al., 1999, 1996, 1998). In this
case, they are sometimes referred to as beta-induced temperature gradient eigenmodes (Mikhailovskii and Sharapov,
1999a,b). The predominance of either ion diamagnetic drift (KBM) or parallel and perpendicular ion compressibility
(BAE) in the KTI frequency gap depends on both wave number and plasma equilibrium nonuniformity: AITG are
typically excited when both effects are of the same order (Zonca et al., 1999, 1996). Thus, two bands of low-frequency
Alfvénic activities are generally expected, with varying frequency-dependent geodesic curvature coupling to the ion-
acoustic wave (Zonca et al., 2010), of which - in the long wavelength limit - the lower one refers to the ion diamagnetic
frequency, consistent with some recent numerical simulation results and experimental observations (Curran et al.,
2012; Lauber et al., 2012). Another low-frequency fluctuation branch also exists, characterized by strong coupling of
the SAW to the ion-acoustic wave and dubbed Beta induced Alfvén Acoustic Eigenmode (BAAE) (Gorelenkov et al.,
2007a,b, 2009), which, however, is generally affected by strong Landau damping, unless Te/Ti ≫ 1 (Zonca et al.,
2010).
Consistently with the fact that removal of the frequency degeneracy of AE with the SAW continuum depends

on equilibrium non-uniformities, various local plasma profiles can produce variants of the AE mentioned above. In
the case of TAE with low magnetic shear values, |s| = |(r/q)(dq/dr)| ≪ 1 typical of the plasma near the magnetic
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axis, they have been dubbed core-localized TAE (Berk et al., 1995c; Fu, 1995) or also tornado modes (Kramer et al.,
2004b) when they are excited within the q = 1 magnetic flux surface. Global AE (GAE) (Appert et al., 1982; Mahajan
et al., 1983; Ross et al., 1982) may also exist (cf. Sec. III.A), although they tend to be more strongly damped due to
coupling with the continuous spectrum (Cheng et al., 1988; Fu et al., 1989; Li et al., 1987; Weiland et al., 1987), and are
localized in both frequency and radial position near an extremum of the SAW continuous spectrum, (d/dr)ωA(r) = 0.
A special case of (d/dr)ωA(r) = 0 is given by tokamak plasma equilibria with hollow-q profiles, characterized by
negative magnetic shear, s < 0, inside the the minimum-q surface. For these equilibria, a frequency gap is formed
in the local SAW continuous spectrum, where AE can be excited (Berk et al., 2001) yielding the so called Alfvén
Cascades (AC) (Sharapov et al., 2001) or Reversed Shear AE (RSAE) (Kimura et al., 1998; Takechi et al., 2002).
These modes have frequencies that are typically less than that of TAEs, although there are experimental observations
of RSAE near the SAW continuum extrema connected with the EAE/NAE gaps (Kramer and Fu, 2006; Kramer et al.,
2008).

In addition, a variety of kinetic counterparts of the corresponding ideal AE also exists, in analogy to the existence of
KAW as counterpart of SAWs, discussed in Sec. III.B. Typical examples are Kinetic TAE (KTAE) that are obtained
when, e.g. finite resistivity (Cheng et al., 1985) or finite Larmor radius (FLR) effects are accounted for, as in (Berk
et al., 1993; Candy and Rosenbluth, 1993, 1994; Mett and Mahajan, 1992a,b). Similarly, one could show that Kinetic
BAE (KBAE) also exist (Wang et al., 2011, 2010b; Zonca et al., 1999, 1998) as the granularity of the Alfvén continuum
becomes evident when the plasma response is probed on sufficiently short spatial scales and sufficiently long temporal
scales (Chen and Zonca, 1995; Zonca and Chen, 1996). The most practically important consequence of KAW in
toroidal plasmas is their excitation by mode conversion (Hasegawa and Chen, 1975, 1976), mostly via FLR effects,
due to the radial singular structures of SAWs at the resonance with the continuous spectrum (cf. Sec. III.B). For
KAW are not generally absorbed locally nearby the mode conversion layer in high temperature fusion plasmas (Jaun
et al., 1998, 2000; Kolesnichenko et al., 2005). Thus, mode structures and stability properties of SAWs are truly
kinetic and global in nature, and it becomes crucial to properly account for all these physics in realistic comparisons
with experimental observations and in stability predictions in reactor relevant conditions.

A final important class of Alfvénic fluctuations in 2D nonuniform systems is given by Energetic Particle Modes
(EPM) (Chen, 1994), which are born at marginal stability as non-normal modes of the SAW continuous spectrum
and are resonantly excited at the characteristic frequency of the supra-thermal particle motions, Eqs. (4.4) and (4.5).
The excitation condition of EPM is independent of the existence of AE inside the frequency gaps, but it requires that
the mode drive is sufficiently strong to overcome continuum damping. Being essentially connected with a condition
on the beam energy density, EPM can manifest themselves in a variety of different forms, the best known and first
observed of which is the fishbone mode (McGuire et al., 1983); i.e., an internal kink oscillation with toroidal mode
number n = 1, which is resonantly excited (typically) by the toroidal precession resonance with magnetically trapped
supra-thermal ions (Chen et al., 1984). As for AE, the fishbone “gap-mode” also exists, for weaker supra-thermal
beam power density, in the low frequency KTI gap, dominated by diamagnetic effects (Coppi and Porcelli, 1986).
As all instabilities that tap the expansion free-energy from energetic particle (EP) spatial gradients, AE and EPM

have both linear growth as well as transport rates (Chen, 1999) proportional to the mode number; thus, short
wavelengths tend to be favored. On the other hand, due to the orbit-averaging effect in wave-particle interactions, the
typical lower bound for λ⊥ is set by the characteristic EP orbit width, ρE , which, in toroidal devices such as tokamaks,
is determined by magnetic drifts and is generally larger than Larmor radius (Berk et al., 1992b; Chen, 1994; Fu and
Cheng, 1992; Tsai and Chen, 1993). For this reason, modes with λ⊥>∼ ρE are expected to play a dominant role for both
resonant excitations of collective Alfvén instabilities as well as for producing fluctuation enhanced fast ion transport.
This condition corresponds to nmaxq<∼ (r/ρE) for the maximum toroidal mode number of linearly excited Alfvénic
modes. Generally, AE in the same gap have nearly degenerate frequency for the various toroidal mode numbers, as
in the case of TAE (Cheng et al., 1985). Moreover, each nth mode has ∼ O(nqr/R0) different possible realizations
(radial eigenstates) of AE localized at different radial locations. Thus, e.g., within the TAE gap we may expect
∼ O(n2qr/R0) AE, forming a “dense population of eigenmodes (lighthouses) with unique (equilibrium-dependent)
frequencies and locations” (Chen and Zonca, 2007a). In Secs. VI and VII, the significant implications of this fact on
the non-linear AE physics are discussed.

In the next subsections, we discuss how all this AE Zoology (Heidbrink, 2002) and Alfvénic fluctuations can be
described by one single dispersion relation written in a general “fishbone-like” form, which can be adopted for linear
stability studies as well as for systematic extensions of our analyses to the nonlinear regime (cf. Sec. IV.A). In
fact, the general “fishbone-like” dispersion relation can be derived by asymptotic matching the regular (ideal MHD)
mode structure with the generally known form of the SAW field in the singular (inertial/kinetic) region near the
SAW resonance. In the asymptotic matching procedure, no assumptions are made concerning the linearization of
the plasma response. Thus, the theoretical framework of Sec. IV.A can also be adopted for nonlinear analyses,
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as specifically discussed in Sec. V. We then discuss different linear applications of practical interest of the general
fishbone-like dispersion relation (cf. Sec. IV.B) and we briefly summarize experimental verification of linear AE and
stability predictions in burning plasmas (cf. Sec. IV.C). Readers that are more interested in applications may directly
proceed to Sec. IV.B.

A. The general fishbone-like dispersion relation

We assume that the equilibrium B0 can be expressed in the usual form

B0 = F (ψ)∇ϕ+∇ϕ×∇ψ , (4.6)

where ϕ is the physical toroidal angle, identifying the symmetry of the system at equilibrium, and ψ is the poloidal
magnetic flux function. Moreover, we use a straight magnetic field line toroidal coordinate system (r, θ, ζ), where r
is a radial-like coordinate depending only on the magnetic flux function ψ10, while θ and ζ are periodic angle-like
variables, the latter being the ignorable (symmetry) coordinate of the plasma equilibrium. More precisely, ζ is the
general toroidal angle defined by

B0 ·∇ζ

B0 ·∇θ
= q(r) , (4.7)

where q(r) is the safety factor profile and θ is chosen such that the Jacobian J = (∇ψ × ∇θ · ∇ζ)−1 satisfies the
condition of JB2

0 being a flux function; i.e., the Boozer coordinates (Boozer, 1981, 1982). In these (r, θ, ζ) coordinates,
a scalar function f(r, θ, ζ), describing a generic fluctuating field, can be decomposed as Fourier series

f(r, θ, ζ) =
∑

n∈Z

einζFn(r, θ) =
∑

m,n∈Z

einζ−imθfm,n(r) , (4.8)

where the toroidal Fourier components Fn(r, θ) are independent in the linear limit, while the poloidal Fourier com-
ponents fm,n(r) are not, due to the equilibrium geometry. Note that, for simplicity, time dependences are assumed
implicit. In Clebsch coordinates (r, θ, ξ) (Beer et al., 1995; Cowley et al., 1991; Dewar and Glasser, 1983; Roberts and
Taylor, 1965; Scott, 1998), with ξ = ζ − q(r)θ (Kruskal and Kulsrud, 1958) and B0 = ∇ξ ×∇ψ, Eq. (4.8) becomes

f(r, θ, ξ) =
∑

n∈Z

einξfn(r, θ) =
∑

m,n∈Z

einξei(nq−m)θfm,n(r) . (4.9)

The derivation of a general fishbone-like dispersion relation (GFLDR) is based on the construction of a nonlinear
functional form from Eqs. (2.26) and (2.28) (Chen and Hasegawa, 1991). A similar variational approach is proposed by
(Edery et al., 1992). The final result, as briefly noted in Sec. IV.B.1 and discussed in detail by (Chen and Hasegawa,
1991) and (Edery et al., 1992), can be put in close connection with various forms of the MHD energy principle
(Antonsen et al., 1981; Antonsen and Lee, 1982; Bernstein et al., 1958; Kruskal and Oberman, 1958; Porcelli and
Rosenbluth, 1998; Rosenbluth and Rostoker, 1959; Taylor and Hastie, 1965; Van Dam et al., 1982), due to the fact
that, in the long wavelength limit, Eqs. (2.26) to (2.29) can be cast as Eqs. (2.34) to (2.37); i.e. they recover reduced
MHD as a limiting case of nonlinear gyrokinetic equations (Brizard, 1992; Hahm et al., 1988) and their linearized
form reduces to the kinetic MHD equations discussed by (Qin et al., 1998, 1999b) and (Brizard, 1994). In the present
case, however, no linearization assumptions are made; so that the GFLDR can be the starting point for systematic
extensions to the nonlinear regime (see Secs. V.A, V.C and V.D).
The construction of the GFLDR assumes that fluctuations are characterized by two radial scales, due to the

existence of the SAW continuous spectrum (cf. Sec. III). These properties are used in the following to further reduce
the nonlinear functional that can be constructed from Eq. (2.37) in the form

δL(δφ, δψ) = 1

2

∫

V

[(
∂

∂t

)−1

δψ†

]
× [LHSEq. (2.37)] dr , (4.10)

10 One possible choice is, e.g., r/a = (ψ−ψ0)1/2/(ψa−ψ0)1/2, with ψ0 the value of ψ on the magnetic axis and ψa its value at the plasma
minor radius r = a.



25

where ∂−1
t is the formal notation for the inverse of ∂t, δψ

† is the adjoint of δψ with the definition adopted by (Gerjuoy
et al., 1983), the integral is extended over the plasma volume and LHS stands for left hand side. This functional form
is variational, when the LHS of Eq. (2.37) is linearized, due to the symmetry properties of the operators involved
and coincides with the quadratic form derived by (Chen and Hasegawa, 1991). When nonlinear terms are included,
however, it is generally not variational, although δL(δφ, δψ) = 0 by definition, when the functional is computed for
the actual solution of Eqs. (2.34) and (2.37). Because of the existence of the SAW continuous spectrum, the volume
integral of Eq. (4.10) can be divided into two radial regions. One corresponds to fluctuating fields with smooth regular
behaviors and the k⊥ spectrum is weakly anisotropic. The other corresponds to fluctuations with sharp varying radial
structures and k⊥ ≃ kr. Due to the fact that δψ = δφ in the regular regions, they are referred as ideal MHD regions
as well; as opposed to the singular (inertial/kinetic) layers, where the difference between δφ and δψ may become
significant. As a result, the contribution from regular regions to the integral in Eq. (4.10), δW , is readily separated
from that due to singular layers, −δI, yielding δL = δW − δI with the following definitions (Zonca and Chen, 2013)

δW = lim
ϑ1→∞

(2π)3
∫ a

0

dr
dψ/dr

2

∫ ϑ1

−ϑ1

J dϑ
∑

n,ℓ∈Z

e−2πinqℓ

{
PB−n(r, ϑ)

[
δB†

]
· PBn(r, ϑ+ 2πℓ)

[
δB

4π

]

+PB−n(r, ϑ)
[
∂−1
t δφ†

]
PBn(r, ϑ+ 2πℓ)

[
− c2

4π
∇ ·

(
1

v2A
∇⊥

∂

∂t
δφ

)
+
c2

4π
b×∇

[
4π

B2
0

(
P0⊥i

Ωi

)]
·∇∇2

⊥δφ

+
c

B0
b× κ ·∇

∑〈
m
(
µB0 + v2‖

)
J0δg

〉
v
+ δB⊥ ·∇

(
j‖0

B0

)]}
, (4.11)

δI = (2π)3
∫ a

0

dr
dψ/dr

2

∑

n,ℓ∈Z

e−2πinqℓ

[
c2k2ϑ

4πJB2
0

(
∂−1
t δΨ̂†

−n(ϑ)
)
∂ϑ

(
∂−1
t δΨ̂n(ϑ+ 2πℓ)

)]ϑ→0+

ϑ→0−
. (4.12)

Here, we have adopted the mode structure decomposition approach discussed by (Lu et al., 2012; Zonca et al., 2004a),
which, for short wavelength modes, reduces to the well known “ballooning representation” (Connor et al., 1978, 1979;
Coppi, 1977; Dewar et al., 1981, 1982; Glasser, 1977; Hazeltine et al., 1981; Lee and Van Dam, 1977; Pegoraro and
Schep, 1978) and a generic fluctuating field f(r, θ, ζ), decomposed as in Eqs. (4.8) and (4.9), can be written as

f(r, θ, ζ) =
∑

m,n∈Z

einζ−imθ
∫
ei(m−nq)ϑf̂n(r, ϑ)dϑ

=
∑

m,n∈Z

einζ−imθ
∫
ei(m−nq)ϑPBn(r, ϑ) [f ] dϑ . (4.13)

Equation (4.13) introduces and defines the projection operator PBn(r, ϑ) : f(r, θ, ζ) 7→ f̂n(r, ϑ) and its properties
allow to interpret ϑ as an extended poloidal angle. In fact, multiplication by a periodic function p(θ) in (r, θ)
space corresponds to multiplication by a periodic function p(ϑ) in (r, ϑ) space and, in Clebsch coordinates, b ·∇ =
(JB0)

−1∂θ 7→ (JB0)
−1∂ϑ. Finally,

∇⊥ 7→ ∇r

(
−inq′ϑ+

∂

∂r

)
+ in∇ζ +∇θ

(
∂

∂ϑ
− inq

)
− b

JB0

∂

∂ϑ
, (4.14)

q′ denoting the radial derivative of q(r), defined by Eq. (4.7), with respect to r.
Formally nonlinear terms due to core plasma dynamics (cf. Secs. II.D and II.E) may be dropped in the expression

of δW (Zonca and Chen, 2013). For the same reason, finite thermal ion Larmor radius terms are dropped and δφ = δψ
is explicitly imposed in Eq. (4.11). Inertia and diamagnetic terms; i.e., the second line of Eq. (4.11), are negligible
in the low-frequency MHD limit but, more generally, they provide a finite contribution (Biglari et al., 1992; Chen,
1988, 1994; Cheng et al., 1985, 1988; Tsai and Chen, 1993). As in ideal MHD, most important destabilization effects
come form the last two terms, the “ballooning-interchange” and the “kink” drive, respectively (Freidberg, 1987; Furth
et al., 1965; Greene and Johnson, 1968). Note that the expression of δW is still nonlinear due to the implicit nonlinear
response included in the “ballooning-interchange” contribution, which also maintains finite ion Larmor radius effects
of EPs (Zonca and Chen, 2013). Meanwhile, the expression of δI adopts the notation

δΨ̂n ≡ κ̂⊥δψ̂n and k2ϑκ̂
2
⊥ ≡ −∇2

⊥ , (4.15)
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with kϑ ≡ −nq/r and ∇⊥ given by Eq. (4.14), and contains the jump across ϑ = 0 of the quantity in square
parentheses, which is obtained from the solution of Eq. (2.37) for κ̂2⊥ = k2⊥/k

2
ϑ ≃ s2ϑ2|∇r|2 ≫ 1. In other words,

Eq. (4.12) contains the information on the sharp varying structures of SAW fluctuation associated with the continuous
spectrum. These include finite thermal ion Larmor radius effects and formally nonlinear terms due to core plasma
dynamics. They are implicitly accounted for by the solution of Eq. (2.37) for κ̂2⊥ = k2⊥/k

2
ϑ ≃ s2ϑ2|∇r|2 ≫ 1, which

can also take into account finite EP responses that are non-vanishing for sufficiently long wavelength modes (cf.
Secs. IV.B.2 and IV.B.3).
Adopting the normalization for δW in Eq. (4.11) as in the fishbone theory (Chen et al., 1984), it is possible to

rewrite (Zonca and Chen, 2013)

δW =
2π2c2

|ω|2
∑

n∈Z

|kϑ|(dψ/dr)
|s|2JB2

0

∣∣∣∣
r=r0,ϑ=0

(
δΨ̂†

−n0+δΨ̂n0+
)
δŴn . (4.16)

where magnetic shear is defined as

s = s(r) = rq′(r)/q(r) . (4.17)

Similarly, Eq. (4.12) can be cast as

δI =
2π2c2

|ω|2
∑

n∈Z

|kϑ|(dψ/dr)
|s|2JB2

0

∣∣∣∣
r=r0,ϑ=0

(
δΨ̂†

−n0+δΨ̂n0+
)
i|s|Λn , (4.18)

with the summation on all singular layer contributions left implicit and

iΛn ≡ 1

2

(
δΨ̂†

−n0+δΨ̂n0+
)−1 [

δΨ̂†
−n(ϑ)∂ϑδΨ̂n(ϑ)

]ϑ→0+

ϑ→0−
, (4.19)

which can be obtained from the solution of the linearized Eq. (2.37) for κ̂2⊥ = k2⊥/k
2
ϑ ≃ s2ϑ2|∇r|2 ≫ 1 with outgoing

wave boundary conditions, corresponding to causality constraints (Zonca and Chen, 2013).
The general fishbone like dispersion relation (GFLDR) is derived from δL = δW − δI = 0 combining Eqs. (4.16)

and (4.18), and , for a single-n toroidal mode, is given by

i|s|Λn = δŴnf + δŴnk . (4.20)

The generalized inertia term Λn(ω) accounts for the thermal ion response and can be extended to include supra-
thermal particle effects for long wavelength modes (cf. Sec. II.E), as well as, for shorter wavelength modes, finite
thermal ion Larmor radius effects. Meanwhile, Λn can also be modified to include stress tensor, Maxwell stress
and polarization nonlinearity, by including the corresponding terms from Eq. (2.37) (see Sec V.C). The important
feature of Eq. (4.20) is that, in all these cases, the expression of Λn is obtained by Eq. (4.19). The right hand side
of Eq. (4.20) also distinguishes between “fluid” (δŴnf ) and “kinetic” (δŴnk) contributions to the potential energy

δŴn (Chen et al., 1984). The expression of δŴnf is obtained from Eq. (4.16) using the “fluid” limit for the gyrokinetic

particle response δg in Eq. (4.11), while δŴnk accounts for the remaining “kinetic” particle response (cf. Sec. IV.B.1).
In the low-frequency limit, δŴnf is independent of frequency and reduces to the well-known MHD limiting forms, as

discussed above. Meanwhile, δŴnk(ω) is always a function of the mode frequency ω, as it reflects resonant as well as
non-resonant wave-particle interactions. Same as the inertia term, the potential energy δŴn accounts for both linear
and nonlinear responses due to the presence of δg in Eq. (4.11). Dispersion relations in a form similar to Eq. (4.20)
have been derived in many works on the effect of supra-thermal particles on low frequency MHD modes by precession
resonance (Biglari and Chen, 1986a; Chen et al., 1984; Coppi and Porcelli, 1986; Rewoldt and Tang, 1984; Spong et al.,
1985; Weiland and Chen, 1985; White et al., 1985, 1990). Meanwhile, the generality of Eq. (4.20) and its applicability
to low-frequency MHD modes (Chen et al., 1984; Liljeström and Weiland, 1992), as well as to KBM (Biglari and
Chen, 1991; Tsai and Chen, 1993) and higher frequency Alfvénic fluctuations (Biglari et al., 1992; Chen, 1988; Chen
et al., 1989), was formulated by (Chen, 1994; Zonca et al., 1996) and formalized in (Chen and Zonca, 2007a; Zonca
et al., 2007a; Zonca and Chen, 2006, 2007; Zonca et al., 1999).
The GFLDR generally demonstrates the existence of two types of modes (Zonca and Chen, 2006): a discrete gap

mode, or AE, for ReΛ2
n < 0; and an EPM (Chen, 1994) for ReΛ2

n > 0. The combined effect of δŴnf and δŴnk

determines the existence conditions of AEs, and various effects in δŴnf and δŴnk can lead to AE localization in
various gaps, i.e., to different species of AE [the AE Zoology (Heidbrink, 2002)], as described in (Chen and Zonca,
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2007a). Clearly, the transition between AE and EPM is generally continuous with varying plasma parameters and
a net distinction of one type of mode from the other is possible only when the distance of the mode frequency from
the SAW accumulation point (Λn = 0) is larger than the mode linear growth rate, γL, or the characteristic inverse
nonlinear time, τ−1

NL (cf. Sec. II.C).
In the low-frequency limit (|Λ2

n| ≪ 1), when the AE frequency is above the SAW continuum accumulation point
ωℓ, the causality constraint for AE existence inside the SAW frequency gap is (Chen and Zonca, 2007a; Zonca and
Chen, 2013)

δŴnf + ReδŴnk > 0 . (4.21)

Similarly, when the AE frequency is below the SAW continuum accumulation point ωu, the AE existence condition
becomes

δŴnf + ReδŴnk < 0 . (4.22)

For EPM, meanwhile, the iΛn term in Eq. (4.20) represents continuum damping and the threshold in supra-thermal
particle drive for effective mode excitation. In fact, near marginal stability,

δŴnf + ReδŴnk = 0 , ⇒ determines ω0 ,

γL
ω0

=
|s|−1

ImδŴkn − Λn

(−ω0|s|−1∂ReδŴn/∂ω0)
, ⇒ determines γL , (4.23)

showing the importance of resonant and non-resonant EP responses in EPM excitations (cf. Sec. IV.B.4).
Equation (4.20) explicitly shows the important role played by magnetic shear, defined in Eq. (4.17). When magnetic

shear vanishes at one isolated singular layer (s = 0 at r = r0), it is possible to construct the (local) extension of
Eq. (4.20) that, in the low-frequency limit, becomes (Zonca et al., 2007a)

iS
(
Λ2
n − k2‖n0L

2
0

)1/2 [ 1
n
k‖n0L0 −

i

n

(
Λ2
n − k2‖n0L

2
0

)1/2]1/2
= δŴnf + δŴnk , (4.24)

where

S2 = r20q
′′(r0)/q(r0)

2 (4.25)

generalizes the notion of magnetic shear for s = 0, having assumed a minimum-q surface at r0. In the ideal MHD
limit, Eq. (4.24) was derived first by (Hastie et al., 1987b) for stability analyses of ideal and resistive internal kink
modes in toroidal geometry.
Equations (4.20) and (4.24) are global by construction and can be used for computing the (generally nonlinear)

mode dispersion relation. The fact that Eqs. (4.20) and (4.24) follow from a variational principle, at least in the linear
limit, allows evaluating δŴnf and δŴnk by trial function method, thus, even with realistic mode structures obtained
numerically. Meanwhile, Λn can generally be computed by solving an ordinary (nonlinear) differential equation with
outgoing wave boundary conditions, Eq. (2.37) [or Eq. (2.26) in the same limit, accounting for full finite Larmor
radius effects (Connor et al., 1983)] for κ̂2⊥ = k2⊥/k

2
ϑ ≃ s2ϑ2|∇r|2 ≫ 1, which can be done analytically in many

cases of practical interest, or numerically. Furthermore, the same approach allows accounting for finite magnetic drift
orbit widths and thermal plasma plus supra-thermal particle kinetic compression effects in the long wavelength limit
(Biglari and Chen, 1986b, 1991; Chen and Hasegawa, 1991; Cheng, 1982a,b; Kotschenreuther, 1986; Romanelli and
Chen, 1991; Tang et al., 1980). Theoretical analyses of nonlinear dynamics that are addressed by the GFLDR are
discussed in Sec. V. In the rest of this section, we focus on analyses and applications of the linearized GFLDR.

B. Shear Alfvén waves and instabilities in toroidal magnetized plasmas

The general fishbone like dispersion relation (GFLDR), Eq. (4.20), can be adopted for analyses of low mode number
MHD modes (cf. Sec. IV.B.1) as well as shorter wavelength Alfvénic modes with radially localized mode structures.
In this latter case, the mode structure decomposition of Eq. (4.13) reduces to the “ballooning representation” (cf.
Sec. IV.A)

f(r, θ, ζ) =
∑

m,n∈Z

An(r)e
inζ−imθ

∫
ei(m−nq)ϑf̂0n(r, ϑ)dϑ

=
∑

m,n∈Z

An(r)e
inζ−imθ

∫
ei(m−nq)ϑPBn(r, ϑ) [f0n] dϑ , (4.26)
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where PBn(r, ϑ) : f0n(r;nq − m) 7→ f̂0n(r, ϑ) and the functions f0n(r;nq − m) are nearly invariant under radial
translations by multiples of (nq′)−1, while the radial envelope functions An(r) have characteristic spatial dependences
on meso-scales, intermediate between the perpendicular wavelength and the the equilibrium scale-length (Zonca,
1993a; Zonca and Chen, 1993). Because of the spatial scale separation between f0n(r;nq−m), An(r) and equilibrium
nonuniformities, it is possible to use the eikonal Ansatz

An(r) ∼ exp i

∫
nq′θk(r)dr , (4.27)

in theoretical analyses of short wavelength ballooning modes (Dewar et al., 1981, 1982) . Thus, Eq. (4.14) becomes

∇⊥ 7→ ikϑ∇r (sϑ− sθk) + in∇ζ + ikϑr∇θ (4.28)

and Eq. (2.37) can be rewritten as
(
∂2

∂ϑ2
− ∂2ϑκ̂⊥

κ̂⊥

)
δΨ̂n − J 2B2

0

v2A

∂

∂t

[
∂

∂t
+ iω∗pi −

3

4
k2ϑρ

2
i κ̂

2
⊥

(
∂

∂t
+ iω∗pi + iω∗Ti

)]
δΦ̂n

−4πJ 2B0

ck2ϑκ̂⊥
b× κ ·∇

∑〈
m
(
µB0 + v2‖

)
J0
∂

∂t
δĝn

〉

v

+ [NLTERMS] = 0 . (4.29)

Here, we have introduced the notation δΦ̂n ≡ κ̂⊥δφ̂n, as in Eq. (4.15), and ω∗pi = ω∗ni + ω∗Ti, with

ω∗ni =

(
T0c

en0B0

)

i

(b×∇n0i) · k⊥ ,

ω∗Ti =

(
c

eB0

)

i

(b×∇T0i) · k⊥ , (4.30)

and k⊥ = −i∇⊥. Furthermore, we have omitted the kink drive, for it scales as n−1 (cf. Sec. II.C), and the nonlinear
terms, since they are analyzed specifically in Sec. V.C. Equations (4.16) and (4.18), meanwhile, become

δW =
2π2c2

|ω|2
∑

n∈Z

∫ a

0

dr
|kϑ|2(dψ/dr)

JB2
0

∣∣∣∣
ϑ=0

(
δΨ̂†

−n0+δΨ̂n0+
)
δW̄n , (4.31)

δI =
2π2c2

|ω|2
∑

n∈Z

∫ a

0

dr
|kϑ|2(dψ/dr)

JB2
0

∣∣∣∣
ϑ=0

(
δΨ̂†

−n0+δΨ̂n0+
)
iΛn , (4.32)

with the “ballooning” δW̄n expressed as, noting that δΨ̂†
−n0+δΨ̂n0+ = δΦ̂†

−n0+δΦ̂n0+ ,

δW̄n = δW̄nf + δW̄nk =
(
δΦ̂†

−n0+δΦ̂n0+
)−1 1

2

∫ ∞

−∞

[(
∂

∂ϑ
δΦ̂−n

)† (
∂

∂ϑ
δΦ̂n

)

+
∂2ϑκ̂⊥
κ̂⊥

δΦ̂†
−nδΦ̂n + δΦ̂†

−n

J 2B2
0

v2A

∂

∂t

(
∂

∂t
+ iω∗pi

)
δΦ̂n

+δΦ̂†
−n

4πJ 2B0

ck2ϑκ̂⊥
b× κ ·∇

∑〈
m
(
µB0 + v2‖

)
J0
∂

∂t
δĝn

〉

v

]
dϑ . (4.33)

Here, Λn, δW̄n and other physical quantities are dependent on r, due to the global equilibrium profile variations. For
very localized modes, whose radial envelope variation An(r) on meso-scales can be ignored, a direct comparison of
Eqs. (4.16) and (4.31) yields δŴn = |s|δW̄n and the GFLDR becomes a local dispersion relation.
In the more general case, where global plasma nonuniformities play important roles, the GFLDR, Eq. (4.20), can

be cast as
[
iΛn −

(
δW̄f + δW̄k

)
n

]
An(r) = Dn(r, θk, ω)An(r) = 0 , (4.34)

with Dn(r, θk, ω) playing the role of a local dispersion function. This equation can be generally solved as initial value
problem, using the fact that ω = ω0 + i∂t, with ω0 the typical (linear) mode frequency (cf. Sec. II.C). In fact, we can
describe the spatiotemporal evolution of SAW wave packets in toroidal plasmas expanding the solutions of Eq. (4.34)
about the characteristics

Dn(r, θk0(r), ω0) = 0 . (4.35)



29

Then, letting An(r) = exp(−iω0t)An0(r, t), with ∂tAn0(r, t) ∼ γLAn0(r, t) ∼ τ−1
NLAn0(r, t) (cf. Sec. II.C and V.A),

the spatial-temporal evolution equation for An0(r, t) is

∂Dn

∂ω0

(
i
∂

∂t

)
An0 +

∂Dn

∂θk0

(
− i

nq′
∂

∂r
− θk0

)
An0

+
1

2

∂2Dn

∂θ2k0

[(
− i

nq′
∂

∂r
− θk0

)2

An0 −
i

nq′
∂θk0
∂r

An0

]
= Sn(r, t) . (4.36)

The Sn(r, t) on the right hand side can represent either a source term [e.g., (Lu et al., 2012)] or nonlinear interactions
(cf. Sec. V.A). The solution of Eq. (4.36) as initial value problem identifies important time scales, such as the inverse
linear growth time, γ−1

L , and the formation time of the global eigenmode structure, τA, which is of the order of the
wave packet bounce time between WKB turning points (Zonca et al., 2004a). It can be readily shown that the global
mode dispersion relation is (Zonca, 1993a,b; Zonca and Chen, 1993)

Φ0(ω0) =

∮
nq′θk0dr − kπ = ℓπ , ℓ ∈ N . (4.37)

Here, k = 0 or k = 1, respectively, for k = 1 for librations or rotations of θk0-characteristics of Eq. (4.35).
Plasma equilibrium geometry and nonuniformities are also crucial to the wave-particle resonance conditions in

toroidal systems. Wave-particle resonance occurs when the wave phase is constant in the reference frame moving with
the particle. Meanwhile, the charged particle motion in the equilibrium B0 field, characterized by the streaming along
the magnetic field lines with varying v‖ plus a periodic excursion across B0, given by Eq. (2.24), causes the “particle”
coordinates (r, θ, ζ) or (r, θ, ξ) to vary in a complicated fashion. The resonance condition becomes transparent when
the mode structure is projected along the particle motion in the equilibrium B0, characterized by constant actions
and one time-like parameter τ , tracing the particle position along its trajectory. This mode structure decomposition
is naturally given in action angle coordinates, which are given by (cm2µ/e, α), with µ = v2⊥/(2B0) + . . . the magnetic
moment (see Sec. II) and α the gyrophase; (Pϕ, ϕ), with the canonical toroidal angular momentum Pϕ at the leading
order given by

Pφ =
e

c

(
F (ψ)

v‖

Ω
− ψ

)
; (4.38)

and by (J, θc), with J the “second invariant” and θc the respective conjugate canonical angle11

J = m

∮
v‖dl , θc = ωb

∫ θ

0

dθ′/θ̇′ . (4.39)

Here, dl is the arc-length along the particle orbit and we have introduced the unified notation of ωb(µ, J, Pφ),

ωb(µ, J, Pφ) =
2π∮
dθ/θ̇

, (4.40)

for bounce and transit frequency of trapped and circulating particles, respectively. Different notations will be used
only when needed. Meanwhile, from Eq. (4.39), it is readily noted that θc = ωbτ , with τ the time-like parameter
mentioned above. For a particle with given constants of motion, the “particle” coordinates (r, θ, ζ) or (r, θ, ξ) are
parameterized as (Zonca et al., 2013b)

r = r̄ + ρ̃(θc) , (4.41)

θ = Θ̃c(θc) , (4.42)

ζ = ω̄dτ + q̄θ + Ξ̃(θc) , (4.43)

for magnetically trapped particles; while, for circulating particles, Eq. (4.42) is substituted by

θ = θc + Θ̃c(θc) . (4.44)

11 A recent review of coordinates systems and their connection with the description of the guiding center particle motion (see Sec. II) is
given by (Cary and Brizard, 2009).
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Here, r̄, ρ̃(θc), Θ̃c(θc), Ξ̃(θc), and

q̄ ≡
∮
qdθ/

∮
dθ (4.45)

are also functions of (µ, J, Pφ), which can be computed from the particle equations of motion in the equilibrium B0.
Furthermore, ˜ denotes a generic harmonic function in θc with zero average, while the toroidal precessional frequency
ω̄d is

ω̄d(µ, J, Pφ) =
ωb
2π

∮ (
ξ̇ + θq̇

) dθ
θ̇

. (4.46)

Thus, the Fourier decompositions of Eqs. (4.8) and (4.9) become

f(r, θ, ζ) =
∑

m,n∈Z

einζ−imθfm,n(r) =
∑

m,n,ℓ∈Z

ei(nω̄d+ℓωb)τPm,n,ℓ ◦ fm,n , (4.47)

where the projection operators Pm,n,ℓ are defined as

Pm,n,ℓ ◦ fm,n =
λm,n
2π

∮
exp

{
inΞ̃(θc) + i [nq̄(r̄)−m] Θ̃c(θc)

}
fm,n(r̄ + ρ̃(θc))e

−iℓθcdθc , (4.48)

ℓ ∈ Z stands for the “bounce harmonic”, and λm,n = 1 for trapped particles while, for circulating particles,

λm,n = exp [i (nq̄(r̄)−m)ωbτ ] . (4.49)

Note that this mode structure decomposition corresponds to a lifting of f(r, θ, ζ) to the particle phase-space. Mutatis-

mutandis, the same lifting applies in the mapping space, PBn(r, ϑ) : f(r, θ, ζ) 7→ f̂n(r, ϑ) = An(r)f̂0n(r, ϑ), once the
representations of Eqs. (4.13) or (4.26) are adopted. The integral nature of the projection operators Pm,n,ℓ and of
the action of Bessel functions (cf. Sec. II.D) shows the integro-differential character of governing equations for drift
Alfvén waves (DAWs) in toroidal plasmas and emphasizes the crucial roles played by plasma equilibrium geometry
and nonuniformities. Assuming a monochromatic wave, f(r, θ, ζ) ∝ exp(−iωt), the resonance condition is readily
derived from Eq. (4.47) and yields

ω = ω(µ, J, Pφ) = nω̄d + ℓωb (4.50)

for magnetically trapped particles; while, for circulating particles,

ω = ω(µ, J, Pφ) = nω̄d + ℓωb + (nq̄(r̄)−m)ωb , (4.51)

where the toroidal precessional frequency ω̄d is typically negligible for circulating particles, except for particles that
are close to the trapped-to-circulating boundary in the action space.

1. The fishbone mode

The observation of “fishbone” oscillations in the PDX tokamak (McGuire et al., 1983) was the first and still remains
one of the most striking evidence of resonant excitations of MHD and Alfvénic modes by EPs, with clear evidence
of secular loss of supra-thermal particles (White et al., 1983) (cf. Sec. V.D.7) and consequent drop in the fusion
reactivity, made evident by a corresponding drop in the neutron signal (McGuire et al., 1983). The theoretical
interpretation of experimental observation is given by (Chen et al., 1984), where the general fishbone like dispersion
relation (GFLDR) in the form of Eq. (4.20) was given for the first time. In this case, an internal kink mode with
n = 1 is resonantly excited by precession resonance with trapped supra-thermal particles12; i.e., by the resonance of
Eq. (4.50) with n = 1 and ℓ = 0, and the mode dispersion relation reads (Chen et al., 1984; Coppi and Porcelli, 1986)

i|s|
[
ω (ω − ω∗pi)

ω2
A

(1 + ∆)

]1/2∣∣∣∣∣
r=rs

= δŴf + δŴk , (4.52)

12 Fishbone oscillations driven by transit resonance were observed shortly afterwards (Heidbrink et al., 1986) and later explained theoret-
ically (Betti and Freidberg, 1993).
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where ω∗pi is defined in Eq. (4.30), ωA = vA/(qR0), rs is the radius of the q(rs) = 1 magnetic surface and ∆ ∝ q2 is
the enhancement of plasma inertia due to geodesic curvature (Glasser et al., 1975; Graves et al., 2000). The general
derivation of Λ2

n = ω(ω − ω∗pi)(1 +∆)/ω2
A will be discussed in Sec. IV.B.2. Meanwhile, the expression of δŴf , in its

simplest form, is given by (Bussac et al., 1975)

δŴf = 3π∆q0
(
13/144− β2

ps

) (
r2s/R

2
0

)
, (4.53)

with βps = −(R0/r
2
s)

2
∫ rs
0 r2(dβ/dr)dr and ∆q0 = 1− q(r = 0). The fluid term, δŴf , includes the contribution of the

EP adiabatic and convective responses, which have been separated from the kinetic particle response by letting

δg ≡ δK + i
e

m
QF̄0∂

−1
t 〈δψg〉 (4.54)

in Eqs. (2.21) and (2.22), with QF̄0 defined as

iQF̄0 = −∂F̄0

∂E
∂

∂t
+

b×∇F̄0

Ω
·∇ . (4.55)

The linearized gyrokinetic equation, Eq. (2.23), assuming ǫB/ǫF ≪ 1 (cf. Sec. II.A), can be cast as

(
∂

∂t
+ v‖∇‖ + vd ·∇⊥

)
δK = i

e

m

[
QF̄0 〈δφg − δψg〉 − vd ·∇⊥QF̄0∂

−1
t 〈δψg〉

]
. (4.56)

Note that working with δK is particularly convenient in linear analyses, since δK → 0 in the fluid ion (ω ≫ ω̄d, ωb)
and massless electron (ωb ≫ ω, ω̄d) limits. When considering short wavelength modes, ǫF /ǫ⊥ ≪ 1, operators

vd ·∇⊥ ≡ iωd (4.57)

and QF̄0 in Eq. (4.56) are commuting. Neglecting finite orbit width effects, assuming δφ = δψ = δφ0(r) exp(−iωt+
iζ − iθ) and using Eqs. (4.42) to (4.47), it is possible to obtain

δK =
e

m

QF̄0

ω

eiq(r)θωde−iθ

ω̄d − ω
δφ0(r)e

i(ζ−q(r)θ−ωt) , (4.58)

(...) = (
∮
dθ/θ̇)−1

∮
(...)dθ/θ̇ denoting bounce-averaging along the particle orbit in the equilibrium B0. Meanwhile,

for a high aspect-ratio circular tokamak equilibrium, δŴk is given by (Chen et al., 1984)

δŴk = 4
π2

B2
0

mΩ2R0

r2s

∫ rs

0

r3

q
dr

∫
EdEdλ

∑

v‖/|v‖|=±1

eiθωde−iq(r)θ eiq(r)θωde−iθ
τ̂bQF̄0

ω̄d − ω
, (4.59)

where λ = µB0/E , τ̂b = π/ωb for trapped particles and QF̄0 is computed on the mode structure ∼ exp(−iωt+ iζ− iθ).
It is worthwhile recalling (Chen et al., 1984) that Eq. (4.52), with δŴk given in Eq. (4.59), reproduces the well-known
forms of kinetic MHD energy principles in the collisionless (Kruskal and Oberman, 1958; Rosenbluth and Rostoker,
1959) and low-frequency limit (Antonsen et al., 1981; Antonsen and Lee, 1982; Van Dam et al., 1982). Furthermore,
Eq. (4.59) can be extended to include the bounce-averaged response of circulating particles, for which τ̂b = τb = 2π/ωb,
provided that the ℓ = 0 resonance condition of Eq. (4.51) is taken into account, as emphasized by (Merle et al., 2012).
As mentioned in the introduction of Sec. IV, Eq. (4.52) admits two branches as solution: an EPM branch, the

precessional fishbone (Chen et al., 1984), and a gap mode branch, the diamagnetic fishbone (Coppi et al., 1988b;
Coppi and Porcelli, 1986). The former branch satisfies Eq. (4.23), noting that δŴf is independent of ω in this case
(see also Sec. IV.B.2); while for the latter branch, given Eq. (4.22) causality constraints, Eq. (4.52) reads

−|s|
[
ω (ω∗pi − ω)

ω2
A

(1 + ∆)

]1/2∣∣∣∣∣
r=rs

= δŴf + δŴk . (4.60)

Since the early observation of fishbones (McGuire et al., 1983) and their consequence on plasma fusion perfor-
mance (McGuire et al., 1983; White et al., 1983), the internal kink/fishbone problem has been one of the most widely
studied in the magnetic fusion literature. Further interest in the kink/fishbone stability was triggered by the ob-
servation in the Joint European Torus (JET) (JET Joint Undertaking, 1991; Rebut et al., 1985; Rebut and Kenn,
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1987) of sawtooth activity stabilization in plasma discharges with additional heating (Campbell et al., 1988). This
was explained with the strong stabilizing effect of a supra-thermal trapped particle population on the internal kink
mode (Coppi et al., 1988a; White et al., 1988) and confirmed by later works. The stabilization of the internal kink
mode by EPs, in the limit ω∗pi → 0, was noted first by (White et al., 1985); later, it became evident that there is
a regime free of both kink and fishbone modes (Coppi et al., 1990; Porcelli, 1991a; White et al., 1989, 1990), with
important consequence on tokamak operations (cf. Sec. IV.C for further details).
As anticipated in Sec. IV.A, various extensions of Eq. (4.52) are possible, either in the description of the generalized

inertia term Λn, defined in Eq. (4.19), or in the calculation of δŴf and δŴk. For Λn, effects due to resistivity (Coppi
et al., 1976a,b), diamagnetic drift (Ara et al., 1978; Bussac et al., 1976), ion viscosity (Porcelli, 1987) and finite electron
inertia (Porcelli, 1991b; Wesson, 1990), as well as finite Larmor radius (Pegoraro et al., 1989, 1991) and Hall terms
(Zakharov and Rogers, 1992) have been included. A reasonably accurate although not very recent theoretical review
can be found in (Migliuolo, 1993)13. For δŴf and δŴk, it is worthwhile mentioning the stabilization effect due to
perpendicular compressibility, first noted by (Kruskal and Kulsrud, 1958; Rosenbluth and Rostoker, 1959; Rutherford
et al., 1978) and explicitly computed by (Fogaccia and Romanelli, 1995; Hastie and Hender, 1988; Kuvshinov and
Mikhailovskii, 1987; Porcelli et al., 1996; Wu et al., 1994).
Among the various applications of Eq. (4.52), one that has recently attracted significant theoretical as well as

experimental interest is the study of the so-called “electron fishbone” (e-fishbone), where the internal kink mode is
resonantly excited by energetic electrons accelerated by auxiliary heating and/or current drive systems. Experimen-
tal observations of e-fishbones were first reported in DIII-D (Luxon, 2002) in conjunction with Electron Cyclotron
Resonance Heating (ECRH) on the high magnetic field side (Wong et al., 2000), followed by further evidence in plas-
mas with both ECRH and/or Lower Hybrid Heating (LHH) and current drive (LHCD) (cf. Sec. IV.C). E-fishbones
are of particular interest, for the perpendicular (bounce-averaged) trapped supra-thermal electron transport closely
resembles that of alpha particles produced by fusion reactions in reactor relevant plasma conditions (Zonca et al.,
2007a,b), which are both characterized by small magnetic drift orbit widths normalized to the macroscopic system
size, unlike supra-thermal ions in present day experiments (Pizzuto et al., 2010; Zonca, 2008; Zonca and Chen, 2008a).
Equations (4.52) and (4.60) are readily usable for the investigation of precessional (EPM) and diamagnetic (gap mode)
e-fishbone branches in monotonic q profile plasma equilibria. However, due to the important role of LHH and LHCD
in some experimental conditions yielding e-fishbones (Maget et al., 2006; Romanelli et al., 2002; Smeulders et al.,
2002), the relevant fishbone dispersion relation for a hollow q profile, with the minimum value of q(rs) ≃ 1 at r = rs,
is obtained from Eq. (4.24) with n = 1 and k‖0L0 = ∆qs = q(rs) − 1. Meanwhile, the analogue of Eq. (4.60) for the
gap mode branch with s = 0 (Hastie et al., 1987b; Zonca et al., 2007a) is

− S
(
∆q2s − Λ2

)3/4 [
1 + ∆qs/

√
∆q2s − Λ2

]1/2
= δŴf + δŴk , (4.61)

with Λ2 ≃ ω(ω − ω∗pi)(1 + ∆)/ω2
A as noted above (cf. also Sec. IV.B.2).

It is worthwhile commenting on the ∆ ∝ q2 enhancement of plasma inertia due to geodesic curvature in Eq.(4.52).
In the “banana regime” (Hinton and Hazeltine, 1976) and for circular, high aspect-ratio, tokamak plasma equilibria,
the correct form was first pointed out in (Graves et al., 2000)

∆ =
(
1.6(R0/rs)

1/2 + 0.5
)
q2 , (4.62)

where the 1.6(R0/rs)
1/2q2 factor comes from trapped and barely circulating particles; the 0.5q2 term, meanwhile,

is due to well circulating particles, i.e., those particles for which the v‖ modulation along the periodic transit orbit
is of order rs/R0. It differs from the well known 2q2 factor (Glasser et al., 1975) due to the intrinsic limitation of
the ideal MHD model in assuming an isotropic pressure response (Zonca et al., 2007a). Kinetic “bulk ion inertia
enhancement” for low frequency (“banana regime”) MHD modes was analyzed by (Belikov et al., 1992; Mikhailovskii
and Suramlishvili, 1979; Mikhailovskii and Tsypin, 1983), where estimates were given for both inertia enhancement
as well as ion Landau damping. A more systematic analytic approach was given in Refs. (Graves et al., 2000)
and (Bondeson and Chu, 1996). Here, it is worthwhile noting that the inertia enhancement factor is identical to the
zonal flow (ZF) polarizability (Hinton and Rosenbluth, 1999; Rosenbluth and Hinton, 1998). This is due to the fact
that, at long wavelengths, Eq. (2.37) predicts that SAW compressibility due to geodesic curvature coupling at k‖ = 0
is identical to the corresponding dynamics of electrostatic waves with kζ = kθ = 0, provided that diamagnetic effects
are neglected and ω̄di ≪ |ω| ≪ ωbi (Zonca et al., 2007a).

13 See also (Biglari and Chen, 1986a; Pegoraro and Schep, 1986; Shi and Sui, 1997).
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Parallel and perpendicular plasma compressions are also relevant for the accurate evaluation of the enhancement of
plasma inertia when |ω|>∼ ωbi. The importance of accounting for thermal ion transit resonance in the study of resistive
MHD modes was proposed by (Romanelli and Chen, 1991), while its effect on the SAW continuous spectrum was
given by (Kotschenreuther, 1986; Mikhailowskii, 1973). Using the expression of Λ2 computed for ωbi ≪ |ω| ≪ ωA(cf.
Sec. IV.B.2), it was demonstrated that, for |ω| ≫ ωti, a high frequency kink/fishbone can be excited (Zonca, 2003;
Zonca et al., 2007a,b), satisfying the same dispersion relation, Eq. (4.20), but with

Λ2 =
ω2

ω2
A

− ω2
BAE

ω2
A

[
1 +

ω2
BAE

q2ω2

(46/49) + (32/49)(Te/Ti) + (8/49)(Te/Ti)
2

(1 + (4/7)(Te/Ti))
2

]
. (4.63)

Here ωBAE = qωti(7/4 + Te/Ti)
1/2 is the fluid limit expression of the BAE frequency and ωti = (2Ti/mi)

1/2/(qR0).
While the high frequency EPM/fishbone branch is explicitly solved for by Eq. (4.23), the corresponding fishbone/gap
mode is obtained for δŴf + ReδŴk < 0, as specified in Eq. (4.22). High frequency fishbones have been observed
in JET (Nabais et al., 2005) and fluctuations with similar features, consistent with Eqs. (4.20) and (4.63), were
observed for the first time during D-T experiments in TFTR (Bell et al., 1995; Grove and Meade, 1985), as recently
reported (Fredrickson, 2011). JET observations are consistent with theoretical predictions (Zonca et al., 2007b, 2009).
Meanwhile, high frequency fishbones have been investigated numerically, showing the crucial importance of properly
accounting for accurate mode structures (Kolesnichenko et al., 2010a).

The GFLDR theoretical framework, in summary, suggests that kink/fishbone stability may be strongly affected by
kinetic effects: while potential energy is modified by supra-thermal particles as well as thermal electrons and ions,
the generalized inertia is mostly affected by thermal ions, although supra-thermal ions may contribute significantly as
well (see Secs. IV.B.2 and IV.B.3 for more details). This can be noted from Eqs. (4.52), (4.60) and (4.61), when using
the expression of Λ2 obtained from Eq. (4.19) including supra-thermal ion response in the long wavelength limit.

2. The low frequency shear Alfvén wave spectrum

Early investigations of the low frequency SAW/DAW spectrum in toroidal geometries were focused on kinetic
descriptions of wave-particle interactions with the thermal plasma component (Kotschenreuther, 1986; Mikhailowskii,
1973). Theoretical studies of collisionless kinetic ballooning modes (KBM) (Cheng, 1982a,b; Tang et al., 1980) in
particular attracted significant attention, with emphasis on the possibility of exciting short wavelength modes by
EPs (Biglari and Chen, 1986a,b, 1991; Chen, 1994; Chen and Hasegawa, 1991; Rewoldt, 1988; Spong et al., 1988;
Tsai and Chen, 1993; Weiland and Chen, 1985). The experimental observation of BAEs (Heidbrink et al., 1993;
Turnbull et al., 1993), excited by EPs in the low-frequency SAW continuous spectrum gap due to finite thermal
plasma compressibility (Chu et al., 1992, 1993; Turnbull et al., 1993), has revived the interest in this frequency range
because of the impact of these fluctuations on EP confinement (cf. Sec. IV.C).

All these modes existing near the low-frequency KTI gap are well described within the theoretical framework of
the GFLDR. The generalized inertia term, Eq. (4.19), can be computed from the solution of the κ̂2⊥ = k2⊥/k

2
ϑ ≃

s2ϑ2|∇r|2 ≫ 1 limit of the linearized Eq. (4.29), along with the same limit of the quasineutrality condition, the
linearized Eq. (2.28), which reads (Zonca et al., 1999, 1996, 1998)

(
1 +

1

τ

)(
δΦ̂n − δΨ̂n

)
+
(
1− ω∗pi

ω

)
k2ϑρ

2
i κ̂

2
⊥δΨ̂n =

Ti
n0e

κ̂⊥

〈(
1− k2ϑ

µB0

2Ω2
κ̂2⊥

)
δK̂in

〉

v

. (4.64)

Here, we have expressed the non-adiabatic thermal ion response δĝn in terms of δK̂n, according to Eq. (4.54), and
adopted the small thermal ion Larmor radius ordering of Sec. II.E, consistent with Eq. (4.29). Furthermore, one
single species of core-plasma ions with unit electric charge e has been assumed, n0 is the equilibrium core plasma
density, τ = Te/Ti and EPs are neglected in the inertial layer, assuming that EP orbits are larger than the layer
width and/or that their density is much smaller than that of the core plasma component. Taking the s2ϑ2|∇r|2 ≫ 1
limits of Eqs. (4.29) and (4.64), and noting that only trapped thermal and supra-thermal electrons enter via their
bounce-average responses, one could then demonstrate that thermal ions dominate the kinetic layer response and the
expression of Λn (cf. Sec. IV.A) (Chavdarovski and Zonca, 2009).

As noted in Sec. IV.A, the GFLDR can be computed numerically and/or analytically with various levels of ap-
proximation. Here, we discuss analytic derivations using the so called (s, α) model equilibrium (Connor et al., 1978)
for the local description of a high aspect ratio tokamak (cf. Sec. II.A) with shifted circular magnetic surfaces. The
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magnetic shear s is defined in Eq. (4.17), α is the dimensionless “ballooning” pressure gradient parameter

α = −R0q
2 dβ

dr
, (4.65)

and β is defined in Sec. II. In this case, Boozer coordinates (Boozer, 1981, 1982) are easily constructed [cf., e.g., (Fu,
1995)], with J = qR0(B0/B

2) and, from Eq. (4.28)14

κ̂2⊥ = [s(ϑ− θk)− α sinϑ]2 (1 + 2∆′ cosϑ)− 2s(ϑ− θk)∆
′ sinϑ+ 1− 2(r/R0 +∆′) cosϑ , (4.66)

where ∆′ is the radial derivative of the Shafranov shift and, consistent with the high aspect ratio tokamak ordering,
|∆′| ∼ r/R0 ≪ 1. The linearized vorticity equation, Eq. (4.29), can then be rewritten at the leading order as

(
∂2

∂ϑ2
+∆′ cosϑ

)
δΨ̂n +

ω

ω2
A

[1 + 4(r/R0) cosϑ]

[
ω − ω∗pi −

3

4
k2ϑρ

2
i κ̂

2
⊥ (ω − ω∗pi − ω∗Ti)

]
δΦ̂n

+
4πR0q

2

B0

g(ϑ, θk)ω

ckϑκ̂⊥

[〈
mi

(
µB0 + v2‖

)(
1− k2ϑ

µB0

2Ω2
i

κ̂2⊥

)
δK̂in

〉

v

+
〈
mE

(
µB0 + v2‖

)
J0δĝEn

〉
v

]

+

[
α cosϑ

κ̂2⊥
− (s− α cosϑ)2

κ̂4⊥
+

(αc − α)g(ϑ, θk)

κ̂2⊥

]
δΨ̂n = 0 , (4.67)

where g(ϑ, θk) = [s(ϑ− θk)− α sinϑ] sinϑ+ cosϑ, having expressed δĝn in terms of δK̂n for the core plasma compo-
nents and neglected kinetic thermal electron effects, ∝ δK̂en, for |ω| ≫ |nω̄dne| (Chavdarovski and Zonca, 2009). Here,
ωA = vA/(qR0), αc refers to the core plasma components only, while α includes EPs as well. In the long wavelength
limit, k2ϑρ

2
i → 0, and without kinetic thermal ion compression terms, ∝ δK̂in, Eq. (4.67) reduces to the form used in

analyses of KBM resonant excitations by EPs (Biglari and Chen, 1991; Chen, 1994; Tsai and Chen, 1993).
The generalized inertia term Λn can be computed from Eqs. (4.64) and (4.67) for k2ϑρ

2
i → 0, |δĝEn| → 0 and

s2ϑ2 → ∞. Here, we follow (Zonca et al., 1996) and consider finite mode number (Lauber et al., 2009; Zonca et al.,
2009) in order to be able to use Eq. (4.20) also for moderate (poloidal, toroidal) mode numbers (m,n). We also
consider mode structures that may have a kinetic singular (inertial) layer located away from a mode rational surface,
so that k‖qR0 = (nq −m) is generally non vanishing but still |k‖qR0| ≪ 1. This allows us to derive Λn expressions
that apply for s = 0 as well and can be used in Eq. (4.24). Equation (4.67) shows that mode structures can be written

as asymptotic series in the expansion parameter |ω/ωA| ≪ 1; i.e., δΦ̂n = δΦ̂
(0)
n + δΦ̂

(1)
n + . . . and similarly for δΨ̂n.

Here, δΦ̂
(0)
n = δΨ̂

(0)
n = δΨ̂

(0)
n (ϑ1), δΨ̂

(1)
n = 0, δΦ̂

(1)
n = δΦ̂

(1)
n (ϑ0, ϑ1), ϑ0 ∼ 1, and ϑ1 ∼ |ωA/ω| ≫ 1. Carrying out the

expansion systematically (Zonca et al., 1996), Eq. (4.67) yields, at the second order,

∂2

∂ϑ21
δΨ̂(0)

n + Λ2
nδΨ̂

(0)
n = 0 ,

Λ2
n =

ω(ω − ω∗pi)

ω2
A

+
[
δΨ̂(0)

n

]−1
∫ 2π

0

2R0q
2

B0

g(ϑ, θk)ω

ckϑκ̂⊥

〈
mi

(
µB0 + v2‖

)
δK̂

(1)
in

〉
v

∣∣∣
|sϑ1|→∞

dϑ0 . (4.68)

Here, δK̂
(1)
in is given by Eq. (4.56) and can be calculated explicitly in the limits of well circulating as well as deeply

trapped ions (Chavdarovski and Zonca, 2009).
For well circulating ion, v‖ ≃ constant, we find (Lauber et al., 2009; Zonca et al., 2010, 2009)

Λ2
n =

ω2

ω2
A

(
1− ω∗pi

ω

)
+ q2

ω2
ti

2ω2
A

[(
1− ω∗ni

ω

)(
(ω/ω

(+)
ti )F (ω/ω

(+)
ti ) + (ω/ω

(−)
ti )F (ω/ω

(−)
ti )

)

−ω∗Ti

ω

(
(ω/ω

(+)
ti )G(ω/ω
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ti ) + (ω/ω

(−)
ti )G(ω/ω

(−)
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)
(4.69)

−
(
(ω/ω

(+)
ti )Nm(ω/ω

(+)
ti )

Nm−1(ω/ω
(+)
ti )

Dm−1(ω/ω
(+)
ti )

+ (ω/ω
(−)
ti )Nm(ω/ω

(−)
ti )

Nm+1(ω/ω
(−)
ti )

Dm+1(ω/ω
(−)
ti )

)]
,

where ωti = (2Ti/mi)
1/2/(qR0), ω

(±)
ti /ωti = 1± (nq −m) and the functions F (x) and G(x) are defined as

F (x) = x
(
x2 + 3/2

)
+
(
x4 + x2 + 1/2

)
Z(x) ,

G(x) = x
(
x4 + x2 + 2

)
+
(
x6 + x4/2 + x2 + 3/4

)
Z(x) , (4.70)

14 With a more accurate (higher order) expansion, α in Eq. (4.66) is replaced by α+ 2(r/R0)− (3 − 2s)∆′ (Fu et al., 2005).
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and contain the plasma dispersion function Z(x) = π−1/2
∫∞

−∞ e−y
2

/(y − x)dy. Meanwhile, the functions Nm(x) and
Dm(x), to be computed at the poloidal mode number m, are also polynomials containing the Z(x) function

Nm(x) =
(
1− ω∗ni

ω

) [
x+

(
1/2 + x2

)
Z(x)

]
− ω∗Ti

ω

[
x
(
1/2 + x2

)
+
(
1/4 + x4

)
Z(x)

]
,

Dm(x) =

(
1

x

)(
1 +

1

τ

)
+
(
1− ω∗ni

ω

)
Z(x)− ω∗Ti

ω

[
x+

(
x2 − 1/2

)
Z(x)

]
. (4.71)

With the typical long wavelength ordering |kϑρi| ∼ |ω2/ω2
A| (Zonca et al., 1999), we have δΦ̂

(1)
n ∼ |ω/ωA|δΦ̂(0)

n ; i.e.,
mode structures with typical SAW/DAW polarization that characterize most unstable fluctuation structures in the

KTI frequency range from KMB to BAE modes (Chen and Zonca, 2007a). However, forDm∓1(ω/ω
(±)
ti ) ∼ |ω/ωA| ≪ 1,

we have δΦ̂
(1)
n ∼ δΦ̂

(0)
n and mode structures have a mixed Alfvénic and acoustic polarization, which is that of

BAAE (Gorelenkov et al., 2007a,b, 2009). When this happens, Dm∓1(ω/ωti)
(±) ≃ 0 gives the lowest order mode

dispersion relation, and BAAE is essentially a strongly damped drift wave (DW) (Zonca et al., 2010). In fact,
both SAW/DAW and BAAE branches are characterized by a predominantly sinusoidal (a.c.) parallel electric field
perturbation. However, δE‖ is an important component of the BAAE mode structure, while it is a perturbation
for long wavelength SAW/DAW mode structures. Furthermore, typical BAAE frequencies are lower than those of
SAW/DAW, so that wave-particle interactions with thermal ions are stronger. As a result, Landau damping is
generally much stronger for BAAE than for SAW/DAW, unless sound wave frequency and ωti are well separate; i.e.,
Te ≫ Ti, or for sufficiently short wavelengths that DW is near its instability threshold (Zonca et al., 2010).
It is also worthwhile reminding that, for sufficiently low frequencies comparable to the thermal ion bounce frequency,

ωbi, kinetic responses of magnetically trapped core plasma ions must be accounted for (Chavdarovski and Zonca, 2009;
Lauber et al., 2009), especially when realistic comparisons with experimental observations are made (Curran et al.,
2012; Lauber et al., 2009, 2012) (cf. Sec. IV.C). In this case, Eq. (4.68) can either be evaluated numerically or Eq. (4.69)
can be extended to account for magnetically deeply trapped thermal ions. The resulting Λ2

n expression (Chavdarovski
and Zonca, 2009) smoothly connects to Λ2

n = ω(ω−ω∗pi)(1+∆)/ω2
A for ω̄di ≪ |ω| ≪ ωbi, with ∆ given by Eq. (4.62);

and, for |ω| ≫ ωbi, reduces to the high mode number limit of Eq. (4.69), which reads (Zonca et al., 1996)

Λ2
n =

ω2

ω2
A

(
1− ω∗pi

ω

)
+ q2

ωωti
ω2
A

[(
1− ω∗ni

ω

)
F (ω/ωti)−

ω∗Ti

ω
G(ω/ωti)−

N2
m(ω/ωti)

Dm(ω/ωti)

]
; (4.72)

and, in the |ω| ≫ ωti limit, yields Eq. (4.63). Setting Λ2
n = 0, Eq. (4.63) demonstrates that BAE accumulation point

frequency in the long wavelength limit is degenerate with the frequency of the Geodesic Acoustic Mode (GAM) (Winsor
et al., 1968), as noted in (Chen and Zonca, 2007a; Zonca et al., 2006) and later by (Smolyakov et al., 2008; Zonca and
Chen, 2008b). The coupling of SAW/DAW, GAM and acoustic branches has also been addressed in the investigation
of drift sound waves in the W7-AS stellarator (Kolesnichenko et al., 2009).
Fluctuations of SAW/DAW and BAAE branches are described by the same GFLDR, Eq. (4.34) (Zonca et al., 2010).

Expressions for δW̄f and δW̄k can be obtained from Eq. (4.33), and, for the (s, α) model equilibrium (Connor et al.,
1978), can be rewritten as (Chen, 1994; Tsai and Chen, 1993)

δW̄nf =
(
δΦ̂

(0)†
−n0+δΦ̂

(0)
n0+

)−1 1

2

∫ ∞

−∞

[(
∂

∂ϑ
δΦ̂

(0)
−n

)† (
∂

∂ϑ
δΦ̂(0)

n

)

+δΦ̂
(0)†
−n

(
(s− α cosϑ)

2

κ̂4⊥
− α cosϑ

κ̂2⊥
+
α̂Eg(ϑ, θk)

κ̂2⊥

)
δΦ̂(0)

n

]
dϑ , (4.73)

δW̄nk =
(
δΦ̂

(0)†
−n0+δΦ̂

(0)
n0+

)−1
(
−1

2

)∫ ∞

−∞

δΦ̂
(0)†
−n

[
4πR0q

2

B0

g(ϑ, θk)ω

ckϑκ̂⊥

〈
mE

(
µB0 + v2‖

)
J0δK̂En

〉
v

]
dϑ . (4.74)

Here, α̂E is defined as

α̂E = −
(
δΦ̂(0)

n

)−1 4π

B2
0

R0q
2

〈
mE

(
µB0 + v2‖

) ∂F̄0E

∂r

(
1− J2

0

)〉

v

δΦ̂(0)
n ; (4.75)

and we have used the representation of Eq. (4.54) for expressing δĝEn as a function δK̂En. Equation (4.73) can be

easily evaluated using δΦ̂
(0)
n = 1 as trial function and neglecting ∝ α̂E contributions. Meanwhile, Eq. (4.74) can

also be computed analytically, by direct substitution of approximate solutions of Eq. (4.56) obtained for either well
circulating [v‖ ≃ const] or deeply trapped EPs [v‖ ≃ qR0ωbθb cosωbt; with ωb = (r/R0)

1/2E1/2/(qR0) and θb the
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magnetic bounce angle]. Denoting by the superscript “u” (untrapped) circulating particles and by the subscript “t”
magnetically trapped particles, one can let δW̄nk = δW̄u

nk + δW̄ t
nk and obtain

δW̄u
nk =

π2

2|s|
e2

mc2
q2R2

0

〈
(Ω2

d/k
2
ϑ)QF̄0

∆d(1 + ∆2
d)

3/2

[
ω

ω2
tr − ω2

]〉

v

∣∣∣∣
E

, (4.76)

δW̄ t
nk =

π2

|s|
e2

mc2
qR0B0

∑

v‖/|v‖|=±1

∫
dE
∫
dµ

(
Ωd
kϑ

)2

τbQF̄0 ×

[(
1− ∆b0

(1 + ∆2
b0)

1/2

)
1

nω̄dn − ω
+

θ2b/4

∆b(1 + ∆2
b)

3/2

ω − nω̄dn
ω2
b − (ω − nω̄dn)2

]∣∣∣∣
E

. (4.77)

Here, ωtr = v‖/(qR0), τb = 2π/ωb, nω̄dn = Ωd = −(µB0+v
2
‖)kϑ/(ΩR0) [cf. Eq. (4.57)], and a Padé approximation has

been adopted for Bessel functions accounting for both finite Larmor radius and finite magnetic drift orbit width by
means of the quantities ∆2

d = (k2ϑ/4)(ρ
2
L+ρ

2
d/2), ∆

2
b0 = (k2ϑ/2)(ρ

2
L+ρ

2
b), ∆

2
b = (k2ϑ/4)(ρ

2
L+ρ

2
b/2), with ρ

2
L = 2µB0/Ω

2,
k2ϑρ

2
d = Ω2

d/ω
2
tr and k

2
ϑρ

2
b = θ2bΩ

2
d/ω

2
b (Chen, 1994; Tsai and Chen, 1993). Furthermore, only the dominant transit and

bounce resonances have been considered for the sake of simplicity. Equations (4.76) and (4.77) demonstrate that the
typical lower bound of λ⊥ for SAW/DAW excited by EPs is set by the characteristic EP (magnetic drift) orbit width
ρE , λ⊥>∼ ρE (Berk et al., 1992b; Chen, 1994; Fu and Cheng, 1992; Tsai and Chen, 1993) (cf. also Sec. IV.B.3).
For increasing mode numbers, Eqs. (4.34), (4.72), (4.73), and (4.76)-(4.77) demonstrate that SAW/DAW undergo

a gradual transition from a prevalent EP drive, for λ⊥>∼ ρE , to a prevalent core plasma drive, for ρi ≪ λ⊥ < ρE .
This is readily noted from the large argument expansion in the plasma dispersion functions of Eq. (4.72), whose real
part reproduces Eq. (4.63) and, accounting for resonant wave-particle interactions with thermal ions, yields

Λ2
n =

ω2

ω2
A

− ω2
BAE

ω2
A

[
1 +

ω2
BAE

q2ω2

(46/49) + (32/49)(Te/Ti) + (8/49)(Te/Ti)
2

(1 + (4/7)(Te/Ti))
2

]

+i
√
πq2e−ω

2/ω2
ti
ω2

ω2
A

(
ωti
ω

− ω∗Ti

ωti

)(
ω2

ω2
ti

+
Te
Ti

)2

. (4.78)

This shows that the SAW accumulation point at Λ2
n = 0 acquires a positive imaginary part for ω∗Ti > ω2

ti/Reω,
which corresponds to the excitation of an Alfvén Ion Temperature Gradient (AITG) (Zonca et al., 1999) driven mode
when the causality constraint δW̄f + ReδW̄k < 0 is satisfied. Numerical analyses of AITG stability are reported,
e.g., by (Dong et al., 1999; Falchetto et al., 2003; Ganesh et al., 2004; Snyder and Hammett, 2001; Zhao and Chen,
2002). Thus, there exists a broad range of mode numbers in the same frequency range [|ω|<∼ O(10−1)ωA], predicted
theoretically (Zonca et al., 1999, 1996, 1998) and observed experimentally (Nazikian et al., 2006) (cf. Sec. IV.C),
where both core and energetic plasma component act as free energy source with possible important consequence for
cross-scale coupling and nonlinear dynamics in burning plasmas (cf. also Secs. V.A and VII.B).
For further shorter wavelengths, thermal ion finite Larmor radius and magnetic drift orbit width become important

in Eqs. (4.64) and (4.67), and yield the discretization of the SAW continuous spectrum (cf. Sec. III and IV.B.3).
Equation (4.68) can then be generalized to (Zonca et al., 1998)

∂2

∂ϑ21
δΨ̂(0)

n + Λ2
n(ω)δΨ̂

(0)
n − ϑ21Q

2
n(ω)δΨ̂

(0)
n = 0 , (4.79)

Q2
n(ω) = s2k2ϑρ

2
i
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[
3
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− ω∗Ti

ω

)
+ q2

ωti
ω
Sn(ω) +

(ΛnωA/ω)
4

1/τ + (ω∗ni/ω)

]
, (4.80)

where the frequency dependent function Sn(ω) accounts for finite magnetic drift orbit width

Sn(ω) =
q2

2

(ωti
ω

)2 [(
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D
(H − 2H1/2) +

N2

D2
(F − 2F1/2)

)

− ω∗Ti

ω

(
M − 2M1/2 −

2N

D
(I − 2I1/2) +

N2

D2
(G− 2G1/2)

)]

+
q2

D1/2

(ωti
ω

)2 [(
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D
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D
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D2
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)
− ω∗Ti
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(
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D
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D2
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)
. (4.81)
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Here, the functions N,D, F,G are those defined in Eqs. (4.70) and (4.71), with subscripts m ≃ nq dropped from N,D
for simplicity. Meanwhile V,W,H, I and T, U, L,M functions are defined as

V (x) = x+
(
x2 + 1

)
Z(x) , (4.82)

W (x) = x3 + 2x+
(
x4 + (3/2)x2 + 3/2

)
Z(x) ,

H(x) = x5 + 2x3 + 3x+
(
x6 + (3/2)x4 + (3/2)x2 + 3/4

)
Z(x) ,

I(x) = x7 + (3/2)x5 + (7/2)x3 + (27/4)x+
(
x8 + x6 + (9/4)x4 + 3x2 + 15/8

)
Z(x) .

T (x) = x3 + (5/2)x+
(
x4 + 2x2 + (3/2)

)
Z(x) ,

U(x) = x5 + 3x3 + (13/2)x+
(
x6 + (5/2)x4 + (9/2)x2 + (15/4)

)
Z(x) ,

L(x) = x7 + (5/2)x5 + (19/4)x3 + (63/8)x+
(
x8 + 2x6 + 3x4 + 3x2 + 3/2

)
Z(x) ,

M(x) = x9 + 2x7 + (11/2)x5 + (25/2)x3 + (201/8)x+
(
x10 + (3/2)x8 + 4x6 + (15/2)x4 + 9x2 + 21/4

)
Z(x) .

In Eq. (4.81), functions without subscript are computed at ω/ωti, while functions with subscript 1/2 are computed
at ω/2ωti and account for wave-particle interactions at the first sideband resonance 2ωti. Noting that, for |ω| ≫ ωti,
Q2
n/(s

2ϑ21k
2
ϑ) ≃ Q2

n/k
2
⊥ → ρ2K(ω2/ω2

A), as defined in Eq. (3.21), Eq. (4.79) is the generalization of Eq. (3.20) to toroidal
geometry, provided that small but finite Landau damping is maintained for thermal particles and finite resistivity
is added in the parallel Ohm’s law. Thus, Eq. (4.79) describes low frequency [|ω|<∼ O(10−1)ωA] KAW in tokamak
plasmas. Note, however, that the expression of Qn, Eq. (4.80), does not include magnetically trapped particle effects.
Equation (4.79) can be readily solved, noting Eq. (4.19), to derive the following GFLDR extended to short wave-

lengths (Zonca et al., 1998)

− 2Q1/2
n

Γ(3/4− Λ2
n/4Qn)

Γ(1/4− Λ2
n/4Qn)

= δW̄nf + δW̄nk , (4.83)

where we have introduced the Euler Γ-function. For |Λ2
n/4Qn| ≫ 1, the left hand side of Eq. (4.83) reduces to iΛn;

i.e., Eq. (4.34) is recovered. This property shows that the discrete structures (“granularity”) of the SAW continuous
spectrum depend on the spatial scales (|Qn| ∼ k⊥ρi) as well as the time scales (|Λn|<∼ |ω/ωA|) on which the spectrum
is “observed” (Zonca and Chen, 1996, 2008b). For sufficiently long spatial and temporal scales the discretized SAW
spectrum behaves nonetheless as a “true” continuum (cf. also Sec. IV.B.3). Thus, Eq. (4.83) describes a variety of
kinetic SAW/DAW fluctuations, including, e.g., BAE and KBAE (Wang et al., 2010b). Equation (4.83) has also been
derived and analyzed extensively by (Nguyen et al., 2008), to be then adopted in modeling of BAE observations in
Tore Supra (Nguyen et al., 2009) (cf. Sec. IV.C).
In the case of s = 0 at a minimum-q surface, the GFLDR form is that of Eq. (4.24), which describes RSAE (Kimura

et al., 1998; Takechi et al., 2002) or AC (Berk et al., 2001; Sharapov et al., 2001). As the parallel wave vector at
s = 0, k‖n0, is generally finite, the RSAE/AC frequency is typically larger than that of BAEs. Thus, Λ2

n expression
of Eq. (4.78) can be used in Eq. (4.24); which can be further simplified as (Zonca et al., 2002; Zonca and Chen, 2006)

iS
(
Λ2
n − k2‖n0q

2R2
0

)1/2 (
k‖n0qR0/n

)1/2
= δŴnf + δŴnk . (4.84)

Here, we have assumed Λ2
n ≃ k2‖n0q

2R2
0 and L0 ≃ qR0 for modes characterized by small frequency shift with respect

to the SAW accumulation point. Using n > 0 as reference, it is readily noted that the optimal conditions for exciting
RSAE/AC at the minimum-q surface are −1/2 < nq0 −m < 0 and 1/2 < nq0 −m + 1 < 1. In fact, when this is
verified, the (n,m) SAW continuum has a maximum at s = 0 below the corresponding minimum of the (n,m−1) SAW
continuum (Sharapov et al., 2001). Therefore, the continuum damping due to non-local coupling of mode structures
with the SAW continuous spectrum is minimized (Zonca et al., 2002) and a wide frequency gap is formed between
the local maximum of the (n,m) and the local minimum of the (n,m− 1) SAW continua (Berk et al., 2001). The low
frequency RSAE/AC branch of AEs can, thus, exist marginally above the local (maximum) accumulation point of the
(n,m) SAW continuum, provided that Eq. (4.21) is satisfied. For this reason, RSAEs/ACs have characteristic features
that are similar to those of GAEs (cf. Sec. III). Equation (4.21) can be fulfilled either by compressibility effects of
very energetic fast ions with large orbits (Berk et al., 2001), yielding ReδŴnk > 0 (Zonca et al., 2002), or by thermal
plasma (toroidal) geometry (Breizman et al., 2003) and density gradient (Konovalov et al., 2004) effects. In general,
in the absence of EPs, Eq. (4.21) for weak/vanishing magnetic shear requires local macroscopic plasma stability; i.e.,
it reduces to the Mercier stability criterion (Mercier, 1960). This result was shown explicitly by (Fu and Berk, 2006),
investigating the compressibility effects on RSAE/AC in the “ideal region”, while the thermal plasma compression
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effect on RSAE/AC in the “inertial layer”, i.e., the ∝ ω2
BAE term in Eq. (4.78), was pointed out by (Breizman et al.,

2005). Equation (4.21) provides only a necessary but not sufficient criterion for RSAE/AC excitation, as mode drive
is generally due to resonant EPs, ImδŴnk > 0, which, in present day experiments, are typically not the same as
EPs predominantly contributing to compressibility ReδŴnk > 0 (Zonca et al., 2002; Zonca and Chen, 2006). The
experimental feature of RSAE/AC to typically chirp upward in frequency is readily understood, as the accumulation
point of the (n,m) SAW continuum increases in absolute frequency for decreasing q0 due to, e.g., resistive current
diffusion (Berk et al., 2001; Sharapov et al., 2001). When the RSAE/AC frequency reaches the TAE frequency gap,
(n,m) and (n,m− 1) SAW continua intersect and toroidicity effects become important (Breizman et al., 2003; Zonca
et al., 2002). Accurate modeling of RSAE/AC mode frequencies and growth rates has been applied to experimental
observations in JET to explain evidence of upward mode frequency chirping, and eventually downward, after reaching
the TAE frequency gap (Abel et al., 2009) (cf. Sec. IV.C). Theoretical analyses of downward chirping RSAE/AC are
also given by (Gorelenkov et al., 2011; Haverkort, 2012; Kramer et al., 2004a; Marchenko and Reznik, 2011).

3. Toroidal Alfvén Eigenmodes

Toroidal Alfvén Eigenmodes (TAE) (Cheng et al., 1985) are the first example of AEs in toroidal plasmas, theoreti-
cally predicted before their experimental observation (Heidbrink et al., 1991; Wong et al., 1991) (cf. Sec. IV.C) and
widely studied as paradigm problem for their potential impact on EP confinement (cf. Secs. V and VI).
From Eq. (4.3) with ℓ = 1 and L0 ≃ qR0, one readily derives that k2‖q

2R2
0 ≃ 1/4 and ω2 ≃ ω2

A/4 for TAE in circular

plasmas with large aspect-ratio R0/a [see Sec. II, remark following Eq. (2.2)]. Following the original work by (Cheng
and Chance, 1986; Cheng et al., 1985) and adopting the (s, α) model equilibrium (Connor et al., 1978) introduced in
Sec. IV.B.2, Eqs. (4.64) and (4.67) are readily specialized to TAE and yield

∂2

∂ϑ2
δΨ̂n +

ω2

ω2
A

(1 + 2ǫ0 cosϑ) δΨ̂n +

[
α cosϑ

κ̂2⊥
− (s− α cosϑ)

2

κ̂4⊥
− κ̂2⊥ρ

2
K

4

]
δΨ̂n

+
4πR0q

2

B0

g(ϑ, θk)ω

ckϑκ̂⊥

[〈(
µB0 + v2‖

)(
miδK̂in +meδK̂en

)〉
v
+
〈
mE

(
µB0 + v2‖

)
J0δK̂En

〉
v

]
= 0 . (4.85)

Here, notations are those introduced in Sec. IV.B.2, ǫ0 = 2(r/R0 + ∆′), core plasma diamagnetic frequencies have
been neglected compared to TAE frequency, and it is assumed that EP finite orbit widths are typically dominated
by magnetic drifts. Meanwhile, the expression of ρ2K is given by Eq. (3.21); or Eq. (4.80) in the high frequency limit,
where δi = 0 and (Candy and Rosenbluth, 1993, 1994)

δe =
ǫ
3/2
0

ǫ
3/2
0 + (νe/ω)

3/2

√
νe
ω

[
1.4 + 0.25 ln

(
1 +

ǫ0ω

νe

)]−3/2

, (4.86)

with

νe =
4πe4ne ln Λ

m
1/2
e (2Te)3/2

, (4.87)

and lnΛ the Coulomb logarithm. Assuming δi = 0 corresponds to neglecting higher order corrections to the usual
Landau collisionless dissipation15, which is dominated by the ∝ δK̂in term. Similarly, electron Landau damping is pre-
dominantly given by the ∝ δK̂en contribution, originally dropped in Eq. (4.67) at low-frequency, while the expression
of δe in Eq. (4.86) describes other dissipative effects associated, e.g., to collisions with trapped electrons (Mazur and
Mikhailovskii, 1977; Mikhailovskii and Shuchman, 1976). Typically, the most important TAE dissipation mechanism
due to electrons is the trapped electron collisional damping (Gorelenkov and Sharapov, 1992).
Consistent with the general case, Eq. (4.85) suggests the existence of two-scale structures for the solutions δΨ̂n:

ϑ0 ∼ 1 representing periodic variations due to toroidal geometry; and ϑ1 ∼ ǫ−1
0 ≫ 1 characterizing the radial

“singular” structure of the SAW continuous spectrum. For |sϑ| ∼ κ̂⊥ ≫ 1, δΨ̂n can generally be written as (Chen
and Zonca, 1995; Zonca and Chen, 1996)

δΨ̂(±)
n = ǫ

(±)
P [A(ϑ1) cos(ϑ0/2)±B(ϑ1) sin(ϑ0/2)] , (4.88)

15 For lower frequencies, discussed in Sec. IV.B.2, these effects are, e.g., accounted for in the Q2 expression of Eq. (4.80).
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where (±) refers to the sign of ϑ1 and ǫ
(±)
P give the parity of the mode structures. Taking ǫ

(+)
P ≡ 1 for reference,

ǫ
(−)
P = ±1 denotes even/odd mode structures, respectively. By direct substitution of Eq. (4.88) into Eq. (4.85), it is
possible to derive the governing equations for A(ϑ1) and B(ϑ1)

A′(ϑ1) =
(
Γ− − s2ϑ21ρ

2
K/4

)
B(ϑ1) ,

B′(ϑ1) = −
(
Γ+ − s2ϑ21ρ

2
K/4

)
A(ϑ1) . (4.89)

Here, Γ± = (ω2/ω2
A)(1± ǫ0)− 1/4− β1, with β1 = β1c + β1E and (Chen, 1988; Chen et al., 1989; Cheng et al., 1988;

Fu and Van Dam, 1989a,b)

β1c =
πq2

B2
0

∑

j=e,i

∑

ℓ=1,3

〈
mj(µB0 + v2‖)

2

(
ωQF̄0

ℓ2ω2
tr/4− ω2

)

j

〉

v

. (4.90)

This term, which assumes for simplicity F̄0 to be symmetric in v‖, describes TAE wave-particle interactions of the
core plasma component at the fundamental (v‖ = ±vA) and first sideband (v‖ = ±vA/3) transit resonances; i.e.,
it accounts for electron and ion Landau damping (Betti and Freidberg, 1992). Note that ∝ β1 and ∝ ρ2K terms in
Eq. (4.89) represent the generalized plasma inertia response discussed already for MHD modes (cf. Sec. IV.B.1) and
low frequency SAWs (cf. Sec. IV.B.2). In the long wavelength limit, the generalized inertia further includes the EP
contributions, β1E . It is then possible to note that EP drive linearly increases with the toroidal mode number n
until finite orbit width effects become important for |kϑρE | ∼ κ̂−1

⊥ ∼ |Γ+Γ−|1/2 ∼ O(ǫ0). This suggests that high-n
modes play the dominant role in fusion plasmas (Chen, 1988), although the first numerical investigations of TAE
mode structures (Cheng and Chance, 1986) and stability (Berk et al., 1992c; Cheng, 1990, 1991; Fu et al., 1993; Fu
and Van Dam, 1989a; Kar et al., 1993; Poedts et al., 1992; Spong et al., 1992) focused on low-n modes for intrinsic
limitations of numerical simulation capabilities. In this long wavelength regime, it is also possible to take into account
small but finite EP orbit widths, which modify the structure of Eq. (4.89) and generalize the expression of ρ2K in a
qualitative and quantitative fashion that extends wave-EP resonances to the v‖ = ±vA/5 transit sideband (Briguglio
et al., 1995; Vlad et al., 1999).
Neglecting small but finite orbit width effects of both core and energetic plasma components, Eq. (4.89) yields

A(ϑ1) ≃ (−Γ−)
1/2 exp(−Γ|ϑ1|) and B(ϑ1) ≃ Γ

1/2
+ exp(−Γ|ϑ1|), with Γ2 ≡ −Γ−Γ+. From Eq. (4.19), it is then readily

shown that ReΓ2 > 0 identifies TAE [ReΓ2 < 0 identifies EPM; cf. Sec. IV.B.4] and

iΛnT = (1/2)B(0)/A(0) = (1/2) (−Γ+/Γ−)
1/2

. (4.91)

Here and below, we adopt the subscript T that stands for the inclusion of finite toroidal coupling effects, which are
crucial for TAE (Cheng et al., 1985; Kieras and Tataronis, 1982). Noting that the dominant kinetic interactions in
the long wavelength limit occur in the kinetic layer, the GFLDR Eq. (4.34) is fully determined provided that δW̄nf is

obtained from Eq. (4.73), given the function δΦ̂n = δΨ̂n. In general, δΨ̂n must be determined numerically, but, from
Eq. (4.88), it can be shown that (Zonca, 1993a,b; Zonca and Chen, 1993)

δW̄nfT = [1− Zf (s, α, θk)] iΛnT −
(
B(0)2 −A(0)2

2A(0)2

)
Gf (s, α, θk)

−
(
B(0)2 +A(0)2

2A(0)2

)
[Hf (s, α, θk) cos θk + Lf(s, α, θk) sin θk] , (4.92)

where Zf , Gf , Hf , Lf , determined numerically, are periodic functions of θk and of parameters defining the local
plasma equilibrium; i.e., in this case, (s, α) (cf. Sec. IV.B.2). Note that Eq. (4.92) is frequency dependent through
the mode structure, A(0) and B(0), and the mode frequency location with respect to the SAW continuum. This
is in contrast with respect to the case of low frequencies, discussed in Sec. IV.A following Eq. (4.20), where δŴnf

is independent of ω. In special cases, it is possible to give analytic expressions of Zf , Gf , Hf , Lf (Zonca, 1993b);
e.g., for |s|, |α| < 1, when Eq. (4.88) gives a good trial function in the whole ϑ-space and Zf ≃ 1, Gf ≃ |s|π/4,
(Hf cos θk + Lf sin θk) ≃ (|s|π/4)(α/αcr − 2κ(s) cos θk), with (Fu and Cheng, 1990; Zonca and Chen, 1992, 1993)

αcr = s2/(1 + |s|) ; and κ(s) ≃ (1/2) (1 + 1/|s|) e−1/|s| . (4.93)

Thus, Eq. (4.92) becomes

δW̄nfT ≃ |s|π
8

(
1 + 2κ(s) cos θk −

α

αcr

)
− B(0)2

A(0)2
|s|π
8

(
1− 2κ(s) cos θk +

α

αcr

)
, (4.94)
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which implies that only the even parity TAE (|B(0)/A(0)| ≪ 1) can exist for moderate |s|, |α| < 1. In general, only one
parallel eigenstate of TAE is identified using simplified model equilibria, while different TAE radial eigenstates exist
in the number of the effectively coupled poloidal harmonics. The parity of the parallel eigenstate is typically mixed
and changes from even, near the lower SAW accumulation point of the TAE frequency gap, to odd, near the upper
accumulation point. More general equilibria and/or the presence of a plasma free boundary in the TAE localization
domain (Chen et al., 2011a) may give rise to more simultaneous TAE parallel eigenstate branches.
The TAE GFLDR in the form of Eq. (4.34) can be used to calculate the global dispersion relation, Eq. (4.37), with

the corresponding radial eigenstates and mode structures (Zonca, 1993b; Zonca and Chen, 1993). It is then possible
to compute TAE damping due to non-local coupling to the SAW continuum from the radial locations where it is
resonantly excited by EP. Adopting the (s, α) model equilibrium, the corresponding TAE continuum damping has the
general form (Rosenbluth et al., 1992; Zonca and Chen, 1992)16

γcd
|ω| = − |1/nq′LA|3/2

4
√
2ǫ0

{
Γ̂ℓ(s, α) e

−2|nq′LA|ǫ0T̂ (s,α) + Γ̂u(s, α) e
−2|nq′LA|ǫ0R̂(s,α)

}
. (4.95)

Here, L−1
A ≡ ∂r lnω

2
A and the functions Γ̂ℓ(s, α) and Γ̂u(s, α) represent, respectively, the absorption rate at the

lower and upper SAW continuum. Meanwhile, T̂ (s, α) and R̂(s, α) are the “tunneling” factors that describe the
TAE wave cut-off while propagating towards the lower and upper SAW continua. All these functions have been
calculated numerically for arbitrary values of (s, α) (Zonca, 1993b; Zonca and Chen, 1993). For |s|, |α| < 1 these
function have explicit analytical expressions from which it is possible to note that, as α → αcr(1 − 2κ(s)), the TAE
mode merges into the lower SAW continuum accumulation point (Chen, 1988; Chen et al., 1989; Fu and Cheng,
1990) and γcd/|ω| from Eq. (4.95) diverges, due to the strengthened coupling of the mode with the continuous
spectrum (Zonca and Chen, 1992). Asymptotic techniques have been used to calculate high-n TAE spectra (Chen
and Zonca, 1995; Cheng et al., 1995; Gorelenkov et al., 1998; Vlad et al., 1995a,b; Zonca and Chen, 1996), especially
when perturbative treatment of EPs as well as investigation of high mode numbers made the analysis based on modified
MHD codes less accurate (Borba et al., 2002; Cheng, 1992; Gorelenkov et al., 2000, 1999b; Jaun et al., 1998, 2000).
Equation (4.37) for computing global TAE dispersion relation and mode structures has been adopted also for realistic
ITER equilibria (Briguglio et al., 2000). However, with present day computer capabilities, the most efficient way
of computing TAE spectra is via direct numerical simulations (cf. Sec. IV.C). Nonetheless, the asymptotic solution
of Eq. (4.36) as initial value problem (Lu et al., 2012) may allow investigating kinetic physics that are not readily
available in existing numerical codes or providing a useful benchmark for codes. At the same time, benchmarking
numerical results against GFLDR predictions with different models of generalized inertia may help assessing the need
of kinetic models in numerical simulation codes (Zonca, 2008; Zonca et al., 2010; Zonca and Chen, 2008a,c).
For |kϑρE |>∼ O(ǫ0), EP dynamics becomes ignorable in the kinetic layer (cf. Secs. IV.A and IV.B.2) and, thus,

β1E can be dropped in the expression of β1, Eq. (4.90). Wave-EP interactions become gradually more affected and
eventually dominated by δW̄k; first, they become independent of the mode number, while they eventually decrease
and vanish due to finite orbit width for |kϑρE |>∼ 1 (Berk et al., 1992b; Chen, 1994; Fu and Cheng, 1992; Tsai and

Chen, 1993). Thus, most unstable mode numbers are expected for O(ǫ0)<∼ |kϑρE |<∼ 1. Similar to Eq. (4.92), it is
possible to demonstrate that the general form of δW̄nkT is (Zonca and Chen, 1996)

δW̄nkT = 4iΛnT
{
Gf (s, α, θk)

(
δW̄u

nkT + δW̄ t
nkT

)
+ [Hf (s, α, θk) cos θk + Lf (s, α, θk) sin θk] δW̄

t
nkT

}

+Zf(s, α, θk)

[
δW̄ t

nkT −
(
B(0)2 −A(0)2

2A(0)2

)
δW̄u

nkT

]
, (4.96)

where, for the sake of simplicity, the EP F̄0 has been assumed symmetric in v‖. For |s|, |α| < 1, Eq. (4.96) becomes

δW̄nkT = δW̄ t
nkT +

1

2
δW̄u

nkT

(
1− B(0)2

A(0)2

)
≡ δW̄ t

nkT + δT unk

(
1− B(0)2

A(0)2

)
. (4.97)

Here, δW̄ t
nkT is due to trapped particles (Biglari et al., 1992; Chen, 1994), and its expression is the same as that given

by Eq. (4.77). Meanwhile, for untrapped EPs one has δW̄u
nkT ≡ 2δT unk and (Chen, 1994)

δT unk =
π2

8|s|
e2

mc2
q2R2

0

∑

ℓ=1,3

〈
(Ω2

d/k
2
ϑ)QF̄0

∆d(1 + ∆2
d)

3/2

[
ω

ℓ2ω2
tr/4− ω2

]〉

v

∣∣∣∣∣∣
E

. (4.98)

16 The numerical calculation of TAE continuum damping for low mode numbers is given by (Berk et al., 1992c).
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Similar to Eq. (4.94), Eq. (4.97) shows that the even parity TAE (|B(0)/A(0)| ≪ 1) is preferentially excited for for
|s|, |α| < 1 and it obeys the GFLDR (Chen, 1994)

iΛnT ≡ 1

2

B(0)

A(0)
=

1

2

√
−Γ+

Γ−
=

|s|π
8

(
1 + 2κ(s) cos θk −

α

αcr

)
+ δW̄ t

nkT + δT unk ; (4.99)

while the typically suppressed odd parity TAE (|B(0)/A(0)| ≫ 1) dispersion relation is

1

2

A(0)

B(0)
=

1

2

√
−Γ−

Γ+
= −

[ |s|π
8

(
1− 2κ(s) cos θk +

α

αcr

)
+ δT unk

]
. (4.100)

For further increasing mode numbers, or when TAE radial mode structures become more singular due to the
proximity with the SAW continuum, ∝ ρ2K terms in Eq. (4.89) become important. That system of equations, in
fact, can be regarded in an approximate sense as the Schrödinger equation for a particle with energy Eeff = Γ+Γ−

that moves in a potential well Veff ≃ (Γ+ + Γ−)s
2ϑ21ρ

2
K/4 − s4ϑ41ρ

4
K/16. Thus, for modes that are not bounded

at sufficiently small |ϑ1| (Γ+Γ− < 0, corresponding to TAE), the Veff asymptotic structure is always an anti-well
that yields “radiative” damping (Berk et al., 1993; Candy and Rosenbluth, 1993, 1994; Mett and Mahajan, 1992a,b).
These modes are KTAE and describe the discretization of the SAW continuum near the TAE gap. Due to the
∝ (Γ+ + Γ−)s

2ϑ21ρ
2
K/4 contribution in Veff , lower and upper KTAE branches are not symmetric. While the lower

KTAE is strongly damped (Γ+ +Γ− < 0), the upper KTAE (Γ+ +Γ− > 0) may be significantly bounded by the local
well structure at s2ϑ21ρ

2
K/4 < (Γ+ + Γ−) and be affected by radiative damping only via tunneling to higher ϑ21. The

asymptotic analysis of TAE and KTAE radiative damping is reviewed by (Zonca and Chen, 1996). Here, for brevity we
present the extension of the GFLDR to short wavelength KTAE near lower and upper SAW continuum accumulation
points (Chen and Zonca, 1995). Considering first the lower accumulation point, |Γ+| ≪ ǫ0 and Γ− ≃ −2ǫ0ω

2/ω2
A. In

this limit, Eq. (4.89) can be readily solved for A(ϑ1) and B(ϑ1), and yields

A(0)

B(0)
=

exp(−iπ/4)
(2∆K)1/4

Γ(1/4 + aℓ/2)

Γ(3/4 + aℓ/2)
, and aℓ = − iΓ+

|s|ρK/
√
2ǫ0ω2/ω2

A

, (4.101)

with ∆K = (1/4)s2ρ2K/(ǫ0ω
2/ω2

A)
3. When substituted into Eqs. (4.99) and (4.100), Eqs. (4.101) describe, respectively,

even and odd KTAE branches near the lower SAW continuum accumulation point. Thus,

aℓ = −(2k + 1/2) (even) ; and aℓ = −(2k + 3/2) (odd) ; (4.102)

describe the lowest-order dispersion relation of the lower KTAE branch with k ∈ N
+. Similarly, near the upper SAW

continuum accumulation point, it is possible to show that

A(0)

B(0)
= (2∆K)1/4

Γ(3/4 + au/2)

Γ(1/4 + au/2)
, and au = − Γ−

|s|ρK/
√
2ǫ0ω2/ω2

A

; (4.103)

which admit the lowest-order solutions

au = −(2k + 3/2) (even) ; and au = −(2k + 1/2) (odd) . (4.104)

In analogy with Eq. (4.83) and following discussions, Eqs. (4.101) and (4.103) show that KTAE are discrete struc-
tures (“granularity”) of the SAW continuum. This is shown in Fig. 2, reporting numerical solutions of two neighbor
roots of Eqs. (4.99) and (4.100) with A(0)/B(0) given by Eq. (4.103); i.e., two KTAE modes (crosses and open
squares). These roots are compared with the only one (open circles) obtained from the same equations with ∆K = 0,
representing an Energetic Particle Mode (EPM) (Chen, 1994) (cf. Sec. IV.B.4). For all three modes, growth rates,
represented by Im

(
Γ+ω

2
A/ǫ0ω

2
)
in the left frame, and real frequencies, given by Re

(
Γ+ω

2
A/ǫ0ω

2
)
in the right frame,

are shown vs. the EP αE , defined as in Eq. (4.65). It is evident that normalized mode frequency and growth rates of
KTAEs are weakly modified [∼ O(10−1)] by EPs below the EPM destabilization threshold at αE ≃ 0.18. Above that
threshold, one of the two KTAE (crosses) behaves as and becomes the EPM. This shows that, when one of the KTAE
responds more strongly (normalized mode frequency and/or growth rate change ≃ 0.5) and its growth rate becomes
larger than the characteristic frequency separation of the KTAE spectrum [in normalized units ∼ O(10−1)], it “feels”
the presence of the other KTAEs (the discretized SAW continuum) as a “true” continuous spectrum (cf. Sec. IV.B.2).
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FIG. 2 Evidence of merging of one KTAE into an EPM above the EPM destabilization threshold when the spatiotemporal
properties of the mode make the discretized SAW spectrum behave as a “true” continuum [from the original Fig. 3 (a)-(b) in
Ref. (Zonca and Chen, 1996)].

4. Energetic Particle Modes

Energetic Particle continuum Modes (EPMs) (Chen, 1994) are excited when the mode drive is sufficiently strong
to overcome continuum damping, as shown by the general fishbone like dispersion relation (GFLDR), yielding the
threshold condition, Eq. (4.23). The relevance of EPMs stems from their nature of being born as unstable discrete
modes out of the SAW continuous spectrum at the optimal frequency for maximizing wave-particle power exchange.
For this reason, above the linear EPM excitation threshold, there is a transition from local to meso-scale particle
redistributions, as noted by (Briguglio et al., 1998) and discussed in Secs. V.D.5.b and V.D.6. The non-perturbative
nature of EPMs is reflected by the sensitivity of mode frequency and growth rates to EP sources. Thus, linear EPM
dispersive properties suggest that fast frequency chirping is to be expected for these modes during their nonlinear
evolution, as noted by (Gorelenkov et al., 2000; Zonca and Chen, 2000) (cf. Sec. IV.C).
The excitation of EPMs is generally independent of the existence of frequency gaps in the SAW continuum, although

Eq. (4.23) shows that EPM threshold is lower near an accumulation point. For this reason, sometimes EPM have been
given specific names; such as Resonant TAE (RTAE) modes (Cheng et al., 1995) for EPM near the TAE frequency gap.
In some special conditions, EPM has also been used as acronym for indicating fluctuations observed experimentally
and requiring non-perturbative EP responses for AEs to exist inside frequency gaps; e.g., RSAE/AC (Berk et al.,
2001; Zonca et al., 2002) excited by highly supra-thermal ion tails due to ion cyclotron resonance heating. Given the
GFLDR theoretical framework, this use is not justified and is reported here for the sake of completeness.
After the first theoretical work on EPMs (Chen, 1994), numerical analyses of EPM stability were not numer-

ous (Briguglio et al., 2000; Cheng et al., 1995; Gorelenkov et al., 2000, 1998; Santoro and Chen, 1996; Zonca and
Chen, 1996, 2000) until the first hybrid MHD-gyrokinetic simulation (cf. Sec. II.F) demonstrated the potential severe
impact of these modes on EP confinement (Briguglio et al., 1998), consistent with experimental observations. Ever
since, significant efforts have been devoted in comparing numerical simulation results with experimental observations
of EPMs (Briguglio et al., 2007; Todo, 2006; Todo et al., 2005) (cf. Sec. IV.C for more details).
A case that is particularly simple and still retains all the necessary physics ingredients to elucidate linear dispersive

properties and radial structures of EPM is that of precessional resonance with magnetically trapped EPs without
finite orbit width effects. This case will be also used in our discussions of the nonlinear wave-EP interactions (cf.
Sec. V.D.6). Using Eq. (4.54) for separating the fast particle convective response, which is included via δW̄nf in
the GFLDR dispersion relation, Eq. (4.34), Eq. (4.56) is readily solved for the EP bounce averaged response. In
the case of plasma equilibria with shifted circular magnetic surfaces and assuming that particles are deeply trapped
(cf. Sec. IV.B.2), JB0 ≃ qR0, nω̄dn = −kϑE/(R0ΩE), ΩE is the fast particle cyclotron frequency computed at the
magnetic axis, τb = 2πqR0(R0/r)

1/2E−1/2 and, consistent with Eq. (4.77),

δW̄nk =

∫
EdEdλ

∑

v‖/|v‖|=±

π2qR0

c2k2ϑ|s|
e2

m

∑(
τbn

2ω̄2
dnQk,ωF̄0

nω̄dn − ω

)
. (4.105)

Consider now one single supra-thermal particle species with an isotropic slowing down distribution function, charac-
terized by injection energy EF much larger than the critical energy Ec (Stix, 1972), so that for EF /mE > E > Ec/mE
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the fast particle energy is predominantly transferred to thermal electrons by collisional friction as it occurs for α-
particles in fusion plasmas; i.e.,

F̄0 =
3P0E

4πEF

H(EF /mE − E)
(2E)3/2 + (2Ec/mE)3/2

, (4.106)

where H denotes the Heaviside step function and the normalization condition is chosen such that the EP energy
density is (3/2)P0E for EF ≫ Ec. Substituting Eq. (4.106) back into Eq. (4.105) and defining αE as in Eq. (4.65)
with βE = 8πP0E/B

2
0 , we readily obtain17

δW̄nk =
3π(r/R0)

1/2αE

8
√
2|s|

[
1 +

ω

nω̄dnF
ln
(nω̄dnF

ω
− 1
)
+ iπ

ω

nω̄dnF

]
, (4.107)

with ω̄dnF = ω̄dn(E = EF /mE) and having noted that |ω∗E | ≫ |ω| for Alfvénic fluctuations resonantly excited by EPs.
Thus, EP induced wave-particle power exchange is mainly via gradients in the radial profiles of the EP component.
This result is readily applied to investigate the linear EPM excitation by deeply trapped EPs near the TAE gap,
where, for moderate values of (s, α), Eq. (4.94) yields

δW̄nfT =
|s|π
8

(
1 + 2κ(s)− α

αcr

)
+

|s|π
8
κ(s)

1

k2ϑs
2

∂2

∂r2
, (4.108)

where we have assumed |B(0)/A(0)| ≪ 1 and cos θk ≃ 1 − θ2k/2 = 1 + (1/2)(skϑ)
−2∂2r for localized modes. The EP

radial profile effect on EPM mode structures can be analyzed by assuming that their equilibrium pressure gradient is
peaked at r = r0, i.e., (Zonca and Chen, 2000)

αE = αE0 exp

(
− (r − r0)

2

L2
pE

)
≃ αE0

(
1− x2/s2

k2ϑL
2
pE

)
, (4.109)

with x = |s|kϑ(r − r0) and other equilibrium quantities are considered constant for localized modes. Thus, dropping
the subscript n and letting ω̄dF ≡ nω̄dnF , Eq. (4.99) finally becomes

iΛTA =
|s|π
8

(
1 + 2κ(s)− α

αcr

)
A+

|s|π
8
κ(s)

∂2A

∂x2

+
3π(r/R0)

1/2

8
√
2|s|

αE0

(
1− x2/s2

k2ϑL
2
pE

){
1 +

ω

ω̄dF

[
ln
( ω̄dF
ω

− 1
)
+ iπ

]}
A , (4.110)

with ΛT = (1/2)(Γ+/Γ−)
1/2 ≃ (2ǫ0)

−1/2
[
(1− ǫ0)/4− ω2/ω2

A

]1/2
sgn(Reω) for modes with frequencies near the lower

TAE gap accumulation point, which are favored for moderate values of (s, α) (Cheng et al., 1985). Equation (4.110)
is readily solved for unstable localized modes, the fastest growing one being the ground state solution A(x, t) =
A0(x)e

−iωt, with ω = ω0 + iγL, A0(x) = Ā0 exp(−x2/2∆2), and

∆−4 =
3(r/R0)

1/2

√
2κ(s)s4k2ϑL

2
pE

αE0

{
1 +

ω0

ω̄dF

[
ln

(
ω̄dF
ω0

− 1

)
+ iπ

]}
, (4.111)

|s|π
8

[
1 +

(
2− Re

(
∆−2

))
κ(s)− α

αcr

]
+

3π(r/R0)
1/2

8
√
2|s|

αE0

[
1 +

ω0

ω̄dF
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(
ω̄dF
ω0

− 1

)]
= 0 , (4.112)

γL
ω0

=

[
ω0/ω̄dF

1− ω0/ω̄dF
− ω0

ω̄dF
ln
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ω̄dF
ω0

− 1
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[
π
ω0

ω̄dF
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(
3π(r/R0)
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8
√
2|s|

αE0

)−1(
ΛT (ω0) +

|s|π
8
κ(s)Im

(
∆−2

))
]

.

(4.113)

17 Note the formal difference between this expression and the linearized form of δW̄nk of (Zonca et al., 2005), where αE is defined to
include finite orbit width effects that, in the small orbit limit, give the additional (2|s|)−1 factor shown here explicitly (cf. Sec. IV.B.3).
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Equations (4.111) to (4.113) summarize all the characteristic features of EPMs, namely, their radial localization is
determined by the EP source via wave-particle resonant drive. Equation (4.111) also shows that the most unstable
EPM wave packet is excited on meso-scales ∝ (LpE/|kϑ|)1/2. Furthermore, the real EPM frequency is determined by
Eq. (4.112) and is controlled by the EP characteristic frequency, in this case ω̄dF , while the mode growth rate near
excitation threshold is given by Eq. (4.113), where the threshold condition is clearly set by the competition between
fast particle drive and continuum damping. The crucial role of these EPM properties in the nonlinear evolutions of
these fluctuations is discussed in Sec. V.D.6.

As final remark to Sec. IV.B, we note that the GFLDR is based on the existence of two characteristic radial scales of
DAW fluctuations; which is generally applicable to low frequency MHD and SAWs excited by supra-thermal particles
in burning plasmas. It is, however, not applicable to AEs, dubbed αTAE (Hu and Chen, 2004), existing in the high-β
ideal ballooning mode “second stability region” (Coppi et al., 1980), where α>∼ 1 and α is the normalized pressure
gradient of Eq. (4.65). More specifically, αTAEs have regular mode structures with exponentially small coupling to
the continuum, and, hence, GFLDR becomes inapplicable. These mode have clear connection with the higher order
collisionless ballooning modes discussed by (Hirose et al., 1994), whose stability boundaries were predicted by (Chen
et al., 1987), and investigated by (Dong et al., 2004). Similarly to other AEs, αTAE can also be destabilized by a EP
population (Hu and Chen, 2005). The dispersion relation of these modes and their mode structures have been studied
in detail in recent numerical simulation works (Bierwage et al., 2010a,b), where a quadratic form similar to Eq. (4.20)
is derived and Λn can be interpreted as the rate of energy leaking to smaller scales. There, it is demonstrated that,
including thermal plasma kinetic effects, αTAE can be viewed as modified Alfvénic ITG in the second stability region;
i.e., the modes first addressed by (Hirose et al., 1994) and then by (Dong et al., 2004). Meanwhile, in the presence
of EP drive, αTAE acquire their true nature of AEs destabilized by a sparse supra-thermal particle population. The
relevance of αTAE or other type of drift-Alfvén ballooning modes, exhibiting similar periodic stability patterns (Chen
et al., 1987), to present day toroidal devices is limited, for they require reaching α>∼ 1. It may, however, be relevant
to the concept for DEMO (DEMOnstration Power Plant); should it pursue high-β plasma operations.

C. Experimental verification of linear Alfvén Eigenmodes and stability predictions in burning plasmas

The many experimental observations of AE and EPM are well documented and discussing them in detail is beyond
the scope of the present work. Here, we illustrate only some of the successful and positive feedbacks between theory
and experiment in this area; made possible by the development of impressive diagnostic techniques as well as numerical
simulation capabilities, accompanied by detailed physics understanding. Along this path, one element of enrichment
was brought by the fruitful exchanges between tokamak and stellarator expert communities. To the readers, who are
especially interested in these aspects, we recommend two recent and excellent reviews on the “Affinity and difference
between energetic-ion-driven instabilities in 2D and 3D toroidal systems” by (Kolesnichenko et al., 2011), with a
more theoretical approach, and on the “Energetic-ion-driven global instabilities in stellarator/helical plasmas and
comparison with tokamak plasmas” by (Toi et al., 2011), with a broader view on experimental issues.

The internal kink/fishbone problem has been widely studied in the magnetic fusion research due to its potential
significant implications on fusion performance (Heidbrink and Sadler, 1994; McGuire et al., 1983; White et al., 1983).
The fishbone mode is most frequently excited with n = 1 toroidal mode number, although higher mode numbers are
also observed, consistently with theoretical predictions (Biglari and Chen, 1986b, 1991; Chen, 1994; Cheng, 1982a,b;
Rewoldt, 1988; Spong et al., 1988; Tang et al., 1980; Tsai and Chen, 1993; Weiland and Chen, 1985) and continuously
connecting with the KBM branch (Biglari and Chen, 1991; Tsai and Chen, 1993). An extensive review of experimental
fishbone observation can be found in (Heidbrink and Sadler, 1994) and we refer readers to that for further details.
More recently, with increasing plasma performance, other types of kink/fishbone oscillations have been measured. In
particular, in high-β plasmas typical of spherical tori, the usual kink/fishbone branch may be stabilized by the reversal
of the direction of the toroidal particle precession drift, as shown theoretically by (Hastie et al., 1987a; Kolesnichenko
et al., 1999) and observed experimentally in NSTX (Fredrickson et al., 2003) and START (Gryaznevich and Sharapov,
2004). However, other precession-bounce resonances with ℓ 6= 1 in Eq. (4.50) may effectively drive kink/fishbone modes
at higher frequencies, as demonstrated by (Fredrickson et al., 2003). Furthermore, “off-axis” fishbones have also been
observed in plasmas with non-monotonic q profiles (Heidbrink et al., 2011; Huysmans et al., 1999; Matsunaga et al.,
2009, 2010; Okabayashi et al., 2009, 2011), whose radial structure peaks near the q = 2 rather than inside the
q = 1 surface. Although it was suggested that these modes may have an internal kink nature (Huysmans et al.,
1999), and fishbone modes with a double kink structure are theoretically predicted in plasmas with non-monotonic q
profiles (Helander et al., 1997), recent experimental evidence (Heidbrink et al., 2011; Okabayashi et al., 2011) suggests
that these modes are external kinks, resonantly excited by supra-thermal particles. In this sense, these modes are
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the EPM counterpart of the resistive wall mode (RWM) (Pfirsch and Tasso, 1971), whose stability is expected to be
strongly influenced by plasma rotation, due to the ideal MHD coupling with sound wave (Betti, 1995; Bondeson and
Ward, 1994) and Alfvén waves (Gregoratto et al., 2001; Zheng et al., 2005), or due to resistive layer (Finn, 1995;
Gimblett and Hastie, 2000) and viscous boundary layer damping (Fitzpatrick and Aydemir, 1996). However, even
stronger effects are expected when kinetic resonance interactions are accounted for with thermal ions, at the bounce
or transit frequencies (Bondeson and Chu, 1996; Liu et al., 2004), or with either trapped thermal ions or electrons at
the precession frequency (Hu and Betti, 2004). All these physics must be taken into account realistically in numerical
simulations [see e.g. (Berkery et al., 2010; Liu et al., 2009)], to be compared with experimental observations. Recent
reviews of the physics of internal kink (sawtooth) stabilization (Chapman et al., 2007; Graves et al., 2010) and
analyses of high-β regimes for DEMO (Chapman et al., 2011) confirm the necessity of thorough kinetic models for
the description of the plasma operation control in burning plasmas.
E-fishbones have been widely investigated, since their first observation in DIII-D with ECRH (Wong et al., 2000). In

that case, barely trapped supra-thermal electrons, characterized by ω̄de reversal, could destabilize a mode propagating
in the ion diamagnetic direction in the presence of an inverted spatial gradient of the supra-thermal tail, consistent
with Eq. (4.52). Observations of e-fishbones with ECRH only (Ding et al., 2002) and LHH/LHCD only (Romanelli
et al., 2002; Smeulders et al., 2002) have been also reported in HL-1M and FTU, respectively. More recently, electron
fishbones have been observed in Tore Supra (Macor et al., 2009; Maget et al., 2006), due to resonant excitation of a
double-kink mode by supra-thermal electrons generated with LH power injection, and in HL-2A (Chen et al., 2009),
in plasma discharges with off-axis ECRH. Similar but higher frequency modes were observed in Compass-D (Valovič
et al., 2000) during ECRH and LH power injection, with chirping frequency comparable with that of TAE (Cheng
et al., 1985), ω<∼ ωTAE . Due to the combined effect of ECRH and LH/LHCD in plasmas yielding e-fishbones, particular
care is needed for the treatment of trapped and circulating supra-thermal particles responses 18 and for the modeling
of the supra-thermal electron distribution function, as emphasized in the work by (Merle et al., 2012). E-fishbone
properties have been characterized by very detailed analyses of experimental results in HL-2A (Chen et al., 2010a,
2009), FTU and Tore Supra (Guimarães-Filho et al., 2012, 2011), based on the use of the GFLDR as interpretative
framework, and confirmed by hybrid MHD-gyrokinetic numerical simulations (Vlad et al., 2011, 2012, 2013).
The first observations of AEs were in the TAE frequency range, reported independently in TFTR (Wong et al.,

1991) and DIII-D (Heidbrink et al., 1991). Major efforts where devoted to this area of research in the early 90’s,
also in connection with the first D-T experiments in laboratory plasmas in JET (JET Team, 1992) and TFTR (Bell
et al., 1995). The first review of experimental observations of Alfvénic and MHD modes destabilized by supra-thermal
particle is given by (Heidbrink and Sadler, 1994). The different varieties of AE associated with various equilibrium
geometry and nonuniformity became evident already with D-T experimental results in TFTR observing a core localized
TAE, readily explained with by theoretical studies (Berk et al., 1995c; Breizman and Sharapov, 1995; Candy et al.,
1996; Fu, 1995). Alfvénic modes in TFTR D-T plasmas received considerable theoretical attention not only for linear
stability analyses, e.g., (Candy and Rosenbluth, 1995; Fu et al., 1996a), but also for understanding their nonlinear
saturation and predicting observed fluctuation levels (Gorelenkov et al., 1999a) (cf. Sec. V.D.4). An extended review of
alpha particle physics experiments in TFTR is given by (Zweben et al., 2000). The high performance D-T experiments
in JET (Gibson and the JET Team, 1998) were instead stable with respect to resonant excitations of fusion alpha
particle driven instabilities, as explained by (Sharapov et al., 1999). The reason for this stems from the difference of
typical operation regimes in present day experiments with respect to those expected in burning plasmas (cf. Sec. VII
for more details). In particular, the relatively large fusion alpha particle orbit widths in today’s machines causes their
response to be nearly adiabatic (cf. Sec. II.E), and, thereby, suppress resonant wave-particle interactions.
An overview of early TAE experimental observations in JET is given by (Fasoli et al., 1995b); and (Fu et al.,

1996b; Kramer et al., 1998; Saigusa et al., 1995) provide a similar summary of TAE observations in JT-60U. Short
reviews of AE experimental studies in single devices are given also by (Heidbrink, 1995) for DIII-D, by (McClements
et al., 1999) for START, by (Snipes et al., 2000) for Alcator C-Mod, by (Gryaznevich and Sharapov, 2004) for MAST
and by (Gorelenkov et al., 2004) for NSTX. Meanwhile, (Wong, 1999) provided the most comprehensive overview
of AE observations till the end of the nineties, including a detailed analysis of TFTR results in this area. Further
detailed behaviors of AE as predicted by theory were verified; e.g. , by (Kramer et al., 1999), reporting on noncircular
triangularity and ellipticity-induced AE observed in JT-60U, and by (Fredrickson et al., 2000), giving evidence of
modes at frequencies near the second Alfvén gap in TFTR. The stabilizing effect of finite supra-thermal ion orbit
widths, compared with the mode wavelength, was discussed by (Gorelenkov et al., 1999b) for TFTR plasmas, while

18 Neglecting finite ωb effects in Eq. (4.51) implies considering barely circulating supra-thermal electrons and/or q ≃ 1 (Wang et al., 2007;
Zonca et al., 2007a,b) (cf. also Sec. IV.B.1).
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similar analyses in stellarators were given by (Kolesnichenko et al., 2006) for the specific case of the W7-AS device.
Meanwhile, energetic ion driven MHD instabilities observed in the heliotron/torsatron devices Compact Helical System
and Large Helical Device were reviewed by (Toi et al., 2000, 2004). It is also interesting to note that, consistent with
Eqs. (4.2) and (4.3), the spectral gap in the SAW continuous spectrum was investigated in the LAPD linear device,
using a periodic array of magnetic mirrors (Zhang et al., 2008b). Key issues for burning plasmas related with Alfvén
wave physics are summarized by (Heidbrink, 2002), where an update of the experimental observations reviewed by
(Wong, 1999) can also be found. Meanwhile, the most recent review of experimental results by (Breizman and
Sharapov, 2011) has a slant toward reporting progress in nonlinear theory comparison with experimental data. A
general overview of basic physics of Alfvénic fluctuations and EPs in toroidal plasmas was given by (Heidbrink, 2008).

Reproducing very accurate experimental measurements of TAE damping rates, originally obtained for n = 1
modes (Fasoli et al., 1995a,b) has been challenging for numerical simulation codes. Numerically calculated AE
damping rates using non-perturbative kinetic models agreed qualitatively with experiments (Jaun et al., 1998, 2000),
but precise comparisons with measured damping rates were found to depend on plasma edge boundary conditions
and kinetic effects (Fu et al., 2005; Lauber et al., 2005). This suggests that future developments in numerical stability
analyses of burning plasmas in realistic conditions will need to incorporate accurate models of the Scrape Off Layer
(SOL) and of the mode structure outside the last closed magnetic surface (Chen et al., 2011a) in divertor configurations.
Another critical aspect is the accurate modeling of the mode conversion of long wavelength MHD-like modes to shorter-
wavelength KAW (Hasegawa and Chen, 1976). Differences in the wave propagation properties may be the explanation
of different predictions on the AE kinetic damping rates in the plasma interior (Borba et al., 2002; Fu et al., 2005;
Lauber et al., 2005; Testa et al., 2003). Significant improvement in the comparison between numerically computed
and experimentally measured values of TAE damping rates with n ≥ 2 (Snipes et al., 2005, 2004; Testa et al., 2010)
has been reported as a result of a benchmarking effort (Borba et al., 2010), carried out within the International
Tokamak Physics Activity (ITPA) Topical Group on Energetic Particles. Within the same ITPA Topical Group, it
is also worthwhile mentioning another successful benchmarking activity of gyrokinetic, kinetic MHD and gyrofluid
codes for the linear calculation of fast particle driven TAE dynamics (Könies et al., 2012).

The general feature of AE in toroidal plasmas to be slightly shifted from the SAW accumulation point; i.e., to
closely track the frequency of the continuous spectrum at the SAW resonance, makes it possible to infer local plasma
parameters by “MHD spectroscopy” (Goedbloed et al., 1993; Holties et al., 1997a,b), which measures the AE frequency.
MHD spectroscopy has been particularly adopted as analysis technique in connection with experimental observation
of AC/RSAE fluctuations (Kimura et al., 1998; Nazikian et al., 2003; Sharapov et al., 2002; Snipes et al., 2005;
Takechi et al., 2002). In addition to the generic information on the Alfvén speed and the plasma rotation by Doppler
shift, the observation of TAE and AC/RSAE may yield information on the q profile, which is especially useful when
the time evolution of the minimum-q can be reconstructed (Fasoli et al., 2002; Sharapov et al., 2001), for it helped
developing plasma operation scenarios with internal transport barriers (Joffrin et al., 2003; Pinches et al., 2004a;
Sharapov et al., 2004). Theoretical predictions of mode frequencies and linear stability of AC/RSAE in JET have
also been successfully compared with experimental observations (Abel et al., 2009). In those studies, furthermore, it
has been shown that when the frequency sweeping of AC is downward, in contrast to the usual slow upward chirping
of these modes, the magnetic shear configuration is typically weakly reversed. Discussions of experimental evidence of
downward chirping AC/RSAE are also given by (Heidbrink et al., 2013; Sandquist et al., 2007). MHD spectroscopy
has been proposed as (thermal ion) temperature diagnostics as well (Breizman et al., 2005; Gorelenkov et al., 2006),
using the temperature ratio dependence of the BAE accumulation point (cf. Sec. IV.B.2). However, other interesting
applications exist, which allow extracting from MHD spectroscopy information on the nonlinear dynamic evolution
of AE (Breizman and Sharapov, 2011; Fasoli et al., 2002; Pinches et al., 2004b) (see Sec. V.D.3 for more details).

One important progress in comparisons between experimental observations and theoretical prediction has been
driven in the recent years by the development of internal measurements of AE mode structures. DIII-D is the first to
demonstrate that AE may be excited in the plasma core by both supra-thermal particles as well as thermal ions with
a wide range of mode numbers (Nazikian et al., 2006), consistent with the theoretical framework of Sec. IV.B.2. Other
examples are the use of reflectometry and Phase Contrast Imaging (PCI) techniques (Edlund et al., 2009; Hacquin
et al., 2007; Van Zeeland et al., 2006a), providing good comparisons of 2D MHD mode structure calculations with
experimental measurements (Edlund et al., 2009); and of Electron Cyclotron Emission (ECE) imaging (Van Zeeland
et al., 2006b), yielding a visualization of actual 2D AE structures from experimental measurements (Classen et al.,
2011; Tobias et al., 2011). ECE imaging results of RSAE mode structures are found to be influenced by the the
energetic ion radial profile, as expected from theory and in agreement with gyrofluid (cf. Fig. 3) and gyrokinetic
simulation results (Spong et al., 2012; Tobias et al., 2011). Qualitatively similar results of 2D RSAE mode structures,
modified by the energetic ion radial profiles, have been obtained by gyrokinetic (Deng et al., 2010) and hybrid MHD
gyrokinetic simulations (Deng et al., 2012b; Wang et al., 2011, 2010b). In general, however, such good agreement
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FIG. 3 Left frame [from the original Fig. 4 (a)-(b) in Ref. (Tobias et al., 2011)]: Comparisons of n = 3 and n = 4 2D RSAE
mode structures, modified by the EP profile, as measured from ECE imaging (left) and as obtained from gyrofluid simulations
(right) with the TAE/FL code (Spong et al., 1992, 1994). Right frame [from the original Fig. 5 (d)-(e) in Ref. (Deng et al.,
2010)]: n = 4 2D RSAE contour plots from gyrokinetic (Deng et al., 2010) [with GTC code (Lin et al., 1998)] and hybrid MHD
gyrokinetic simulations (Wang et al., 2010b) [with the eXtended version (Wang et al., 2011) of the HMGC code (Briguglio
et al., 1995)], showing the same effect of EP radial profiles on the mode structure (Deng et al., 2012b).

between internal measurements of AE mode structures and numerical calculations are not always found. This is the
case, for example, of “TAE Avalanches” (Fredrickson et al., 2009), where the discrepancies between mode structures
reconstructed from reflectometry and numerical simulation results are attributed to nonlinear processes (Podestà
et al., 2009). Furthermore, fluctuations typically have a larger experimental growth rate than that computed from
linear stability calculations, and are accompanied by rapid frequency chirping (Podestà et al., 2011). These observa-
tions suggest that supra-thermal particle transport and nonlinear Alfvén wave dynamics are profoundly interlinked,
and that frequency chirping is an important nonlinear process, whose characteristic rate provides information on
the underlying physics (cf. Secs. V.D.5 and VI.B). The observation of frequency chirping modes was readily recog-
nized to be important (Gryaznevich and Sharapov, 2004; Heidbrink, 1995; Kramer et al., 1999; McClements et al.,
1999; Takechi et al., 1999; Wong, 1999) and their existence is strictly connected with EPM observations in many
experimental devices (Bernabei et al., 1999, 2001; Gorelenkov et al., 2000; Gorelenkov and Heidbrink, 2002; Wong,
1999). In fact, frequency chirping is typically classified as slow, when it reflects plasma equilibrium profile changes,
or fast, when it involves local modification of the EP velocity distribution function by nonlinear dynamics (Berk and
Breizman, 1995), or rapid EP radial redistribution and the consequent nonlinear modification of the wave disper-
sive properties (Gorelenkov et al., 2000; Zonca and Chen, 2000). In this latter case, the EP effect on the mode is
non-perturbative, and both mode frequency and radial structures are modified by EP redistributions with important
consequences on nonlinear dynamics (cf. Secs. V.D.5 to V.D.7).
The low-frequency Alfvén wave spectrum in the KTI frequency gap also attracted significant interest since the first

observations of BAE modes (Heidbrink et al., 1993; Turnbull et al., 1993). A very detailed stability analysis of BAE
modes observed in Tore Supra (Sabot et al., 2006; Udintsev et al., 2006) and of the experimental conditions that are
necessary for effective mode excitation is given by (Nguyen et al., 2009) on the basis of the GFLDR theoretical frame-
work (cf. Sec. IV.B.2). The GFLDR was also adopted for explaining the frequency of BAE modes in FTU (Annibaldi
et al., 2007), where they are excited in the presence of a large magnetic island (Buratti et al., 2005) (cf. Sec. V.C.4),
as observed also in TEXTOR (Zimmermann et al., 2005) and HL-2A (Chen et al., 2011b). Significant interest was
also attracted by observations of BAAE (Gorelenkov et al., 2007a,b) in JET and NSTX at frequencies below the BAE
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accumulation point of the SAW continuum (cf. Sec. IV.B.2), by the more recent evidence of “Sierpes modes” in AS-
DEX Upgrade (Garćıa-Muñoz et al., 2008), interpreted as BAE excited by energetic ions generated by Ion Cyclotron
Resonance Heating (ICRH) (Lauber and Günter, 2008), and also by measurements of ICRH driven BAE in Tore Supra
(Sabot et al., 2009). For accurate interpretation of these observations, as shown in Sec. IV.B.2, it is necessary to use
kinetic theories for the proper treatment of thermal plasma compression effects, including wave-particle interactions
with circulating as well as trapped thermal plasma particles (Chavdarovski and Zonca, 2009; Curran et al., 2012;
Lauber et al., 2009, 2012; Zonca et al., 2010). Some improvement in the modeling of experimental observations has
been reported with simplified extensions and/or renormalization of fluid theories (Gorelenkov et al., 2009). Recent
detailed gyrokinetic simulations and comparisons with experimental observations in ASDEX Upgrade (Curran et al.,
2012; Lauber et al., 2012), however, have confirmed that accurate description of kinetic interactions are needed for
capturing the physics of AE and EPM at frequencies near the KTI gap. These results also confirm that two bands
of low-frequency Alfvénic activities are generally expected, with predominance of either ion diamagnetic drift (KBM)
or parallel and perpendicular ion compressibility (BAE) and with varying frequency-dependent geodesic curvature
coupling to the ion-acoustic wave (cf. Sec. IV.B.2). Meanwhile, the BAAE branch, which, at the lowest order, is the
usual (sideband) electrostatic drift wave (Zonca et al., 2010), requires Te/Ti ≫ 1 for minimizing Landau damping
and being observable in actual experimental conditions, as those described by (Melnikov et al., 2011) in TJ-II. More
recently, the observation of BAE modes driven by supra-thermal electrons (e-BAE) due to ECRH near the KTI fre-
quency gap in HL-2A (Chen et al., 2011b, 2010b) has renewed the interest on the particular role that investigating
fast-electron driven DAWs may have in understanding burning plasma physics. In fact, observations of fast electron
driven AE have been made even in the TAE frequency range during the current rise phase in Alcator C-Mod (Snipes
et al., 2008). Observations of e-BAE in HL-2A can also be understood within the GFLDR theoretical framework.

Numerical simulation codes for the analysis of AE and EPM stability have been traditionally gyrofluid codes (Spong
et al., 1992, 1994), extended/kinetic MHD codes (Borba et al., 2002; Cheng, 1992; Gorelenkov et al., 1999b; Liu et al.,
2008; Mikhailovskii et al., 1997; Pinches et al., 1998; Zheng et al., 2010) and hybrid MHD gyrokinetic codes (Briguglio
et al., 1995, 1998; Park et al., 1999, 1992; Todo, 2006; Todo and Sato, 1998; Todo et al., 1995, 2005; Wang et al.,
2011). In the recent years, there has been a significant effort to develop increasingly more accurate models for the
description of DAWs, some of them with fully nonlinear simulation capability (cf. Sec. II.F). The main concern is
the ability to handle the increasingly more demanding/sophisticated physics necessary for analyzing DAW stability
properties in conditions of practical interest (cf. Sec. IV.B). Gyrokinetic numerical simulations of linear AE stability
properties are becoming routine in the recent years (Chen et al., 2010c; Lang et al., 2009; Mishchenko et al., 2009;
Nishimura, 2009), and significant benchmarking efforts between various code predictions have been carried out (Deng
et al., 2010; Könies et al., 2012; Zhang et al., 2010a).

For ITER plasmas (Aymar et al., 1997; Tamabechi et al., 1991), preliminary stability analyses of Alfvénic modes
were reported by (Cheng, 1991), adopting an extended MHD stability model (Cheng, 1992). The physics of Alfvén
waves and EPs in ITER plasmas was first reviewed as a joint activity of the international fusion community in (ITER
Physics Expert Group on Energetic Particles, Heating and Current Drive, ITER Physics Basis Editors, 1999), which
was updated more recently by a similar collaborative effort (Fasoli et al., 2007). Dedicated numerical studies of MHD
and Alfvénic mode activities remain, however, scarce. The most recent kinetic stability analysis of the internal kink
mode in ITER is given by (Hu et al., 2006) and effects of α particles on the RWM stability in ITER have been
investigated by (Liu, 2010). Meanwhile, numerical investigations of AE and EPM stability in burning plasmas such
as ITER, have shown that the most unstable (least stable) mode numbers are in the medium to high-n range, i.e.,
nmax ≃ O(10) (Gorelenkov et al., 2003; Vlad et al., 2006), as expected from theory (cf. Secs. IV.B.2 and IV.B.3). In
realistic geometries, stability analyses of the ITER “positive shear” reference scenario with perturbative EP dynamics
demonstrate that AE are marginally stable in the presence of fusion-α’s only, while instability is to be expected when
supra-thermal particle tails due to 1 MeV Negative Neutral Beam Injection (NNBI) are accounted for (Gorelenkov
et al., 2003). Meanwhile, AE and EPM stability studies with self-consistent EP physics in model circular geometry
show that, in the presence of fusion-α’s only, ITER is marginally unstable for AE in all the three reference scenarios;
i.e., “positive shear” (SC2), “reversed shear” (SC4) and “hybrid scenario” (SCH) (Vlad et al., 2006). The slight
discrepancy between (Gorelenkov et al., 2003) and (Vlad et al., 2006) is likely due to the different equilibrium repre-
sentation (shaped vs. circular), the treatment of fast ion dynamics (perturbative vs. self-consistent) and the profile
differences in the reference scenarios. However, the fair agreement between existing results of Refs. (Gorelenkov et al.,
2003) and (Vlad et al., 2006) suggests that the fundamental physics of collective mode excitations by EPs is well at
hand. Simulations results also show that AE close to the plasma center are more easily excited by precession and
precession-bounce resonances with trapped fusion-α’s (Vlad et al., 2006), due to the fact that the maximum drive due
to NNBI is located more radially outward (at about mid radius of the plasma cross section). Similarly, AE structures
mostly weighted in the outer plasma column are preferentially excited by NNBI via transit resonance (Gorelenkov
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et al., 2003, 2005). This fact explains why, due to orbit averaging effects, mode numbers of AE localized in the plasma
core tend to be smaller. Generally, among the “improved confinement regimes”, AE stability in ITER is most critical
for the “reversed shear” (SC4) scenario (Gorelenkov et al., 2005; Vlad et al., 2006), while the “hybrid scenario” (SCH)
is more stable (Vlad et al., 2006). However, assuming fusion-α’s only, the threshold for n ≃ O(10) EPM excitation
in the ITER SCH scenario is reached by artificially raising the on axis βα by ≈ 1.6 at fixed profiles (Vlad et al.,
2006). Above this threshold, EP transports are characterized by convective processes of significant magnitude (cf.
Secs. V.D.6 and VI.B). More recently, gyrokinetic simulations of TAE modes in ITER (Chen et al., 2010c) have
essentially confirmed prior findings (Gorelenkov et al., 2003, 2005; Vlad et al., 2006) and predict that most unstable
mode numbers are expected for nmax ≃ O(10), with the dominant damping mechanism due to ion Landau damping.

The rapid increase of numerical simulation capabilities and the emergence of a unified theoretical framework for
understanding and analyzing the excitation of DAWs by EPs suggest that realistic burning plasma stability analyses
will be possible in the near future. Furthermore, all numerical simulation activities of Alfvénic modes in ITER are
not only aiming toward stability analyses. In fact, significant efforts are also going on, e.g., for providing technical
support to the development of optimized diagnostic systems, such as those discussed by (Ambrosino et al., 2012).

V. NONLINEAR ALFVÉN WAVE BEHAVIORS AND SELF-CONSISTENT INTERACTIONS WITH ENERGETIC

PARTICLES

The ordering estimates of vorticity equation in Sec. II.C introduce two different nonlinear dynamic regimes in the
long wavelength limit. For ǫω > ǫ2⊥, nonlinear wave-wave interactions are determined by the polarization (inertia)
nonlinearity and the MHD plasma description is reasonably accurate. Meanwhile, for ǫω < ǫ2⊥, Maxwell stress and
pressure stress tensor nonlinearity become dominant and kinetic theory becomes necessary at increasingly shorter
wavelengths. Thus, the nonlinear dynamics of Alfvén waves crucially depends on the existence of the so-called
“Alfvénic state” (Alfvén, 1942, 1950; Elsasser, 1956; Hasegawa and Sato, 1989; Walén, 1944), where Reynolds and
Maxwell stress cancel exactly and large amplitude shear Alfvén wave (SAW) can be supported. Consequently, physics
processes that are responsible for breaking the Alfvénic state are of great importance for the nonlinear evolution of
the SAW spectrum.

As anticipated in Sec. IV, the theoretical framework of the generalized fishbone like dispersion relation (GFLDR)
provides a useful starting point for our analyses of nonlinear physics of Alfvén waves and energetic particles (EPs)
in burning plasmas. Section V.A discusses the general theoretical approach adopted here, which is formulated as
a Schrödinger equation with integro-differential nonlinear terms. That equation is then used in later sections to
investigate nonlinear processes affecting drift Alfvén wave (DAW) behaviors.

Many of these issues can be analyzed and illuminated in uniform plasmas and are presented in Sec. V.B, where the
finite ion compressibility effect (polarization nonlinearity) is analyzed in the long wavelength limit, showing that it
yields the decay of a SAW into another SAW and an ion sound wave (Sagdeev and Galeev, 1969) (cf. Sec. V.B.1).
However, for sufficiently short wavelength there is a transition to nonlinear behaviors dominated by Reynolds and
Maxwell stresses, which requires accounting for wavelengths comparable with the ion Larmor radius (Hasegawa and
Chen, 1975, 1976). In this case, kinetic Alfvén waves (KAWs) break the ideal Alfvénic state and the three wave SAW
decay is taken over by the three wave KAW decay (Hasegawa and Chen, 1976). Such a transition has important
consequences on plasma transport, since SAW decay preserves the anisotropy of the initial k⊥ spectrum, while KAW
decay tends to make it isotropic (cf. Sec. V.B.2). These findings, thus, demonstrate that, in general, it may be
necessary to adopt the kinetic description in the study of Alfvén wave turbulence. The breaking of the Alfvénic state
by KAWs also affects the nonlinear excitation of convective cells, as shown in Sec. V.B.3. Convective cells are the
uniform plasma counterpart of zonal flows and fields in toroidal systems. Studying convective cells, thus, provides
useful insights to understanding the more complex nonlinear interplay between Alfvén waves and zonal structures (ZS;
cf. Sec. II.D), which will be further discussed later in this section and in Sec. VII within a broader physics framework.

In Sec. V.C, we show how geometry of the plasma equilibrium and spatial nonuniformities affect, both qualitatively
and quantitatively, the nonlinear processes discussed above. The tokamak counterpart of the SAW decay process in
a uniform plasma is Toroidal Alfvén Eigenmode (TAE) frequency cascading via nonlinear Landau damping (Hahm
and Chen, 1995), discussed in Sec. V.C.1. At shorter wavelengths, as in the KAW decay, polarization nonlinearity is
expected to become subdominant with respect to Maxwell stress and pressure stress tensor nonlinear terms, which
thus determine the cross section of TAE frequency cascading. This analysis, however, remains to be carried out.
In Sec. V.C.2, we also discuss the generation of ZS by finite amplitude TAE (Chen and Zonca, 2012; Spong et al.,
1994; Todo et al., 2010) as toroidal geometry analogue of the generation of convective cells by KAW, considered in
Sec. V.B.3. These various processes may by themselves yield to TAE or AE saturation levels that possibly explain some
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experimental observations. More generally, however, saturation levels (|δBr/B0| ∼ 10−3) expected for the individual
nonlinear interactions, are larger than observed values (|δBr/B0|<∼ 5 × 10−4) [see, e.g., (Heidbrink et al., 2008)]. It
is nonetheless important to identify and keep these processes into account, especially in conditions where a number
of weak nonlinear interactions may be simultaneously active and ultimately determine the AE fluctuation amplitude.
In addition to their importance in regulating turbulence intensity and, thereby, plasma transport, coherent nonlinear
interaction of AE and ZS may generally influence fine structures of the AE frequency spectrum (cf. Sec. V.C.2), as
it is the case of modulation interactions due to wave-particle nonlinear dynamics (Fasoli et al., 1998) (cf. Sec. V.D.3
and some related discussions in Sec. V.D.6). Finally, to further illustrate the effects of equilibrium geometry and
plasma nonuniformity in breaking the Alfvénic state, we analyze the AE nonlinear interplay with the SAW continuous
spectrum in nonuniform systems, which may either yield enhanced continuum damping (Chen et al., 1998; Vlad
et al., 1992; Zonca et al., 1995) (cf. Sec. V.C.3) or nonlinear instability, as in the case with finite amplitude MHD
activity (Biancalani et al., 2010a,b, 2011) (cf. Sec. V.C.4).
The nonlinear wave-particle interaction of AE and energetic particle modes (EPMs) with a population of EPs is

discussed in Sec. V.D. We start from the analysis of the nonlinear dynamics of a nearly monochromatic energetic
electron beam in a 1D plasma (O’Neil and Winfrey, 1972; O’Neil et al., 1971), given in Sec. V.D.1, for this is the clas-
sical problem on which mode dispersion relation (Drummond and Pines, 1962; Ichimaru, 1962; O’Neil and Malmberg,
1968; Singhaus, 1964; Vedenov et al., 1961b,c) and nonlinear behaviors in a beam-plasma system were formulated
and understood for the first time. These processes include Landau damping in a finite amplitude wave (Mazitov,
1965; O’Neil, 1965) and nonlinear wave-particle interactions (Al’tshul’ and Karpman, 1965, 1966; Drummond and
Pines, 1962; O’Neil and Winfrey, 1972; O’Neil et al., 1971; Shapiro, 1963a,b; Vedenov et al., 1961b,c), such as wave-
particle trapping, which is the dominant saturation mechanism due to the flattening of the EP distribution function
in the resonant region by phase space mixing. The 1D beam-plasma problem is also important for understanding
aspects of the nonlinear interaction of AE with EPs. In fact, there are currently two paradigms for discussing these
physics (Chen and Zonca, 2007a; Zonca et al., 2006). One is the “bump-on-tail” paradigm, which is based on wave
trapping, including effects of source and dissipation19, that occurs due to wave-particle “resonance detuning”. This
paradigm has been extensively developed by Berk, Breizman and coworkers (Berk and Breizman, 1990a,b,c), and
applied to explain experimental observations [cf. (Breizman and Sharapov, 2011) for a recent review]. The other
paradigm may be dubbed as the “fishbone” paradigm (Chen and Zonca, 2013); in which, due to frequency chirping,
there is little resonance detuning and the wave-particle phase is locked (Chen et al., 1984; White et al., 1983). On
the other hand, the duration of wave-particle interaction is limited due to the finite radial localization of the mode
structures; i.e., “radial decoupling” (Briguglio et al., 1998; Chen et al., 1984; Zonca et al., 2005).
The nonlinear physics of the “bump-on-tail” paradigm are analyzed in Sec. V.D.2, stemming from the original works

by (Berk and Breizman, 1990a,b,c). Its applications to AE experimental observations are discussed in Sec. V.D.3,
which also addresses its underlying assumptions and its consequent validity limits. Some of these limitations can be
overcome by approximate numerical simulation models, based on perturbative treatment of EPs, which are presented
in Sec. V.D.4. The “bump-on-tail” paradigm applies sufficiently close to marginal stability, when fluctuation induced
radial particle excursions are smaller than the mode radial wavelength. For sufficiently strong external power inputs
and, therefore, EP power density sources, nonlinear EP excursions explore regions of radially varying mode structures
and, thus, a transition typical of nonuniform plasmas is expected in the AE nonlinear dynamics (Zonca et al.,
2005), while EP redistributions occur on meso-scales as discussed in Sec. V.D.5. The general theoretical framework,
formulated in Sec. V.D.5, allows describing the transition from uniform to nonuniform plasma behaviors, illuminated
by recent numerical simulation results (Briguglio et al., 2013; Wang et al., 2012; Zhang et al., 2012). Effects of such a
transition become more important as drive strength increases, and are most apparent for EPMs (cf. Sec. V.D.6) and
fishbones (cf. Sec. V.D.7), which are characterized by the nonperturbative interplay of nonlinear mode dynamics and
EP transport processes.
Further remarks and discussions related with the general theoretical formulation of Sec. V.A are presented in

Sec. V.E, where possible interesting connections to other fields of physics research are also discussed.

A. General theoretical approach

Here, we further elaborate the GFLDR theoretical framework and derive a general form of governing equations for
addressing nonlinear physics of Alfvén waves and EPs in burning plasmas. Equation (4.36) describes the spatiotem-

19 Source and dissipation account for the generation of the EP population by external heating and/or current drive systems in toroidal
plasmas of fusion interest as well as for the relaxation of their distribution function via Coulomb collisions (Berk and Breizman, 1990a).
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poral evolution of DAW wave packets in toroidal plasmas due to the influence of external sources and/or nonlinear
dynamics. From Eq. (4.34), it is readily recognized that a useful formal interpretation of the left hand side is obtained
isolating linear terms in the local dispersion function Dn(r, θk0(r), ω0), while nonlinear and external source terms are
collected on the right hand side. Thus,

Sn(r, t) = −DNL
n + Sextn (r, t) =

(
δW̄NL

f + δW̄NL
k

)
n
− iΛNLn + Sextn (r, t) , (5.1)

where Sextn (r, t) explicitly denotes external sources, the superscript NL stands for nonlinear and the definition of the
various terms follows straightforwardly from Eqs. (4.16) and (4.18) and Eqs. (4.31) and (4.32). In general, Sn(r, t)
can be written symbolically, in terms of amplitude expansion, as (Chen et al., 2005; Zonca et al., 2006)

Sn(r, t)− Sextn (r, t) = (Cn,0 + C0,n) ◦An0(r, t)Az0(r, t) +
n′,n′′ 6=n∑

n′+n′′=n

Cn′,n′′ ◦An′0(r, t)An′′0(r, t) , (5.2)

where Cn′,n′′ are generally integro-differential operators, which imply non-local interactions in the n toroidal mode
number-space, and Az0 and An0 are, respectively, the the slowly varying envelope functions introduced in Eq. (4.36);
i.e., the zonal and n 6= 0 components. Here, we have included nonlinear dynamics that modify the n = 0 “zonal”
particle distribution function δF̄z, given by Eq. (2.22) (Zonca et al., 2000). Therefore, Az0 not only represents the
amplitude of ZS, but it also symbolically indicates the nonlinear distortion of the equilibrium particle distribution
function. This distortion effect enters Eq. (5.1) through velocity space integrals, implying that Az0, when accounting
for interactions with δF̄z, is by itself a nonlinear function of An0 and that the dependence is quadratic, Az0 ∝ |An0|2.
As will be explained in Sec. V.D.5.c, we refer to these contributions as phase-space ZS (Zonca et al., 2013a,b).
Thus, the source term in Eq. (5.1) is intended to contain a cubic nonlinearity with respect to the envelope function,
An0(r, t). The remaining terms in Eq. (5.2) account for three wave interactions and, in general, non-local spectral
transfers. Combining all the various terms, Eq. (4.36) can be cast in the form of a nonlinear Schrödinger equation
with integro-differential terms

∂Dn

∂ω0

(
i
∂

∂t

)
An0(r, t) +

∂Dn

∂θk0

(
− i

nq′
∂

∂r
− θk0

)
An0(r, t) +

1

2

∂2Dn

∂θ2k0

[(
− i

nq′
∂

∂r
− θk0

)2

− i

nq′
∂θk0
∂r

]
An0(r, t)

= Sextn (r, t) + (Cn,0 + C0,n) ◦An0(r, t)Az0(r, t) +
n′,n′′ 6=n∑

n′+n′′=n

Cn′,n′′ ◦An′0(r, t)An′′0(r, t) , (5.3)

which can be used for analyzing all various nonlinear dynamics introduced above and discussed later in this section.
In fact, Eq. (5.3) describes both short wavelength modes, for which Eq. (4.36) was derived, as well as global long
wavelength modes with one isolated singular layer. The argument yielding Eq. (5.3) from Eqs. (4.34) and (4.36) can
be straightforwardly repeated for the GFLDR in the form of Eq. (4.20). As a result, one obtains Eq. (5.3) again,
provided that θk0 = ∂/∂r = 0 is assumed; i.e., considering An0 as the slowly varying amplitude of the n mode at the
singular layer (cf. Sec. V.D.7). The same also applies for the vanishing magnetic shear case, described by Eq. (4.24).
Thus, we may consider Eq. (5.3) as the general form of governing equations for addressing nonlinear physics of Alfvén
waves and EPs in burning plasmas. Expressions of the nonlinear-coupling operators, Cn′,n′′ , depend on the specific
nonlinear interactions under consideration, and some examples will be discussed in the remainder of this section.
Equation (5.3) allows us to readily recognize the various spatiotemporal scales for the nonlinear dynamic evolution

of DAWs. In addition to the inverse linear growth rate, γ−1
L , and the formation time of the global eigenmode structure

τA (Zonca et al., 2004a) (cf. Sec. IV.B), in fact, one can identify nonlinear processes and corresponding time scale
separating ideal region response from singular layer dynamics, as suggested by Eq. (5.1). Recalling from Sec. II.C
that the characteristic nonlinear time scale of DAWs considered in this work is τNL ∼ γ−1

L , different behaviors are
expected for τA < τNL ∼ γ−1

L , typical of AE, and for τA ∼ τNL ∼ γ−1
L , which generally applies for EPM.

Equation (5.3) is also a useful starting point for constructing reduced nonlinear dynamic models with various
levels of approximation to be used in connection with numerical simulations for understanding selected aspects of the
processes under investigation. Following the concluding remarks of Sec. IV.B.1, different terms entering Eq. (5.3) can
be evaluated either analytically or with simplified numerical descriptions; helping, thus, building models with reliable
predictive capabilities. Three wave couplings modify the nonlinear dynamics via the processes discussed in Secs. V.B
and V.C, which are the dominant nonlinear dynamics of the DAW spectrum caused by the core plasma component (cf.
Sec. II.E) and affecting directly fluctuation induced transports of the thermal plasma. Meanwhile, when dealing with
a spectrum of low-amplitude fluctuations, |δB⊥/B0| ∼ 10−4, characterized by |γL/ω0| ∼ |ω0τNL|−1 ≪ 1 as in the case
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of DAWs excited by EPs in fusion plasmas (cf. Sec. II.E), transport processes are dominated by wave-particle resonant
interactions (White et al., 1983, 2010a,b). Furthermore, the shortest (most relevant) nonlinear time scale processes
are those describing the evolution of phase-space ZS [cf. Eq. (5.174) and Sec. V.D.5]. In this case, the field equations
for Alfvénic fluctuations are Eq. (5.3) without the last term on the right hand side; and Eqs. (2.26) and (2.30) for the
δφz and δA‖z , respectively. Nonlinear wave-wave couplings and wave-particle interactions in the dynamic evolution
of DAW fluctuations excited by EPs are historically considered separately, for the sake of simplicity and clarity of
the analysis. However, noting that the existence of the SAW continuous spectrum could lead to the excitation of
short-wavelength modes via resonant mode conversion of longer scale-length mode excited by the EP component,
EPs could, then, act as mediators of cross-scale couplings (Zonca, 2008; Zonca and Chen, 2008a)20 and play a unique
role in determining complex behaviors in burning plasmas (cf. also Secs. V.E and VII.B). Thus, a comprehensive
understanding on the nonlinear physics of DAW instabilities excited by EPs would require a self-consistent treatment
of both nonlinear wave-wave and wave-particle interactions and is beyond the scope of this review. In the following
subsections, we will mainly focus on nonlinear dynamics of single-n modes21, and separate the analysis of wave-wave
and wave-particle nonlinear interactions in order to delineate more clearly the underlying physics mechanisms.

B. Nonlinear shear Alfvén waves in uniform plasmas

In order to provide insights to nonlinear wave-wave interactions among SAWs in tokamak plasmas, let us first
explore such interactions in the simple limit of an infinite, uniform plasma with B0 = B0ẑ. Within the generally valid
approximation of quasi-neutrality condition and mi ≫ me, we have the following one-fluid equation of motion

̺m(∂t + u · ∇)u = −∇ · P + j ×B/c, (5.4)

where ̺m =
∑

j njmj ≃ nimi and u ≃ ui. Equation (5.4) is readily obtained from Eq. (2.14) decomposing the stress
tensor as pressure and Reynolds stress, as usual; i.e., defining P ≡ P + ̺muu. Letting u = u0 + δu, etc., and noting
u0 = j0 = 0, Eq. (5.4) becomes,

(̺m0 + δ̺m0)(∂t + δu · ∇)δu = −∇ · δP + δj ×B/c . (5.5)

We further assume that shear and compressional Alfvén wave frequencies are well separated (|∇⊥| ≫
∣∣∇‖

∣∣) and
β ≪ 1. Thus, Eqs. (2.7) and (2.8) apply and only dynamics of SAW and slow sound waves are kept. If we now further
make the crucial assumption that all the interacting waves are SAWs, which are nearly incompressible, we then have
∇ · δu ≃ 0 and δ̺m ≃ 0, δP ≃ 0. Then, Eq. (5.5) becomes, approximately,

̺m0∂tδu = F (2)
p + δj ×B0/c, (5.6)

where the nonlinear ponderomotive force F
(2)
p is defined as

F (2)
p = δj × δB/c− ̺m0δu · ∇δu = −∇(δB)2/(8π)−Mx−Re;

and

Mx = −(δB · ∇)δB/(4π) ≃ −(δB⊥ · ∇)δB⊥/(4π),

Re = ̺m0(δu · ∇)δu ≃ ̺m0(δu · ∇)δu⊥,
(5.7)

are, respectively, the divergence of Maxwell and Reynolds stresses. The approximations are justified since β ≪ 1 and
|∇⊥| ≫ |∇‖|; both δB‖ and δu‖ are, hence, suppressed here. Equation (5.6) may be regarded as the basic equation
for SAW interactions subject to the above constrains.
Equation (5.6) gives δj⊥ as

δj⊥ = δj
(1)
⊥ + δj

(2)
⊥ , (5.8)

20 This aspect has been recently explored in great detail by (Qiu et al., 2012) in connection with the analysis of radial structures of EP
driven geodesic acoustic modes (Berk et al., 2006; Fu, 2008).

21 Note that, in toroidal geometry, this corresponds anyhow to many coupled poloidal Fourier harmonics in Eq. (4.26) and, due to nonlinear
interactions, to the coupling of different radial states (not necessarily eigenstates) of the same toroidal mode n.
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where δj
(1)
⊥ = (c/B0)b×ρm0∂tδu⊥ is the well-known linear polarization current, b ≡ B0/B0, and δj

(2)
⊥ is the nonlinear

current

δj
(2)
⊥ = −(c/B0)b× F (2)

p . (5.9)

For SAW dynamics, the quasi-neutrality condition ∇ · δj = 0, Eq. (2.12), along with the parallel Ampere’s law,
Eq. (2.13), ∇2δA‖ ≃ ∇2

⊥δA‖ = −(4π/c)δj‖, yields the following vorticity equation

(b · ∇) (−c/4π)∇2
⊥δA‖ +∇⊥ · δj⊥ = 0, (5.10)

where we have adopted the potential representation of the fields; i.e., δB = ∇ × δA, δE = −(∇δφ + ∂tδA/c) and
δA ≃ δA‖b. Thus, we have δE⊥ ≃ −∇⊥δφ and δE‖ = −b · ∇δφ− ∂tδA‖/c. Equation (5.10) is the k⊥ρi ≪ 1, β ≪ 1
limit of Eq. (2.26) and, adopting the flux function δψ defined in Eq. (2.31), it can be written as

(c2/4π)(b · ∇)2∇2
⊥δψ + ∂t(∇⊥ · δj⊥) = 0. (5.11)

We now make the final MHD approximations,

δu⊥ ≃ (c/B0)δE⊥ × b = (c/B0)b×∇⊥δφ, (5.12)

and

δE‖ = −b · ∇(δφ − δψ) ≃ 0. (5.13)

Equation (5.11) then becomes

c2
[
(b · ∇)2 − v−2

A ∂2t
]
∇2

⊥δφ+ 4π∂t[∇ · δj(2)⊥ ] = 0, (5.14)

and

∇ · δj(2)⊥ = −(c/B0)b · ∇ × (Re+Mx). (5.15)

Equation (5.15) has the interesting properties that ∇⊥ · δj(2)⊥ = 0 if Re+Mx = 0 or

δu⊥w/vA = ±δB⊥w/B0. (5.16)

Equation (5.16) is the Walén relation (Walén, 1944). In terms of δφ and δA‖, we have

δφw/vA = ±δA‖w/c,

or

∂t(δφw/vA) = ∓(b · ∇)δψw = ∓(b · ∇)δφw . (5.17)

Equation (5.17) thus demonstrates that given the Walén relation, Eq. (5.16),

[
(b · ∇)2 − v−2

A ∂2t
]
δφw = 0, (5.18)

and Eq. (5.14) is self-consistently satisfied regardless of the magnitude of δφw and δAw or δu⊥w and δB⊥w. This is
the celebrated Alfvénic state (Alfvén, 1942, 1950; Elsasser, 1956; Hasegawa and Sato, 1989; Walén, 1944). That is,
a purely co-propagating [∂t + (b · ∇)]δφw+ = 0 or counter-propagating [∂t − (b · ∇)]δφw− = 0 finite-amplitude SAW
is a self-consistent solution to the nonlinear SAW equation, Eq. (5.14). Nonlinear interactions thus can only occur
among oppositely propagating SAWs. There exist a vast amount literatures [see, e.g., (Biskamp, 1993)] investigating
the consequence of such interactions within the incompressibility and ideal MHD assumptions, and we will not go
into details here. Instead, the present paper will be focusing on effects relevant to fusion plasmas, which breaks
the constraints leading to the existence of Alfvénic states. More specifically, motivated by wave modes such as AE
as well as SAW continuum and, consequently, the KAW in realistic fusion plasma (cf. Sec. V), we shall, in the
following sections, investigate nonlinear SAW dynamics including effects of finite compressibility, ion Larmor radii
and geometries, which could break up the Alfvénic state.
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1. Effects of finite ion compressibility

By relaxing the incompressibility constrains, it was first shown by (Sagdeev and Galeev, 1969) that SAW can
parametrically decays into a sound wave and a back-scattered SAW. Specifically, let us consider the 3-wave interactions
among the pump SAW Ω0 = (ω0,k0), the daughter sound wave, Ω− = (ωs,ks), and the lower-side-band SAW,
Ω− = (ω0,k−), where ω− = ωs − ω0 and k− = ks − k0. Note that, in the Ωs mode, the dynamics is predominantly
along B0. One can then show that the dominant nonlinear effect of SAW on the Ωs mode enters via the parallel
ponderomotive force; i.e.,

b · (δj⊥ × δB⊥)s /c = −∇‖

(
δB2

⊥

)
s
/(8π) = −n0e∇‖δφps , (5.19)

δB⊥ =
∑

k δBk⊥ exp(−iωkt+ik ·x),
(
δB2

⊥

)
s
= δB0⊥ ·δB−⊥, and δφps is the corresponding ponderomotive potential.

That is,

̺m0(−iωs)δu‖s = −iks‖ (δPs + δB0⊥ · δB−⊥/8π) . (5.20)

Applying the equation of state, we have δPs = (γeTe + γiTi)δns ≡ Tδns. Continuity equation, n0ks‖δu‖s = ωsδns,
then yields

ω2
sǫsδ̺ms = k2s‖δB0⊥ · δB−⊥/(8π), (5.21)

and

ǫs = 1− k2s‖c
2
s/ω

2
s , (5.22)

with c2s ≡ T/mi.
As to the Ω− SAW sideband, the dominant coupling effect to Ωs is via δ̺ms in the polarization current term in

Eq. (5.5); i.e.,

δj
(2)
⊥− = (c/B0)b× [δ̺ms∂tδu⊥]− = (c/B0)δ̺ms(iω0)b× δu∗

⊥0 . (5.23)

The vorticity equation, Eq. (5.14), for the Ω− mode, then becomes

ǫA−k
2
−⊥δφ− = (δ̺ms/̺m0)(k0⊥ · k−⊥)δφ

∗
0; (5.24)

where

ǫA− = 1− k2−‖v
2
A/ω

2
− ; (5.25)

and we have adopted the field variables δφ, δA‖ or δψ and noted δφ0,− ≃ δψ0,−. Equation (5.21), in terms of the
potential variables, along with Eq. (5.24) then yields the following parametric dispersion relation

ǫsǫA− =
1

2
k20⊥ρ

2
s cos

2 θc

(
k−‖

k0‖

)
|Φ0|2, (5.26)

where Φ0 = eδφ0/T , ρs = cs/Ωi and θc is the angle between k0⊥ and k−⊥. For resonant decays, we have ωs = iγ+ωsr,
ωsr = ks‖cs, ω− = iγ + (ωsr − ω0) and (ω0 − ωsr) = |k−‖|vA, Eq. (5.26) then reduces to

γ2

ω0ωsr
=

1

8
k2⊥ρ

2
s cos

2 θc

(
k−‖

k0‖

)
|Φ0|2. (5.27)

Equation (5.27) shows that instability sets in when k0‖/k−‖ > 0. Since |ω0| ≫ |ωs|, we have |ω−| ≃ ω0 or k−‖ =
ks‖ − k0‖ ≃ k0‖ or ks‖ ≃ 2k0‖, and meanwhile, ω−/k−‖ ≃ −vA; i.e., the parallel phase velocity of the lower-sideband
SAW is opposite to that of the pump wave. Equation (5.27) also shows that the parametric instability maximizes
around θc = 0; i.e., k−⊥ aligns with k0⊥. As will be discussed later in Sec. V.B.2, this carries a significant implication
to the transport process induced by the SAW turbulence.
For fusion plasmas, we have, typically, Te . Ti and the ion sound wave becomes a quasi mode due to significant

ion Landau damping. In this case, we need to treat ions kinetically and the corresponding parametric decay process
becomes a non-resonant decay via nonlinear ion Landau damping (Cohen and Dewar, 1974; Kulsrud, 1978; Sagdeev
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and Galeev, 1969). From the previous one-fluid analysis on the resonant decay, one sees readily that nonlinearities
enter via ion dynamics only. Thus, for the Ωs ion sound wave, we have δnse/n0 = eδφs/Te; with δφs being the
self-consistent electrostatic potential, and

δnsi/n0 = −eχis(δφs + δφps) . (5.28)

Here, δφps is given by Eq. (5.19) and

χis = (1/Ti)〈F0iks‖v‖/(ks‖v‖ − ωs)〉v = (1/Ti) [1 + ξsZ(ξs)] , (5.29)

〈...〉v denotes
∫
dv(...), F0i is taken to be Maxwellian, Z(ξs) is the plasma dispersion function [cf., e.g., (Stix, 1992)],

ξs = ωs/(|ks‖|vti) and vti = (2Ti/mi)
1/2. Quasi-neutrality condition then gives

ǫskδφs = −Teχisδφps; (5.30)

where

ǫsk = 1 + Teχis. (5.31)

Equations (5.19) and (5.30) then yield

ǫsk
δ̺ms
̺m0

= − χis
8πn0

δB0⊥ · δB−⊥. (5.32)

Note that, for |ωs| ≫ |ks‖vti|, Eq. (5.32) recovers the the fluid result of Eq. (5.21) with c2s = Te/mi.

Substituting Eq. (5.32) into Eq. (5.24), with Φ0 ≡ eδφ0/Te, and proceeding as in the previous one-fluid analysis,
one readily derives the following parametric decay dispersion relation

ǫskǫA− = −1

2
Teχisk

2
⊥ρ

2
s cos

2 θc

(
k−‖

k0‖

)
|Φ0|2. (5.33)

While Ωs is a quasi mode since |Imǫsk| ∼ O(1), Ω− remains a normal mode. Thus, let ω− = ω−r + iγ and ω−r =
ωsr − ω0 = |k−‖|vA; the imaginary part of Eq. (5.33) then yields, noting Teχis = ǫsk − 1,

2γ

ω0
=

1

2
k20⊥ρ

2
s cos

2 θc

(
k−‖

k0‖

)
· TeImχis|ǫsk|2

|Φ0|2 ; (5.34)

where, from Eq. (5.29),

Imχis = (1/Ti)Im [ξsZ(ξs)] ≃ (π/Ti)ωsr〈F0iδ(ks‖v‖ − ωsr)〉v. (5.35)

Thus, the non-resonant decay maximizes around |ωsr| = |ω0 + ω−r| ≈ |ks‖vti| = |k0‖ + k−‖|vti. Since |ω0| ≃ |ω−r| ≫
|k‖vti|0,−, maximal interaction requires k0‖k−‖ > 0; i.e., k−‖ ≃ k0‖, ks‖ ≃ 2k0‖, and ω−/k−‖ ≃ −vA, similar to
resonant decay. Furthermore, form Eq. (5.34) and (5.35), the decay instability (γ > 0) occurs when ωsr > 0; i.e.,
|ω−r| = |ωsr − ω0| < ω0; that is, the parametrically excited lower sideband SAW has a real frequency lower than ω0,
|ω−r| ≃ ω0 − 2k0‖vti, and a parallel phase velocity opposite to that of the pump wave.

We note that the current analysis has made assumptions on the relative importance of the various nonlineari-
ties (Chen and Zonca, 2011, 2013), which are valid for

|k⊥ρs|20,− < |ω0/Ωi| ≪ 1. (5.36)

Equation (5.36) is the same condition derived in Sec. II.C, when discussing in a very general framework the criterion for
the transition between nonlinear (MHD) dynamics dominated by the polarization response to a regime where dominant
nonlinear (gyrokinetic) interactions are due to the pressure stress tensor and Maxwell stress. Thus, for SAWs with
|k⊥ρs| > |ω0/Ωi|1/2 ∼ O(10−1) typically, we need to employ the nonlinear gyrokinetic equation, Eq. (2.23), and, as
will be shown in the next section, the parametric decay precesses are significantly altered both quantitatively and
qualitatively.
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2. Parametric decays of Kinetic Alfvén Waves

We now consider three-wave interactions among Ω0, Ωs and Ω−; with |k⊥ρi| formally of O(1). Here, we only sketch
the derivations and refer to (Chen and Zonca, 2011) for details. Again β ≪ 1 and we adopt δφ and δA‖ as the
field variables. Meanwhile, following (Frieman and Chen, 1982), we can adopt the nonlinear gyrokinetic theoretical
framework of Sec. II.D. Thus, assuming that both electrons and ions have F̄0 = FM ≡ n0F0, with F0 taken to be
Maxwellian, Eq. (2.21) for the perturbed particle distribution function, δf , yields

δf = − (e/T )FMδφ+ exp (−ρ ·∇) δg , (5.37)

while Eq. (2.23) for δg becomes
(
∂t + v‖b ·∇+ 〈δuEg〉 ·∇

)
δg = (e/T )FM∂t 〈δLg〉 . (5.38)

Here, all notations are those of Sec. II (in particular of Sec. II.D) and, recalling that 〈A〉 denotes gyroaveraging of A,
we introduced the notation 〈δuEg〉 = (c/B0)b×∇ 〈δLg〉. In terms of Fourier modes, Eq. (5.38) can be expressed as

i
(
k‖v‖ − ωk

)
δgk − (c/B0)Λ

k′′

k′
[
〈δLg〉k′ δgk′′ − 〈δLg〉k′′ δgk′

]
= −iωk (e/T )FM 〈δLg〉k , (5.39)

where Λk
′′

k′ ≡ b · (k′
⊥ × k′′

⊥). Meanwhile, the quasineutrality condition, Eq. (2.28), becomes

(1 + Ti/Te) δφk = Ti/(n0e) 〈Jkδgki − δgke〉v , (5.40)

where e stands for the (positive) electron charge, and the vorticity equation, Eq. (2.26), can be written as

ik‖δj‖k − i
c2

4π

ωkk
2
⊥

v2Abk
(1 − Γk)δφk = −Λk

′′

k′

(
δA‖k′

δj‖k′′

B0
− δA‖k′′

δj‖k′

B0

)

+
ec

B0
Λk

′′

k′ 〈[(JkJk′ − Jk′′ )δLk′δgk′′i − (JkJk′′ − Jk′)δLk′′δgk′i]〉v , (5.41)

with δj‖k = (c/4π)k2⊥δA‖k. Here, 〈δLg〉k = Jk
(
δφ− v‖δA‖/c

)
k
≡ JkδLk, Jk = J0(k⊥ρ) and k = k′ + k′′. Further-

more, bk = k2⊥ρ
2
i = k2⊥(Ti/mi)/Ω

2
i , Γk = 〈J2

kF0i〉v = I0(bk) exp(−bk), I0 is the modified Bessel function and |k⊥ρe| ≪ 1
was assumed. On the right hand side of Eq. (5.41), the first term represents the usual Maxwell stress, whereas the sec-
ond term reduces to the well-known Reynolds stress for k⊥ρi ≪ 1. Noting the ordering |k‖vte| ≫ |ωk| ≫ |k‖vti|, intro-
duced in Sec. III.B, with vte and vti denoting the election and ion thermal velocities, and defining δψk = (ωδA‖/ck‖)k,
consistent with Eq. (2.31), we can readily recover the following linear KAW results (Hasegawa and Chen, 1975, 1976):

δψk ≃ [1 + τ (1− Γk)] δφk ≡ σkδφk , (5.42)

where τ = Te/Ti, and the KAW linear dispersion relation (cf. Sec. III.B)

ω2/
(
k2‖v

2
A

)
≃ σkbk/ (1− Γk) . (5.43)

As to the excitation of ion sound wave, Ωs, by the two KAWs, Ω0 and Ω−, we note that, due to the frequency
ordering discussed in Sec. V.B.1, Ωs is predominantly an electrostatic mode. Equation (5.39) can then be used to
calculate linear and nonlinear responses of δgs for both electrons and ions (Chen and Zonca, 2011). Substituting these
results into the quasi-neutrality condition, Eq. (5.40), we then obtain

ǫsKδφs = −i(c/B0ω−)Λ
s
0β1δφ−δφ0 , (5.44)

where

ǫsK = 1 + τ + τΓsξsZ(ξs) , (5.45)

β1 = τF1 (1 + ξsZ(ξs)) + σ−σ0 , (5.46)

ǫsK is the short wavelength extension of ǫsk introduced in Eq. (5.31), F1 = 〈JsJ0J−F0i〉v and we have applied the
corresponding linear KAW wave properties, noting that Ω0 and Ω− are normal modes.
Since the ion sound mode, Ωs, could be a heavily damped quasi mode (cf. Sec. V.B.1), we need to include both

linear as well as nonlinear responses of δgs in its coupling to Ω− via Ω0. The corresponding quasi-neutrality condition,
Eq. (5.40), then becomes

δψ− =
[
σ− + σ

(2)
−

]
δφ− +D1δφsδφ

∗
0 , (5.47)
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where σ− is defined in Eq. (5.42),

σ
(2)
− =

(
c

B0ω−
Λs0

)2 [
τ (1 + ξsZ(ξs))

〈
J2
0J

2
−

〉
i
− k‖0

k‖−
σ2
0σ−

]
|δφ0|2 (5.48)

and

D1 = −i(c/B0ω−)Λ
s
0τ (1 + ξsZ(ξs))F1 . (5.49)

Proceeding in the same way, we may compute the vorticity equation, Eq. (5.41), for the KAW sideband. In this
case, it is worthwhile noting that the Maxwell stress does not contribute to the nonlinear dynamics, for Ωs is a
predominantly electrostatic mode. Thus, the parametric decay is mediated by the generalized Reynolds’ stress in
Eq. (5.41). Applying the results of δgs derived earlier, we can readily obtain

k2⊥−

[(
1− Γ− + α

(2)
−

)
b−1
− δφ−

−
(
k2‖v

2
A/ω

2
)
−
δψ−

]
= (D2/ρ

2
s)δφsδφ

∗
0 , (5.50)

where ρ2s = τρ2i and α
(2)
− and D2 are due to the nonlinear ion response

α
(2)
− = (c/B0ω−)

2Λs 20 (1 + ξsZ(ξs))
[〈
J2
0J

2
−F0i

〉
v
− F1

]
|δφ0|2 , (5.51)

D2 = i(c/B0ω−)Λ
s
0τ [(1 + ξsZ(ξs))F1 − ξsZ(ξs)Γs − Γ0] . (5.52)

Combining Eqs. (5.47) and (5.50), we then obtain the following equation for the Ω− KAW modified by the nonlinear
coupling between Ωs and Ω0 modes;

bs−

(
ǫAK− + ǫ

(2)
AK−

)
δφ− = i(c/B0ω−)Λ

s
0β2δφsδφ

∗
0 , (5.53)

where bs− = τb−,

ǫAK− =

[
(1− Γ−) /b− −

(
k2‖v

2
A/ω

2
)
−
σ−

]
(5.54)

is the short wavelength extension of Eq. (5.25),

ǫ
(2)
AK− =

[
α
(2)
− /b− −

(
k2‖v

2
A/ω

2
)
−
σ
(2)
−

]
, (5.55)

and

β2 =

(
F1

Γs

)
(ǫsK − σs)

[
1−

(
k2‖v

2
A

ω2

)

−

bs−

]
− ǫsK + σ0

= [(ǫsK − σs)F1/Γs + σ− (σ0 − σs)] /σ−

= β1/σ− − ǫsK . (5.56)

Combining Eqs. (5.44) and (5.53), the resultant parametric instability dispersion relation becomes

ǫsK

(
ǫAK− +∆

(2)
A− + χ

(2)
A−

)
= Ck |Φ0|2 , (5.57)

where Φ0 = eδφ0/Te, Ck = (λH)
2
,

∆
(2)
A− = [(σs/Γs)(F

2
1 /Γs −G) + (σ− − 2F1/Γs (5.58)

−σ0k‖0/k‖−
)σ0σ− + σ2

0σ
2
−k‖0/k‖−

]λ2 |Φ0|2 ,

χ
(2)
A− = ǫsK

(
λ2/Γs

)
G |Φ0|2 , (5.59)

λ2 = (Ωi/ω0)
2
ρ4sΛ

s 2
0 / (σ−bs−) , (5.60)

G =
〈
J2
0J

2
−F0i

〉
v
− F 2

1 /Γs , (5.61)
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and

H = (σ0σ− − F1σs/Γs) . (5.62)

Note also that, in Eq. (5.61), G ≥ 0 from Schwartz inequality. On the left hand side of Eq. (5.57), the ∝ ∆
(2)
A−

term describes nonlinear frequency shift only, while the contribution ∝ χ
(2)
A− accounts for processes involving resonant

wave-particle interactions due to low-frequency nonlinear thermal ion response to Ω0 and Ω− KAW modes. Therefore,
this process involves spectral transfer of fluctuation energy towards the low-frequency region and is generally referred
to as nonlinear ion Compton scattering (Sagdeev and Galeev, 1969). Meanwhile, the non-resonant scatterings of Ω0

off the fluctuations due to the Ωs mode are described by the right hand side, which, thus, accounts for shielded-ion
scatterings. Ignoring nonlinear frequency shift and keeping terms relevant to the stability analysis, the resultant
parametric dispersion relation becomes

ǫsK

(
ǫAK− + χ

(2)
A−

)
= Ck |Φ0|2 . (5.63)

The nonlinear ion Compton scatterings term ∝ χ
(2)
A− in Eq. (5.63), as will be discussed below, is absent in the

previous drift-kinetic analysis (Hasegawa and Chen, 1975, 1976). This can be understood, since |G| ∼ O(k4⊥ρ
4
i ) for

|k⊥ρi| ≪ 1 and the drift-kinetic analysis formally keeps only O(k2⊥ρ
2
i ) terms. Meanwhile, for |k⊥ρi| ≪ 1, H ≃

τ(b0 + b− + τb0b− − bs) and the drift-kinetic results are nicely recovered.
For Te>∼ 5Ti, both Ωs and Ω− are weakly damped normal modes, and Eq. (5.63) yields the following resonant-decay

dispersion relation

(γ + γdA−) (γ + γds) = (λH |Φ0|)2
[
−∂ǫsKr
∂ωsr

∂ǫAK−r

∂ωA−r

]−1

, (5.64)

where γ is the parametric growth rate, γdA− and γds are, respectively, the linear damping rates of the KAW side-
band and ion sound waves, and ωA−r and ωsr are, meanwhile, the corresponding normal mode frequencies; i.e.,
ǫAK−r(ωA−r) = 0 and ǫsKr(ωsr) = 0, −∂ǫAK−r/∂ωA−r ≃ 2(1− Γ−)/(ω0rb−) and ∂ǫsKr/∂ωsr ≃ 2σs/ωsr. Note that,
similar to Sec. V.B.1 analysis for SAW, KAW parametric decay instability requires ω0rωs > 0, i.e. −ω0r < ωA−r < 0,
having chosen ω0r > 0 without loss of generality.
For Te ∼ Ti, Ωs becomes a quasi mode; while Ω− ≃ −ΩA ≡ −(ωA,kA) remains a KAW normal mode. The growth

rate of the parametric decay instability is then given by

(γ + γdA−)

(
−∂ǫAK−r

∂ωA−r

)
= Im

[
χ
(2)
A− − Ck

ǫsK
|Φ0|2

]

= |λΦ0|2
[
G/Γs +H2/|ǫsK |2

]
ImǫsK , (5.65)

where, again, G ≥ 0,

ImǫsK = τΓsIm [ξsZs(ξs)] , (5.66)

and ξs = (ω0 − ωAr) /|k‖0 − k‖A|vti. In Eq. (5.65), the G and H2 terms correspond, respectively, to the nonlinear ion
Compton and shielded-ion scatterings. Note that for |k⊥ρi| ∼ O(1), G ∼ H2 ∼ |ǫsK |, the two scattering processes
are additive and have comparable magnitudes. Same as in previous studies (Hasegawa and Chen, 1976; Sagdeev
and Galeev, 1969), Eq. (5.66) indicates that the scattering is maximized when k‖0k‖A < 0; i.e., backscattered KAW
daughter wave (since ω0rωAr > 0), and γ > 0 requires ξs > 0; i.e., ω0 > ωAr, or the parametric decay process leads
to cascading in KAW frequencies. Note also that, while for |k⊥ρi| ≪ 1 γ increases with |k⊥|, it decreases as |k⊥ρi|−1

for |k⊥ρi| ≫ 1; and, thus, the decay processes tend to maximize around |k⊥ρi| ∼ O(1).
It is illuminating to compare the present gyrokinetic with the MHD results, derived in Sec. V.B.1. In fact, if in

Eq. (5.63)

Ck = (Ωi/ω0)
2(τb0/σ−)H

2 sin2 θc (5.67)

is replaced by

CI = [τb0/(γe + γiTi/Te)] cos
2 θc , (5.68)

one readily recovers Eq. (5.26) in the MHD limit. For k⊥ρi ∼ O(1), H ∼ O(1) and |Ck|/|CI | ∼ O(Ω2
i /ω

2
0) ≫ 1. In

fact, for |k⊥ρi| < 1, σ− ≃ 1, H ∼ k2⊥ρ
2
i τ and |Ck|/|CI | ∼ (Ωi/ω0)

2(k⊥ρi)
4; that is, consistent with general discussions
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of Sec. II.C on relative roles of various nonlinear interactions and with arguments leading toward Eq. (5.36), the kinetic
process dominates for k2⊥ρ

2
i > |ω0/Ωi| ∼ 10−2, typically. Thus, while the ideal MHD theory holds for k2⊥ρ

2
i ≪ 1 in

the linear physics description, it breaks down much earlier in nonlinear physics applications. Furthermore, Ck and CI
peak, respectively, at θc = π/2 and θc = 0. Thus, while the ideal MHD results predict KAWs are excited with k−⊥

parallel to the pump k0⊥, the kinetic excitation process shows that k−⊥ is predominantly perpendicular to k0⊥. This
difference has significant qualitative implications to plasma transport induced by KAWs. More specifically, let the
pump KAW be excited via resonant mode conversion and, thus, k0⊥ ≃ k0rr, with r being unit vector in the radial
direction. Ideal MHD theory would predict the KAW spectrum peaks along kr with little kθ components in the b× r

direction and, hence, little radial transports. On the other hand, the kinetic theory would predict KAW spectrum
with significant kθ components and, hence, significant radial plasma transports.
These findings, based on fundamental nonlinear dynamics properties, question the applicability of MHD based

theories for realistic comparisons with experimental measurements and observations of Alfvénic fluctuation spectra
and related transports even more severely than those stemming from accurate linear physics descriptions, e.g., the
original theoretical analyses of kinetic ballooning modes (KBM) in laboratory (Tang et al., 1980) and space plasmas
(Cheng and Lui, 1998).

3. Nonlinear excitation of convective cells by Kinetic Alfvén Waves

Zonal structures such as zonal flows are known to play crucial roles in dynamically regulating plasma transport in
tokamak plasmas. The analogues in uniform plasma are the convective cells, which have been extensively studied in
the 1970’s (Chu et al., 1978; Lin et al., 1978; Okuda and Dawson, 1973; Taylor and McNamara, 1971) in the context
of cross-field transport (Shukla et al., 1984), especially with regard to potential applications to space plasmas. In
particular, it is worthwhile mentioning the extensive studies of convective cells excitation by kinetic Alfvén waves
(KAW) in the context of generation of turbulence flows in the upper ionosphere (Sagdeev et al., 1978a,b).
As can be anticipated from previous discussions on the Alfvénic state, since the shear Alfvén waves (SAW) par-

ticipating in the nonlinear generation of zonal structures are co-propagating along B0, nontrivial finite nonlinear
couplings have long been known to rely on deviations from the ideal MHD approximations. Nonetheless, previous
theoretical analyses often rely on two limiting assumptions: (i) neglecting the finite ion Larmor radius (FLR) cor-
rections to the Reynolds stress; (ii) decoupling between the electrostatic (ESCC, described by δφz only) and the
magnetostatic (MSCC, described by δA‖z only) convective cells. Both assumptions, as will be shown, could lead to
erroneous conclusions on the spontaneous excitation of convective cells by KAW22. The details of the analysis are
complicated and, in the following, we simply demonstrate that one needs to employ the nonlinear gyrokinetic equation
in order to properly account for the the finite non-ideal effects.
Let Ω0 = (ω0,k0) be the pump KAW, Ωz = (ωz,kz) be the zonal mode, and Ω+ = (ω+,k+) and Ω− = (ω−,k−)

be the, respectively, upper and lower sideband KAW. Here, we note that |ωz| ≃ 0, kz · b = 0, and ω± = ωz ± ω0,
k± = kz ± k0. We also assume kz ⊥ k0⊥, which maximizes the nonlinear coupling. Let us first consider how the
zonal mode is generated by the KAWs. The vorticity equation, Eq. (5.10), for the Ωz mode is given by

∇⊥ · δjz⊥ = 0,

or

− iωz
c2

B2
0

̺m0k
2
zδφz = −〈∇⊥ · δj(2)⊥ 〉z ; (5.69)

where, in terms of Fourier modes δφk and δψk ≡ (k‖c/ωk)δA‖k, Eq. (5.15) becomes (Chen and Zonca, 2013)

〈∇ · δj(2)⊥ 〉z =− 1

2

(
c

B0

)3

̺m0

∑

k′+k′′=kz

Λk
′′

k′ (k
′′2
⊥ − k′2⊥)

·
[
Gk′Gk′′δφk′δφk′′ −

(
k′‖vA

ωk′

)(
k′′‖vA

ωk′′

)
δψk′δψk′′

]
;

(5.70)

22 See, e.g., the recent analysis and summary of previous literatures on this topic given by (Zhao et al., 2011).
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Λk
′′

k′ = (k′
⊥ × k′′

⊥) · b was defined in Sec. V.B.2 and in the Reynolds stress, Eq. (5.7), we have let

δu⊥k = i
c

B0
(b× k⊥)Gkδφk, (5.71)

with Gk accounting for the ion FLR effects (Chen and Zonca, 2013). In the small bk limit, Gk′Gk′′ ≃ 1− (3/4)(bk′ +
bk′′) − bz, having used the notations of Sec. V.B.2. Equation (5.70) provides the following illuminating perspectives
in the long-wavelength (|k⊥ρi|, |k⊥ρs| → 0+) limit. First, we have Gk → 1, and the δE‖k → 0 for KAW, such that
δφk = δψk. Meanwhile, |ωk| → |k‖vA|. The same limiting behaviors apply for KAW pump and sideband modes.
Now with k′′‖ = kz‖ − k′‖, kz‖ = 0, ωk′′ = ωz − ωk′ and |ωz| ≪ |ωk|, we have k′′

‖ = −k′
‖ and ωk′′ ≃ −ωk′ ; and thus,

〈∇ · δj(2)⊥ 〉z → 0 in this limit. This, in fact, can be expected since, in the |k⊥ρi| → 0 limit, k′ and k′′ modes reduce
to co-propagating ideal MHD SAWs; which do not interact nonlinearly.
It is, therefore, clear that in order to nonlinearly generate δφz in uniform plasmas, one needs to introduce finite

|k⊥ρi| effects, which, in turn, induce finite 〈∇ · δj⊥〉z by modifying the various terms mentioned above. Previous
theoretical analyses have been focusing on effects of the finite δE‖ as well as deviations from the ideal MHD SAW
dispersion relation; while ignoring the k⊥ρi corrections to the Gk term. Since these finite corrections are of the
same order of magnitude as those correction terms kept perviously (except in the unrealistic Te ≫ Ti limit), the
corresponding results, as shown below, are often erroneous.
To properly take into account FLR corrections to the Reynolds stress, one needs to employ the nonlinear gyrokinetic

equation. Noting that, for the KAWs, we have ve ≫ |ωk/k‖| ≫ vi and |δψk| ∼ |δφk|; the gyrokinetic vorticity equation,
Eq. (5.41), for the scalar potential δφz then becomes, in the bk ≪ 1 limit and after some algebra,

−iωzbzδφz =
c

2B0
ρ2i

∑

k′+k′′=kz

Λk
′′

k′ (k
′′2
⊥ − k′2⊥)

·
{
δφk′δφk′′

[
1− 3

4
(bk′ + bk′′ )− bz

]
−
(
k′‖vA

ωk′

)(
k′′‖vA

ωk′′

)
δψk′δψk′′

}
,

(5.72)

where the bk terms inside the angle bracket may be regarded as the ion FLR corrections to Reynolds stress, as
mentioned above. Meanwhile, the equation governing the vector potential, δAz‖, can readily be derived from Eq. (2.30)
and is given by

δAz‖ = (i/2)
∑

k′+k′′=kz

Λk
′′

k′ (δAk′‖δAk′′‖/k
′
‖B0) . (5.73)

For the KAW sidebands, Ω+ and Ω−, we have, from the quasi-neutrality condition, Eq. (5.40), noting |ω/k‖| ≪ ve
and, again, bk ≪ 1,

(1 + τbk)δφk − δψk = −i(c/B0)Λ
k′′

kz (δφk′′/ωk)(δφz − δψz), (5.74)

where k = k±, k
′′ = ±k0, k = k′′ + kz , and δψz ≡ (ω0δAz‖/ck0‖). The corresponding gyrokinetic vorticity equation,

from Eq. (5.41), can be shown to become

k2⊥[(1− 3bk/4)δφk − (k2‖v
2
A/ω

2
k)δψk] = i(c/B0)Λ

k′′

kz · (k′′2⊥ − k2z)δφk′′ (δφz − δψz) . (5.75)

Combing Eqs. (5.74) and (5.75) then yields

ǫAKδφk = i(c/B0)Λ
k′′

kz [2b0/ωk(b0 + bz)]δφk′′ (δφz − δψz), (5.76)

where, consistent with Eq. (5.54),

ǫAK = 1− (3/4)bk − (k2‖v
2
A/ω

2
k)(1 + τbk) (5.77)

is the KAW linear dielectric constant in the bk ≪ 1 limit. Meanwhile, substituting Eqs. (5.74) and (5.75) into
Eq. (5.72) and neglecting higher-order nonlinearities, Eq. (5.72) reduces to

− ik2zωzδφz = −(c/B0)Λ
k′′

k′ δφk′δφk′′ (k
′′2
⊥ − k′2⊥)[(τ + 3/4)(b0 + bz)]. (5.78)

Equations (5.73), (5.76) and (5.78) are the desired set of equations for Ω+, Ω− and Ωz coupled via Ω0.
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To analyze the modulational stability properties of Ωz , we first note that Ω0 is a normal KAW mode and, thus,
ǫA0 = 0. Letting Ωz = iγz, we then have

ǫA± ≃ ±(2/ω0)(iγz ∓∆), (5.79)

where ∆ ≃ (ω0/2)(τ + 3/4)bz is the frequency mismatch between ω0 and the normal mode frequency of Ω+ and Ω−.
Substituting Eq. (5.76) along with Eq. (5.79) into Eq. (5.78) and noting that, on the right hand side of Eq. (5.78),
k′ = k− and k′′ = k0 as well as k′ = k+ and k′′ = −k0, we have

δφz = −αφ(δφz − δψz)/(γ
2
z +∆2), (5.80)

where

αφ =

∣∣∣∣
ckzk0⊥δφ0

B0

∣∣∣∣
2
2b0[(τ + 3/4)(b0 + bz) + bz]

b0 + bz
. (5.81)

Similarly, Eq. (5.73) reduces to

δψz = −αψ(δφz − δψz)/(γ
2
z +∆2), (5.82)

where

αψ =

∣∣∣∣
ckzk0⊥δφ0

B0

∣∣∣∣
2
b0bz(τ + 3/4)

b0 + bz
. (5.83)

Equations (5.80) and (5.83) then yields the following dispersion relation for the modulational excitation of the Ωz
zonal mode

1 = −(αφ − αψ)/(γ
2
z +∆2) . (5.84)

Note that αφ − αψ > 0. Hence, γ2z = −ω2
z < 0 and, KAW can not spontaneously excite convective cells or zonal

structures in the bk ≪ 1 limit; regardless of the τ = Te/Ti value (Chen and Zonca, 2013), consistent with some of
the recent results by (Zhao et al., 2011) and in contrast with the analysis of (Mikhailovskii et al., 2007; Onishchenko
et al., 2004; Pokhotelov et al., 2004).
Equations (5.80) and (5.82) are, respectively, the generating equations for ESCC and MSCC. Thus, it is readily

noted that they are excited by KAW simultaneously, as |δψz/δφz| = O(1). Artificially assuming that δψz is suppressed
yields the incorrect ESCC dispersion relation, Eq. (5.84) with αψ = 0, but still the correct qualitative conclusion that
ESCC are not spontaneously excited by KAW in the long wavelength limit. However, the analogous assumption that
δφz is suppressed delivers the erroneous MSCC dispersion relation, Eq. (5.84) with αφ = 0, as well as erroneous claim
that MSCC can be spontaneously excited by KAW for bk ≪ 1 [cf., e.g., the recent discussions given by (Zhao et al.,
2011)].

C. Nonlinear mode-coupling of shear Alfvén waves in toroidal plasmas

In this section, we illustrate how equilibrium geometry and plasma nonuniformity can contribute to breaking the
Alfvénic state (cf. Sec. V). As counterpart of the process by which a “pump” shear Alfvén wave (SAW) can excite
a lower frequency “daughter” SAW via nonlinear Landau damping in a uniform plasma (cf. Sec. V.B.1), Sec. V.C.1
discusses Toroidal Alfvén Eigenmode (TAE) frequency cascading (Hahm and Chen, 1995). Similarly, Sec. V.C.2
addresses the generation of zonal structures by finite amplitude TAE (Chen and Zonca, 2012; Spong et al., 1994; Todo
et al., 2010) as toroidal geometry analogue of the generation of convective cells by KAW, considered in Sec. V.B.3.
Particular emphasis is given on the importance of spontaneous vs. forced generation of zonal structures (Chen
and Zonca, 2012), given their potentially important self-regulatory roles on Alfvénic oscillations and, more broadly
speaking, on drift Alfvén turbulence.
As geometry effects importantly affect the SAW continuous spectrum (cf. Sec. IV), Sec. V.C.3 discusses the

AE nonlinear interplay with the SAW continuum and describes the mechanism by which this may yield enhanced
continuum damping (Chen et al., 1998; Vlad et al., 1992; Zonca et al., 1995). Finite amplitude MHD activity can
also yield to deformation of the SAW continuum (Biancalani et al., 2010a,b, 2011), as illustrated in Sec. V.C.4. In
this case, however, due to a quasi-static helical deformation of the axisymmetric tokamak equilibrium, this effect
may be destabilizing for beta induced AEs (BAEs) (Biancalani et al., 2010a,b, 2011; Marchenko and Reznik, 2009).
Within the general theoretical framework of Sec. V.A, Secs. V.C.3 and V.C.4 may be viewed as examples of how the
renormalization of the general plasma inertia response, represented by the ∝ ΛNLn term in Eq. (5.1), can be computed.
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1. Toroidal Alfvén Eigenmode frequency cascading via nonlinear ion Landau damping

First, we recall that, in uniform plasmas (Sec. V.B), a pump SAW can parametrically excite a daughter SAW
with a lower frequency and opposite parallel phase velocity via nonlinear ion Landau damping. (Hahm and Chen,
1995) applied this frequency cascading mechanism to the nonlinear saturation of TAE with high-n toroidal mode
numbers. Noting that, due to realistic equilibrium profile variations, there, in general, exists O(nqa) TAEs with the
same toroidal mode number n. Here, qa is the safety factor at the outmost flux surface. Thus, for |nqa| ≫ 1/ǫ = R0/r,
many TAEs with different mode frequencies may exist within the frequency gaps.
Following (Hahm and Chen, 1995) or, equivalently, the uniform plasma analysis (Sec. V.B), let the k′ be the pump

wave, k be the decay wave, and k′′ = k−k′ be the sound wave, and applying the parametric decay dispersion relation,
Eq. (5.34), to the wave intensity Ik = |∇⊥φk|2, where (...) denotes appropriate averaging of (...) over the radial TAE
mode structure, we can readily obtain the following wave-kinetic equation

∂

∂t
Ik = γL(k)Ik −

∑

k′

Mk,k′Ik′Ik, (5.85)

where

Mk,k′ =
ω′

2

Imχis
|ǫsk|2

mi

B2
0

≡ ω′Vs, (5.86)

χis and ǫsk are defined by, respectively, Eqs. (5.29) and (5.31), with ωsr = ω−ω′ and ks‖ = k‖−k′‖, and we have summed

over all the k′ pump modes. NowMk,k′ has a maximum frequency interaction width |ω−ω′| ≃ |2k′‖vti| ∼ vti/qR0 and,

thus, if the adjacent TAE’s frequency difference, |∆ω| ∼ |vA/(nq2R0)|, is smaller than vti/(qR0) or β
1/2 ≫ |1/(nq)|,

we can replace the sum over k′ by an integral over ω′; that is, Eq. (5.85) becomes approximately

∂

∂t
I(ω) = γL(ω)I(ω)− I(ω)

∫ ωM

ω

dω′I(ω′)ω′Vs(ω − ω′). (5.87)

Here, ωM ≃ ωu, the upper TAE gap accumulation point frequency, corresponds to the highest frequency of linearly
unstable TAEs. Noting that I(ω) has a frequency width typically of the order of the frequency gap, ∼ ǫvA/(qR0), and
Vs(ω

′′ = ω − ω′) being an odd function in ω′′ with an interacting width ∼ vti/(qR0), we can perform an expansion

about ω′ = ω + ω′ − ω, assuming ǫvA/(qR0) > vti/(qR0) or ǫ > β
1/2
i , and render Eq. (5.87) into the following

differential equation

∂

∂t
I(ω) = γL(ω)I(ω) + I(ω)U1(ω)

∂

∂ω
(ωI), (5.88)

where (Hahm and Chen, 1995)

U1(ω) =

∫ ω−ω1

ωM−ω

(ω − ω′)Vs(ω − ω′)dω′ ≃
∫ ∞

−∞

ω′′Vs(ω
′′)dω′′

=
π

2
[(1 + τ)B0qR0]

−2 ≡ U1.

(5.89)

Here, the standard notation τ ≡ Te/Ti was used and ω1 ≈ ωℓ, the lower TAE gap accumulation point frequency,
corresponds to the low-frequency end of I(ω). Note that γL(ω1) < 0 and, I(ω1) ≃ 0. At saturation, ∂I/∂t = 0;
Eq. (5.88) then yields

I(ω) ≃ (1/ω)

∫ ωM

ω

[γL(ω
′)/U1]dω

′. (5.90)

Here, noting that the spectral transfer of the wave energy is toward the lower frequency, we have let I(ω) ≈ 0 at the
highest frequency end, ωM ; i.e., I(ω) tends to peak away from ωM . The corresponding overall magnetic fluctuation
level, recalling that for SAWs |δBr/B0| ≃ |ckθδφ/B0vA|, is then given by

∣∣∣∣
δBr
B0

∣∣∣∣
2

≃
(
kθ
kr

)2

(1 + τ)2
2/π

ω2
A

∫ ωM

ω1

γL(ω)ln

(
ω

ω1

)
, (5.91)
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where ωA = vA/(qR0). Expanding ω = ω1 + (ω − ω1), Eq. (5.91) gives the following rough estimate

∣∣∣∣
δBr
B0

∣∣∣∣
2

∼ 1

2π
(1 + τ)2

(
γL
ωA

)
ǫ2ǫ2eff , (5.92)

with ǫeff = 1 − ω1/ωM , γ̄L a typical value of γL(ω) and having noted |kθ/kr| ∼ ǫ. Quantitatively, with the estimate
|γL/ωA|<∼ O(10−2), ǫeff ∼ ǫ ∼ 10−1, and τ<∼ 1, Eq. (5.92) yields a saturation amplitude at |δBr/B0|<∼ 10−3.

2. Nonlinear excitation of zonal structures by Toroidal Alfvén Eigenmodes

Zonal flows or, more generally, zonal structures are known to play important self-regulatory roles in the dynamics
of microscopic drift-wave type turbulences. Since zonal structures are predominantly only radially varying, the self
regulation is achieved via spontaneous excitations of modulational instabilities, and, consequently, the damping of
the driving instabilities via scatterings to the short-radial wavelength stable domain (Chen et al., 2000). However,
while zonal electric fields and corresponding zonal flows are widely measured in experiments with properties that are
consistent with the general theoretical framework (Diamond et al., 2005), zonal magnetic fields and currents, predicted
theoretically (Chen et al., 2001; Diamond et al., 2005; Gruzinov et al., 2002; Guzdar et al., 2001b), have been only
recently observed in experiments in the compact helical system (CHS) (Fujisawa et al., 2007).
As TAE plays crucial roles in the SAW instabilities in burning fusion plasmas, it is, thus, important to understand

and assess the possible roles of zonal structures on the nonlinear dynamics of TAE. First numerical analyses of this
problem were reported by (Spong et al., 1994). More recently, numerical simulation results by (Todo et al., 2010)
showed that zonal structures may be forced-driven by finite amplitude TAE, while the importance of spontaneous vs.
forced generation of zonal structures has been emphasized by (Chen and Zonca, 2012) (cf. Sec.V).
We shall follow the theoretical approach of (Chen et al., 2000) as well as (Chen et al., 2001); which is also adopted

in Sec. V.B for our treatment of convective cells generated by kinetic Alfvén waves (KAWs) in uniform plasmas. Thus,
adopting the field variables, δφ and δA‖, we shall consider the nonlinear couplings among the pump TAE, Ω0, the
upper and lower sideband TAEs, Ω+ and Ω−, and the zonal mode Ωz. We then have, for example, δφ = δφA + δφz
and δφA = δφ0 + δφ+ + δφ−.
Assuming |k⊥ρi|2 ∼ |kzρs|2 < ǫ = r0/R0 < 1, we can then adopt the ideal MHD approximation and obtain, from

the vorticity equation of the Ωz mode, Eq. (5.72),

− iωzχizδφz = − c

B0
kzkθk

2
zρ

2
i

〈(
1−

k20‖v
2
A

ω2
0

)〉

x

(A∗
0A+ −A0A−); (5.93)

where χiz ≃ 1.6q2ǫ−1/2k2zρ
2
i corresponds to the magnetically trapped-ion enhanced polarizability (Rosenbluth and

Hinton, 1998), k‖ = (x − j)/qR0, 〈...〉x ≡
∫
dx|Φ0|2(...), 〈1〉x = 1, Φ0(x − j) = δφn0(r;nq −m) describes the radial

dependence of the mth poloidal harmonics, and A0 and A± are, respectively, amplitudes of the pump and sidebands.
Noting that |Φ0|2(x) is localized at and even23 with respect to |x| = 1/2 with a width ∆x ∼ O(ǫ), Eq. (5.93) becomes

− iωzχizδφz = −(c/B0)kzkθk
2
zρ

2
i (1− ω2

A/4ω
2
0)(A

∗
0A+ −A0A−) , (5.94)

where ωA = vA/(qR0). δAz‖ or δψz ≡ ω0δAz‖/ck0‖, meanwhile, is given by the weighted averaging 〈...〉x of Eq. (5.73),

δψz = i(ckzkθ/ω0B0)(A
∗
0A+ +A0A−). (5.95)

Including the nonlinear correction to ideal MHD Ohm’s law, the nonlinear vorticity equations for the Ω± sidebands
can be rendered into a set of differential-difference equations (Chen and Zonca, 2012); which, after weighted averaging,
yields

A±ǫA±b± = −2i
c

B0
kθkzω0b0

(
A0

A∗
0

)
(δφ− δψ)z , (5.96)

23 This is strictly valid for TAEs near SAW continuum accumulation points. As shown in Sec. IV.B.3, however, TAE mode structures have
generally mixed parity. Here, we strictly follow (Chen and Zonca, 2012) and, for simplicity, assume |Φ0|2(x) is even, noting that the
present analysis is readily generalized to mixed parity modes.
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where b0 = ρ2i 〈|∇0Φ0|2〉x, b+ = ρ2i 〈|∇+Φ0|2〉 = b0 + bz, bz = k2zρ
2
i and b− = b+. Meanwhile,

ǫA± =

(
ω4
A

ǫ0ω2
ΛT0(ω)D0(ω, kz)

)

ω=ω±

, (5.97)

with ǫ0 = 2(r/R0 + ∆′), D0(ω, kz) = −2Γ−D(ω, kz) and D(ω, kz) the TAE dispersion function consistent with

Eq. (4.34) in the notations introduced in Sec. IV.B.3. Meanwhile, ΛT0 = −2Γ−ΛT = (−Γ+Γ−)
1/2

, consistent with
Eq. (4.91)24. Solutions of D0(ω, kz) = 0 are ω = ±ωT (kz), with the pump TAE frequency given by ω0 = ωT (kz = 0).
In the light of the general discussions of Sec. V.A and of Eq. (5.97), Eq. (5.96) can be considered as the implicit
definition of ∝ ΛNLn term in Eq. (5.1), showing that the effect of zonal structures on TAE nonlinear dynamics results
in a renormalization of the (sideband) inertia. This is more generally the case also for other types of AEs (cf. also
discussions in Sec. V.D.7).
Combing Eq. (5.96) with Eqs. (5.94) and (5.95) and letting −iωz = γz yield

δφz = 2i

(
c

B0
kθkz

)2
bz
χiz

(
1− ω2

A

4ω2
0

)
ω0b0
γzb+

|A0|2
(

1

ǫA+
− 1

ǫA−

)
(δφ − δψ)z, (5.98)

and

δψz = 2

(
c

B0
kθkz

)2
b0
b+

|A0|2
(

1

ǫA+
+

1

ǫA−

)
(δφ− δψ)z . (5.99)

Noting that D0(ω±, kz) = ±(∂D0/∂ω0)(iγz ∓∆T ), with ∆T ≡ ωT (kz)− ω0, Eqs. (5.98) and (5.99) further reduce to,
in analogy with Eqs. (5.80) and (5.82),

δφz = 2

(
c

B0
kθkz |A0|

)2 (
ω2
0

ω2
A

− 1

4

)(
bz
χiz

)
b0
b+

ǫ0
ΛT0(ω0)

2ω0/ω
2
A

∂D0/∂ω0

(δφ− δψ)z
γ2z +∆2

T

≡ −αφT
(δφ− δψ)z
γ2z +∆2

T

,

(5.100)

and

δψz = −2

(
c

B0
kθkz |A0|

)2(
b0
b+

)(
∆T

ω0

)
ǫ0ω

2
0/ω

2
A

ΛT0(ω0)

2ω0/ω
2
A

∂D0/∂ω0

(δφ− δψ)z
γ2z +∆2

T

≡ −αψT
(δφ − δψ)z
γ2z +∆2

T

.

(5.101)

Equations (5.100) and (5.101) then yield the following desired dispersion relation

γ2z = αψT − αφT −∆2
T ; (5.102)

i.e., instability will set in when

(
c

B0ω0
kθkz|A0|

)2
b0
b+

ǫ0ω
2
0/ω

2
A

ΛT0(ω0)

4ω0/ω
2
A

∂D0/∂ω0

[
∆T

ω0
+

bz
χiz

(
1− ω2

A

4ω2
0

)]
>

(
∆T

ω0

)2

(5.103)

Note that, typically, |∆T /ω0| ∼ O(ǫ0) and |bz(1 − 1/4ω2
0)/χiz| ∼ O(ǫ

3/2
0 /q2). Meanwhile, we typically have

ω0(∂D0/∂ω0) > 0 (Chen and Zonca, 2012). Thus, Eq. (5.103) becomes approximately

∆T /ω0 > 0, (5.104)

and
(

c

B0ω0
kθkz|A0|

)2
b0
b+

ǫ0ω
2
0/ω

2
A

ΛT0(ω0)

4ω0/ω
2
A

∂D0/∂ω0
>

∆T

ω0
. (5.105)

24 Here, for simplicity, we adopt the notations of (Chen and Zonca, 2012) and use D0 and ΛT0, symmetric with respect to lower and upper
continuum accumulation points, rather than D and ΛT .
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This inequality essentially determines the condition for the spontaneous excitation of the zonal field δψz, given by
Eq. (5.101), which dominates over the usual zonal flow δφz because of the enhanced magnetic trapped-ion polariz-
ability. The sign of ∆T /ω0 depends on the specific equilibria and plasma parameters, and must be computed for
individual cases. For the case of nearly circular plasmas with monotonic q profiles, ∆T /ω0 < 0 (Zonca, 1993a; Zonca
and Chen, 1993), so that Eq. (5.104) is violated. However, Eq. (5.103) can still be satisfied for mode frequencies
in the upper TAE gap, ω2

0 > ω2
A/4, and small |∆T /ω0|, with δφz dominating over δψz . Note that, especially when

strongly driven by energetic particles (EPs), TAE modes tend to be characterized by ω2
0 < ω2

A/4. This is a plausible
explanation for the numerical simulation results by (Todo et al., 2010), where the zonal structure response to TAE is
found to be forced driven rather than spontaneously excited (cf. also Secs. V.C.3 and V.D.4).
In order to give a quantitative estimate for the onset condition of the modulational instability, Eq. (5.103), we recall

that TAE linear stability analysis (cf. Sec. IV.B.3) yields

ǫ0ω
2
0/ω

2
A

ΛT0(ω0)

4ω0/ω
2
A

∂D0/∂ω0
∼ 1 .

Thus, considering bz<∼ k2θρ
2
i ∼ ǫ0b0 and 2qR0k‖0 ≃ 1, the threshold condition for spontaneous excitation of the most

unstable zonal mode with b0 ∼ ǫ0 becomes

(
c

B0ω0
kθkz|A0|

)2

∼
∣∣∣∣
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ω0

∣∣∣∣ ∼ ǫ0
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k2θρ

2
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∼ bz
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, ⇔
∣∣∣∣
δBr
B0
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2

th

∼ ρ2i
4ǫ0q2R2

0

. (5.106)

For some typical tokamak parameters, this estimate yields |δBr/B0|2th ∼ O(10−8), suggesting that spontaneous
excitation of zonal structures may be a process effectively competing with other nonlinear dynamics in determining
the saturation level of TAE and other AE modes; if constraints specified below Eq. (5.105) can be satisfied.
Coherent nonlinear interactions of AE and zonal structures that, if spontaneously excited, may play important self-

regulatory roles in AE nonlinear dynamics, can generally influence fine structures of the AE frequency spectrum. These
features in experimental observations [cf., e.g., (Fasoli et al., 1998) and the recent review by (Breizman and Sharapov,
2011)], are generally interpreted as evidence of modulation interactions due to wave-particle nonlinear dynamics (cf.
Sec. V.D.3). In principle, it should be possible to discriminate these different underlying physics processes on the
basis, e.g., of the different scaling of the frequency splitting with the “pump AE” amplitude, predicted by Eq. (5.102)
in the modulation interactions of TAE and zonal structures25.

3. Toroidal Alfvén Eigenmode saturation via nonlinear modification of local continuum

Since the difference between TAE frequency and the lower or upper SAW continuum accumulation frequencies
is relatively small, |∆ω|<∼ (ǫvA/qR0) with ǫ ≡ r/R0, an efficient nonlinear saturation mechanism is via nonlinear
modification of the local SAW continuum structures, such that the frequency difference ∆ω vanishes, due to the cor-
responding nonlinear frequency shift. Within the general theoretical framework of Sec. V.A, this process is accounted
for by the ∝ ΛNLn term in Eq. (5.1). As the TAE frequency gap is due to the coupling of (m ± 1, n) and (m,n)
modes (cf. Sec. IV.B.3), the contribution to ΛNLn may be produced by (m = ±1, n = 0) components of δE × b flow
and δB⊥ field line bending, rather than by the generation of zonal structures, discussed in Sec. V.C.2. So far, two
such mechanisms have been proposed. One depends on the nonlinear modification in the magnetic surface structure
(Zonca et al., 1995) and the other depends on the nonlinear modification in the density structures (Chen et al., 1998).
Although of different underlying nature, these two processes are described by essentially the same nonlinear equations.
Therefore, we will discuss in some details only the former, referring the reader to the original work for the latter.
In general, mechanisms for nonlinear modification of the local SAW continuum structures at short radial scales,

mentioned above, yield mode saturation above a critical amplitude threshold because of the appearance of fine scales
in the mode structure; i.e., of enhanced mode damping in the presence of finite dissipation. This phenomenon may
be physically interpreted as mode conversion to short scale damped oscillations, produced by the TAE modes due
to the nonlinear SAW continuum distortion. Note, here, that this mechanism is different from that discussed more
recently by (Todo et al., 2010, 2012a,b), which is connected with power transfer to nonlinear driven oscillations, which
are damped possibly through the fine structures connected with resonant excitation of higher toroidal mode number

25 It is worthwhile noting that modulation interactions of Alfvénic fluctuations are expected in more strongly driven cases (Zonca et al.,
2000), such as for energetic particle modes, as discussed in Sec. V.D.6.
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continuous spectra (cf. also Sec. V.D.4). For this last particular aspect, we show below that the local interaction with
the higher toroidal mode number SAW continuum is typically smaller than the local interaction with the nonlinearly
modified SAW continuum itself.
Let us consider a the local TAE structure that consists of toroidal mode number n and poloidal mode numbers m

and m+1, with given frequency ω0. The dominant nonlinear interactions among these Fourier harmonics yield a low
frequency fluctuation with (m = 1, n = 0) and (2m + 1, 2n) driven component at 2ω0, which are readily expressed
as (Vlad et al., 1992, 1995a, 1999; Zonca et al., 1995):

δφ1,0 = − ckθ0
ω0B0

∂

∂r

(
δφ∗m,nδφm+1,n

)
,

δA‖1,0 =
c2kθ0
ω0B0vA

(
δφ∗m,n

∂

∂r
δφm+1,n − δφm+1,n

∂

∂r
δφ∗m,n

)
; (5.107)

∂
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δφm,n
∂2

∂r2
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)
,

δA‖2m+1,2n = − c2kθ0
ω0B0vA

(
δφm+1,n

∂

∂r
δφm,n − δφm,n

∂

∂r
δφm+1,n

)
. (5.108)

These equations are readily derived from Eqs. (2.35) and (2.37), neglecting thermal ion compressions and EP con-
tribution in the narrow radial layer where the coupling of two neighboring poloidal Fourier harmonics yields the
formation of the TAE frequency gap in the SAW continuum (cf. Sec. IV.B.3). Furthermore, we have assumed |n| ≫ 1
for simplicity and defined kθ0 = −m/r0, with r0 the radial position of the considered local TAE frequency gap. In
particular, in Eq. (5.107), we have also neglected the effect of thermal ion Landau damping, considering a very narrow
TAE spectrum centered at ω0. The effect of ion Landau damping may become important for a broader TAE frequency
spectrum, e.g., taking into account different radial states of the same n (cf. Sec. IV); and can be readily included in
the present analysis following the derivations of Sec. V.B. It is also worthwhile noting that, due to toroidal geometry,
(2m, 2n) and (2m+2, 2n) Fourier modes are nonlinearly driven at 2ω0 in addition to the (2m+1, 2n) harmonic given
by Eq. (5.108). These modes, may locally interact with the SAW continuum, since the frequency gap at ≃ vA/(qR0)
is very narrow for toroidal equilibria with circular flux surfaces (Zheng and Chen, 1998a,b). In this case, the effect
of the local coupling of the 2n nonlinear mode to the SAW continuum can be quite significant and can importantly
contribute to the saturation of the “pump” TAE mode (Todo et al., 2012b). More generally, however, the (2m, 2n)
and (2m+ 2, 2n) Fourier modes at 2ω0 do not locally interact with the SAW continuum, due to the prevailing effect
of magnetic flux surface ellipticity in determining the frequency gap in the SAW continuum at ≃ vA/(qR0) (Betti and
Freidberg, 1991). Therefore, in the typical case of elongated plasmas, the effect of (2m, 2n) and (2m+ 2, 2n) Fourier
modes results into a nonlinear frequency shift that is O(ǫ) smaller than that due to the (2m+ 1, 2n) harmonic given
in Eq. (5.108), which is the reason why this effect was originally neglected in (Vlad et al., 1992, 1995a; Zonca et al.,
1995).
Adopting the general notation of Eq. (4.26) for the fluctuating fields structure, it is convenient to introduce the

definitions

U = 8
√
2mqs

(
R0

r0

)(
βbs
ǫ30

)1/2
e

Te + Ti
δφ0n(r;nq −m) ,

V = 8
√
2mqs

(
R0

r0

)(
βbs
ǫ30

)1/2
e

Te + Ti
δφ0n(r;nq −m− 1) , (5.109)

where bs = k2θ0(Te + Ti)/(miΩ
2
i ) and other symbols are consistent with the definitions of Sec. IV.B.3. Meanwhile,

the dimensionless time can be defined as τ ≡ ǫ0vAt/(4qR0), so that the corresponding dimensionless frequency is
normalized to the half width of the TAE frequency gap; whereas the corresponding normalization of the radial
coordinate is x ≡ (4/ǫ0)(nq − m − 1/2). The effect of the low frequency fluctuation with (m = 1, n = 0) and
(2m+1, 2n) driven component at 2ω0 back onto the “pump” TAE mode is readily obtained by direct substitution of
Eqs. (5.107) and (5.108) into the coupled vorticity equations for (m,n) and (m+1, n) modes near r0 (cf. Sec. IV.B.3).
In terms of the just introduced variables and fields, the final governing equations are

(i∂τ − x) ∂xU + ∂xV − ∂2x|V |2∂xU = Ā ,

(i∂τ + x) ∂xV + ∂xU − ∂2x|U |2∂xV = −Ā . (5.110)
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Here, Ā and B̄ (used below) are defined as

(
Ā
B̄

)
=

8√
π
mq

(
R0

r0

)(
βbs
ǫ30

)1/2
e

Te + Ti

(
A(0)
B(0)

)
, (5.111)

A(0) ≡ A(θ = 0) and B(0) ≡ B(θ = 0), given the canonical representation of the TAE fluctuation field as δΦ̂n =
A(θ) cos(θ/2)+B(θ) sin(θ/2) [cf. Eq. (4.29), as well as Sec. IV.B.3]. The local TAE dispersion relation in the form of
the GFLDR (cf. Secs. IV and V) is readily obtained from the solutions of Eq. (5.110) with the matching condition

∫ ∞

−∞

∂xUdx = −
∫ ∞

−∞

∂xV dx = −πB̄ . (5.112)

Since the ratio B̄/Ā depends only on δŴf in the absence of EPs (cf. Sec. IV.B.3), Eq. (5.112) describes the nonlinear
frequency shift with respect to ω0, produced by the finite TAE amplitude via the generation of the nonlinear fluc-
tuations of Eqs. (5.107) and (5.108). It is readily verified that, above a certain critical Ā = Āc(δŴf ), the solutions
of Eq. (5.110) start producing fine radial structures due to enhanced interaction with the local continuous spectrum.
The critical fluctuation level for this to occur can be estimated as

(
δBr
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)

c

∼ 1

8|s|mq
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ǫ
3/2
0 |U | ∼ 1

4|s|mq

(
r0
R0

)5/2

Āc(δŴf )<∼ 10−3Āc(δŴf ) . (5.113)

As Āc(δŴf ) ≪ 1 for some choice of plasma equilibrium profiles, (nonlinear) enhanced continuum damping may
effectively yield mode saturation.
Again, we note that the local SAW continuum may also be modified via nonlinear density changes (Chen et al.,

1998). The corresponding critical fluctuation level for enhanced continuum damping is given by

(
δBr
B0

)

c

∼
(
βǫ30
)1/2 Āc(δŴf )<∼ 10−2Āc(δŴf ) . (5.114)

As for Āc(δŴf ) in Eq. (5.113), Āc(δŴf ) may become very small in Eq. (5.114). However, the critical amplitude in
Eq. (5.114) is typically larger than that in Eq. (5.113). That is, the dominant mechanism for nonlinearly enhanced
continuum damping is expected to be due to the nonlinear modification in the magnetic surface structure and plasma
flow.

4. Alfvén Eigenmodes in the presence of a finite-size magnetic island

Theoretical analyses of Alfvénic fluctuations in the presence of a finite-size magnetic island were originally motivated
by the experimental observation of BAEs in FTU (Annibaldi et al., 2007), where they are excited without EP drive but
in the presence of a sufficiently large magnetic island (Buratti et al., 2005), as also reported in TEXTOR (Zimmermann
et al., 2005) and HL-2A (Chen et al., 2011b) (cf. Sec. IV.C).
Theoretically, the low-frequency magnetic island can be considered as cause of non-axisymmetric distortion of the

tokamak equilibrium, whose detailed analytical studies are given by (Biancalani et al., 2010a,b, 2011). This situation
has evident analogies with the formation of frequency gaps in the SAW continuous spectrum in helical devices [cf.,
e.g., (Kolesnichenko et al., 2011; Toi et al., 2011)]. Here, we will remark on a case of particular interest, when the
toroidal periodicity of the singular perturbations representing the SAW continuum is the same as that of the magnetic
island, assumed to have (m0, n0) poloidal/toroidal mode numbers. In this case, the SAW continuous spectrum is
qualitatively modified as in Fig. 4, where dashed blue and red lines represent, respectively, the SAW continuous
spectrum and BAE mode frequency, ωBAE0, in the reference axisymmetric tokamak equilibrium without magnetic
idland. Meanwhile, solid blue and red lines show, respectively, how SAW continuum and BAE frequency, ωBAE, are
modified by the magnetic island, with rsx1 and rsx2 denoting the inner and outer separatrix radii, and r0 the island
O-point position, where the axisymmetric tokamak equilibrium has safety factor q0 = m0/n0. The BAE frequency
upshift due to the finite size magnetic island can be written as

ωBAE = ωBAE0

[
1 +

n2
0s

2q20
4

W 2
isl

r20

ω2
A

ω2
BAE−CAP

]1/2
, (5.115)
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FIG. 4 Qualitative modification of the SAW continuum with the same toroidal mode number of a finite size magnetic island,
rsx1 and rsx2 denoting the inner and outer separatrix radii, and r0 the island O-point position [from original Fig. 5 of (Biancalani
et al., 2011)].

where Wisl stands for the magnetic island (half) width, ωBAE−CAP denotes the BAE continuum accumulation point
frequency defined as Λ2(ωBAE−CAP ) = 0 and ωA = vA/(q0R0), using the notations of Sec. IV.B.2. Equation (5.115)
has been successfully tested against FTU experimental observations for sufficiently small magnetic island width (Tuc-
cillo et al., 2011).

The actual physics determining the minimum threshold in magnetic island size above which BAE modes are excited
is not fully clarified. Two possible mechanism have been proposed so far: (i) the core plasma profiles, modified inside
the finite size magnetic island, along with the modified SAW continuum structures, may alter the stability properties
of BAE modes and eventually excite them even in the absence of EPs (Biancalani et al., 2011); (ii) the island-induced
modification of the thermal ion equilibrium distribution function (Smolyakov et al., 2007) may be sufficient to yield
a change in sign of ion Landau damping and cause mode excitation (Marchenko and Reznik, 2009).

D. Nonlinear wave-particle dynamics

As anticipated in the introduction to Sec. V, there are currently two paradigms for discussing nonlinear interactions
of Alfvénic fluctuations with supra-thermal particles in fusion plasmas (Chen and Zonca, 2013): the “bump-on-tail”
and the “fishbone” paradigms. It is possible to adopt the former one, with obvious advantages for complex dynamics
studies, provided that the system is sufficiently close to marginal stability. In particular, the nonlinear modification
of resonant EP orbits must be small compared with the characteristic fluctuation wavelength (Berk and Breizman,
1990b,c). Thus, this model can account only for local EP transports in the presence of an isolated resonance; i.e.,
unless the threshold is exceeded for the onset of stochasticity in the particle phase-space due to resonance overlap
(cf. Secs. VI.A and VII.A). The essential physics of the bump-on-tail paradigm are the same as those originally
introduced in the analysis of the temporal evolution of a small cold electron beam interacting with a plasma in a 1D
system (Al’tshul’ and Karpman, 1965, 1966; Mazitov, 1965; O’Neil, 1965; O’Neil et al., 1971); and are discussed in
Sec. V.D.1. There, we also give the self-consistent nonlinear solution for the low frequency beam distribution function
in the presence of a periodic fluctuation, as derived by (Al’tshul’ and Karpman, 1965, 1966). In fact, this is the
solution of the Dyson equation for a 1D uniform plasma, which is the starting point for its extension to nonuniform
systems (Zonca et al., 2005) and provides the theoretical basis for the construction of the fishbone paradigm later
on. The dynamics of the nonlinear beam-plasma system with sources and collisions are analyzed in Sec. V.D.2,
based on the original works by (Berk and Breizman, 1990a,b,c). These include steady-state and bursting behaviors
(periodic and chaotic) (Berk et al., 1996b, 1992a; Breizman et al., 1997, 1993), formation of hole/clump pairs in
the resonant particle phase space (Berk et al., 1999, 1997b; Breizman et al., 1997); and the existence of subcritical
states (Berk et al., 1999). Applications of the 1D bump-on-tail paradigm to AE experimental observations are
discussed in Sec. V.D.3, with notable examples being fine structures (frequency splitting) of AE spectral lines (Fasoli
et al., 1998) as well as AE adiabatic frequency chirping (Gryaznevich and Sharapov, 2006; Pinches et al., 2004a;
Vann et al., 2005). Section V.D.3 also addresses the assumptions underlying the 1D bump-on-tail paradigm and
analyzes its validity limits. In particular, the requirement that frequency chirping be an adiabatic process and that
EP dynamics be perturbative are not intrinsic to the model and can be actually overcome by numerical solution of
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the fully nonlinear beam-plasma system (Vann et al., 2007). What is left out of this paradigm model by definition
are equilibrium geometry and plasma nonuniformity effects, which importantly modify AE linear (cf. Sec. IV) and
nonlinear behaviors when EP excursions are of the order of the fluctuation wavelength, and may significantly affect
the threshold for the onset of stochastic EP transport in the presence of many modes [cf. also Secs. VI.A and VII.A].
One possible approximate method for analyzing finite AE mode width effects is based on perturbative treatment

of EPs and prescribed AE structures, which ultimately yields AE nonlinear dynamics in terms of time evolution of
wave amplitudes and phases (Chen and White, 1997). Numerical simulation results using this approach are presented
in Sec. V.D.4. In burning fusion plasmas, however, EP effects are generally non-perturbative and modify the plasma
dielectric response as well as the fluctuation structure and frequency. These behaviors are related with equilibrium
geometry and plasma nonuniformity effects via EP resonance conditions, Eqs. (4.50) and (4.51), which depend on EP
constants of motion; and via finite mode structures, set by plasma profiles and affecting wave-EP interactions. Unless
EP response is perturbative, the nonlinear mode dynamics becomes non-adiabatic when nonlinear EP excursions are
of the order of the fluctuation wavelength, since the plasma dielectric response undergoes an O(1) change in one
characteristic nonlinear time τNL ∼ γ−1

L . These issues are analyzed in Sec. V.D.5. First, with a comparison of the
finite wave-particle interaction length26 with the fluctuation wavelength (Zonca et al., 2005), yielding an estimate of
|γL/ω| for the transition from local redistributions to meso-scales EP transports and the corresponding shift from
the bump-on-tail to the fishbone paradigm. Then, these physics are demonstrated from the perspective of numerical
simulation results, which clarify the underlying nonlinear dynamics (Briguglio, 2012; Briguglio and Wang, 2013;
Briguglio et al., 1998; Wang et al., 2012; Zhang et al., 2012). At last, Sec. V.D.5 derives the general equations for
the nonlinear dynamics of phase-space ZS within the theoretical framework of Sec. V.A, yielding the generalization
of the Dyson equation introduced in Sec. V.D.1 (Al’tshul’ and Karpman, 1965, 1966) to nonuniform plasmas with
the addition of sources and collisions. This result is then used to demonstrate the unification of bump-on-tail and
fishbone paradigms.
In nonuniform plasmas, with the mode frequency set by the nonlinear dispersion relation, the nonlinear mode

evolution is dominated by resonant EPs whose phase is locked with the wave, since these maximize wave-EP power
exchange while, at the same time, are most efficiently displaced by the mode (Chen, 1999). Depending on the wave
dispersive properties, the mode can nonlinearly modify its structure to further enhance the wave-EP power exchange
by tapping the stronger free energy source (steeper spatial gradient regions) due to phase-locked resonant EPs.
Different modes, with their own dispersion relation, respond differently to the the non-adiabatic nonlinear change
of the EP distribution function. This is demonstrated in Sec. V.D.5 by comparing numerical simulation results for
nonlinear dynamics of beta induced AE (BAE) (Wang et al., 2012; Zhang et al., 2012) and radially localized energetic
particle mode (EPM) (Briguglio, 2012). When the mode can readily respond by readapting its frequency and/or
mode structure to the modified EP distribution, resonant EP radial motion is secular as long as wave-particle phase
locking is maintained, as theoretically predicted (White et al., 1983) and observed experimentally (Duong et al., 1993;
Heidbrink, 2008). This process, dubbed as “mode-particle pumping” in the original work by (White et al., 1983),
where it was introduced to explain EP losses due to fishbones in PDX (McGuire et al., 1983), describes nonlinear
dynamics of radially extended EPM (cf. Sec. V.D.6) and fishbones (cf. Sec. V.D.7), and is accompanied by fast
non-adiabatic frequency chirping, |ω̇|>∼ ω2

B with ωB the wave-particle trapping frequency for fixed ω, that suppresses
wave-particle trapping as shown in Sec. V.D.5. The ability to adapt and “follow” phase locked EPs is characteristic
of EPMs, of which fishbones are the first and one well-known example (Chen and Zonca, 2007a), and it is borne in
the mode dispersion relation. Section V.D.6, furthermore, discusses the radial modulation effects of the self-consistent
interplay of AE/EPM mode structures and EP transport, which are the analogue of the modulation interaction of
AE with ZS, discussed in Sec. V.C.2, extended to generally include wave-particle resonance effects in the case of
phase-space ZS. In general, modulation interactions of AE/EPM with (phase-space) ZS can influence fine features
of the AE/EPM frequency spectra, of different nature from those connected with the modulation interaction due to
wave-particle nonlinear dynamics (Fasoli et al., 1998), discussed in Sec. V.D.3.
More generally, the study of convectively amplified EPM wavepackets as soliton-like solutions of a complex nonlinear

Schrödinger equation introduces interesting analogies with research fields other than plasma physics (cf. Sec. V.D.6).
These include possible formulations of fractional derivative extensions of the nonlinear Schrödinger equation as well
as Fokker-Planck equation, based on a first-principle physics model derived from general equations governing the
nonlinear evolution of a nonuniform plasma system with wave-particle resonant interactions that are responsible of
nonlocal spatiotemporal behaviors. Further discussions of general implications of the theoretical framework introduced
in Sec. V.A are given in Sec. V.E.

26 The wave-particle interaction length is defined as the distance one resonant particle can travel before loosing the phase coherence with
the wave itself. By analogy, it is possible to define the wave-particle interaction time.
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1. The physics of the collisionless nonlinear beam-plasma system

The temporal evolution of a small cold electron beam interacting with a plasma in a 1D system was described by
(O’Neil et al., 1971). The spatial growth of the most unstable beam mode was considered by (O’Neil and Winfrey,
1972) and is more closely related with interpretation of experimental observations. However, for the scope of the
present review, it does not introduce any significant difference. Thus, it will not be further mentioned. The treatment
by (O’Neil et al., 1971) was a significant step forward, since the numerical problem could be put in terms of simple
scaled quantities, yielding a general solution. Following the linear analysis of (O’Neil and Malmberg, 1968), let us
consider a uniform 1D beam-plasma systems, where electrons have density n and are Maxwellian, with a thermal
speed vT significantly lower than the electron beam drifting speed vD, such that the collisionless dissipation due to
thermal electron Landau damping is negligible. Beam electrons, of density nB ≪ n, have a Lorentzian distribution
with velocity spread vB , while thermal ions are considered as a fixed neutralizing background.
The most unstable wave is a beam mode, which is nearly degenerate with the Langmuir wave; i.e., ω = ω0 +

δω and k = k0 + δk, with ω0 = ωp and k0 = ωp/vD. More precisely, introducing x = (δk/k0)(2n/nB)
1/3, y =

(δω/ω0)(2n/nB)
1/3, s = (vB/vD)(2n/nB)

1/3 (O’Neil and Malmberg, 1968), the most unstable mode for s = 0 has
x = 0, y = −(1/2)+i

√
3/2 and group velocity ∂ω/∂k = (2/3)vD. The half-width ∆k of the linear growth rate spectrum

is given by ∆k = (3/2)k0(nB/2n)
1/3. For (nB/2n)

1/3 ≪ 1, beam electrons are moving locally over a single wave with
relative velocity ∆v ∼ (nB/n)

1/3vD. When the wave grows to an amplitude such φ ∼ m∆v2/e ∼ (nB/n)
2/3mv2D/e,

the wave saturates and starts oscillating (O’Neil et al., 1971). Meanwhile, the nonlinear evolution takes place in two
stages (Shapiro, 1963a,b): first, the beam-plasma interaction heats the beam, as the nonlinear ∆v>∼ vB; second, the
beam distribution is modified (flattened by phase mixing; cf. later) in velocity space by nonlinear interactions.
Following (O’Neil et al., 1971), we consider δφ = δφ0(t) exp(ik0x) + c.c., x = z − vDt and ω0 = ωp. A general

direct solution of the Poisson’s equation can be obtained assuming that, in one wavelength 2π/k0, the beam spatial
charge is made of i = 1, 2, 3, ...,M charge sheets located at xj with charge (−2πenB)/(Mk0). Thus, recalling that the
plasma can be treated as a linear dielectric medium and that the wave is nearly monochromatic; and introducing the
normalized quantities ξj(τ) = k0xj(t), τ = ω0t(nB/2n)

1/3 and Φ(τ) = −(2n/nB)
2/3eδφ0(t)/(mv

2
D),

Φ̇(τ) =
−i
M

M∑

j=1

exp [−iξj(τ)] , (5.116)

ξ̈j(τ) = −iΦ(τ) exp [iξj(τ)] + c.c. , (5.117)

are, respectively, the evolution equation for Φ(τ) = Φ(0) exp
(
−i
∫ τ
0
y(τ ′)dτ ′

)
, with y the normalized frequency vari-

able introduced above, and the equation of motion for the electron beam charge sheets. It is readily verified that
Eqs. (5.116) and (5.117) recover the linear dispersion relation y3 = 1, for the most unstable beam mode in the cold
beam case (O’Neil et al., 1971). They describe the early nonlinear evolution of the most unstable beam-plasma wave,
under the single mode assumption. Numerical solution shows that, when waves grow exponentially out of the thermal
noise, the fastest growing mode eventually dominates the dynamics and grows until electrons are trapped and begin
sloshing back and forth in the wave. Then, the wave stops growing and begins oscillating about a mean value due to
energy exchange between electrons and the wave itself. This process is similar to the oscillatory behaviors observed
with an externally launched large amplitude wave (Mazitov, 1965; O’Neil, 1965). Equations (5.116) and (5.117),
describing the nonlinear interaction of a supra-thermal electron beam with one single wave, can be seen as dynami-
cal system and formally obtained in the framework of Hamiltonian system theory (Antoni et al., 1998; Mynick and
Kaufman, 1978; Tennyson et al., 1994). An interesting aspect of this description is that it results in a self-consistent
Hamiltonian formulation, which is formally equivalent to that of the free-electron laser dynamics (Antoniazzi et al.,
2008). Furthermore, using the same formulation, it has been recently shown (Carlevaro et al., 2013) that the supra-
thermal electron distribution function in the quasi-stationary states (intermediate out-of-equilibrium states) produced
by the nonlinear evolution of the beam-plasma system are accurately predicted by the maximum entropy principle
proposed by Lynden-Bell (Antoni et al., 1998; Lynden-Bell, 1967).
Conservation laws can be derived by manipulation of Eqs. (5.116) and (5.117). Using vanishing initial conditions,

momentum and energy conservations are obtained, respectively, as (O’Neil et al., 1971)

|Φ(τ)|2 + 1

M

M∑

j=1

ξ̇j(τ) = 0 , (5.118)

Rey|Φ(τ)|2 + 1

4M

M∑

j=1

ξ̇2j (τ) = 0 , (5.119)
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yielding Rey(τ) = (1/4)
∑
j ξ̇

2
j (τ)/

∑
j ξ̇j(τ). Noting that Imy(τ) = (1/2)(d/dτ)|Φ(τ)|2/|Φ(τ)|2 by definition, the

nonlinear frequency oscillation is always downward, as shown by Eq. (5.119); and it occurs with a frequency which
is twice that of |Φ(τ)| oscillations and maximum negative excursions corresponding to the minima of fluctuation
intensity (O’Neil et al., 1971). The excursions of both Rey(τ) and Imy(τ) are O(1), as can be estimated from the
optimal ordering ω̇ ∼ k0v̇ ∼ ω2

B.
An important nonlinear phenomenon connected with wave-particle trapping is the so-called spatial bunching (O’Neil

et al., 1971). This is due to the fact that most important contribution to kinetic energy and charge density comes
form particles near the bottom of the instantaneous trapping well of the wave and that “small oscillations” tend to be
isochronous. Thus, particles that were uniformly distributed in ξ at a certain instant, would tend to be bunched in ξ
after one quarter of the trapping period. Therefore, the nonlinear distortion of the particle distribution function can
also drive higher order fluctuation harmonics, in addition to usual wave-wave couplings that, however, are explicitly
smaller by (nB/2n)

1/3 with respect to the most unstable mode Φ(τ).
On long time scales, the wave cannot be considered monochromatic any longer and the (total) energy dependence

of the particle trapping period causes the particle distribution function inside the separatrix to smooth out the
increasingly finer structures by phase mixing. This is the coarse-grain distribution function (Sagdeev and Galeev,
1969) and, when it is asymptotically formed on long time scales, the mode amplitude reaches a steady state (Mazitov,
1965; O’Neil, 1965)27. Considering Ez = Ez0 sin ξ in the wave moving frame, particle motion is described by

ξ̇2 =
(
4ω2

B/κ
2
) [

1− κ2 sin2(ξ/2)
]
, (5.120)

where ω2
B = |ekEz0/m| is the trapping frequency of deeply trapped particles, κ2 = 2eEz0/(kW + eEz0) and W is

the total energy. This is the equation of a nonlinear pendulum, with κ2 < 1 describing rotations, κ2 > 1 denoting
oscillations or librations and κ2 = 1 defining the separatrix. Defining ∆W = (∂W/∂v)∆v = const, the coarse-grain
distribution function is given by (O’Neil, 1965; Sagdeev and Galeev, 1969):

[f ] =

∮
F0(v)∆vdξ∮

∆vdξ
≃ F0(ω0/k0) +

∂F0(ω0/k0)

∂v

∮
dξ/k0∮
dξ/ξ̇

, (5.121)

where [f ] = (2π)−1
∮
fdξ. For κ2 > 1, i.e., for trapped particles, it is readily noted that [f ] = F0(ω0/k0). Thus,

the time asymptotic coarse-grain distribution function takes up the constant value corresponding to the equilibrium
particle distribution at resonance. Meanwhile, for circulating particles, κ2 < 1,

[f ] = F0(ω0/k0) +
∂F0(ω0/k0)

∂v

πωB/k0
κK(κ)

, (5.122)

with K(κ) the complete elliptic integral of the first kind. It is readily noted that the coarse-grain distribution is
continuous at the separatrix κ2 = 1 but has discontinuous derivatives. The flattened coarse-grain particle distri-
bution function in the resonance region explains why the nonlinear oscillations eventually fade away due to phase
mixing. This is exactly the same time asymptotic state reached when a large amplitude plasma wave is externally
driven, at a fluctuation level corresponding to ωB ≫ γL, i.e., the Landau damping due to resonant wave particle
interactions (Mazitov, 1965; O’Neil, 1965). The main difference between the nonlinear dynamic evolution of a large
amplitude wave and the beam-plasma system is in the relative value of fluctuation amplitude oscillations: in the
former case, amplitude is characterized by small oscillations about an essentially constant value; whereas in the latter
case, amplitude is fluctuating by an O(1) quantity about the mean value, as the system evolves from the initial
exponential growth, with ωB ≪ γL, to the saturation phase, with ωB ∼ γL (O’Neil and Winfrey, 1972; O’Neil et al.,
1971; Onishchenko et al., 1970a,b; Shapiro and Shevchenko, 1971a,b). The absence of an evident expansion parameter
makes numerical approach necessary. After resonant electrons get trapped and begin sloshing back and forth in the
wave, O(1) amplitude oscillations at ωB and harmonics progressively decrease and eventually fade away, due to phase
mixing, with the wave amplitude reaching a constant level at ωB ≃ 3γL (Levin et al., 1972a,b).
A different approach to the beam-plasma problem was given by (Al’tshul’ and Karpman, 1965, 1966), based on the

general solution of the nonlinear Poisson equation

Ekz = −4π

k
iδ ˆ̺k =

4π

k
ie

∫
dvδfk , (5.123)

27 It is worthwhile noting the difference between this time asymptotic equilibrium state, characterized by the coarse-grain distribution
function (Sagdeev and Galeev, 1969), and the quasi-stationary states, which have been recently discussed (Carlevaro et al., 2013) in the
context of the Lynden-Bell approach (Lynden-Bell, 1967).
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with δfk obtained from the Vlasov equation

(∂t + iku)δfk = − e

m

∑

q

i(k − q)δφk−q
∂

∂v
fq , (5.124)

solved for assuming a monochromatic wave. This assumption, as shown by (O’Neil, 1965; O’Neil et al., 1971), is valid
in the early nonlinear saturation phase. The approach of (Al’tshul’ and Karpman, 1965, 1966) is relevant for the issues
dealt with in Secs. V.D.2 to V.D.7. Furthermore, it touches important aspects of the theory of nonlinear oscillations
in collisionless plasmas. Thus, we briefly summarize their main results hereafter. Recalling that the thermal plasma
is a linear dielectric medium and ω = ω0 + i∂t for a nearly monochromatic wave, Eq. (5.123) can be cast as

2

ωp

∂

∂t
δφk0 =

4π

k20
ie

∫
dvδfEk0 , (5.125)

where the subscript E stands for energetic beam electrons (cf. Sec. II.E) and is dropped in the following for simplicity
of notation. Introducing the standard definition

δfk(t) =

∫ +∞

−∞

e−iωtδf̂k(ω)dω , and δf̂k(ω) =
1

2π

∫ +∞

0

eiωtδfk(t)dt (5.126)

for the Laplace transform, the solution of Eq. (5.124) for k = 0 is readily obtained as

f̂0(ω) =
i

2πω
F0 +

e

m

k0
ω

∫ +∞

−∞

[
δφ̂k0(ω

′)
∂

∂u
δf̂−k0(ω − ω′)− δφ̂−k0(ω

′)
∂

∂u
δf̂k0(ω − ω′)

]
dω′ . (5.127)

Meanwhile, assuming vanishing initial conditions for δfk0,

δf̂k0(ω) =
e

m

k0
ω − k0u

∫
δφ̂k0(ω

′)
∂

∂u
f̂0(ω − ω′)dω′ . (5.128)

By direct substitution of Eq. (5.128) back into Eqs. (5.125) and (5.127), one readily obtains, respectively,

2

ωp

∂

∂t
δφk0 =

ω2
p

nk0
i

∫
dv

∫∫ +∞

−∞

e−iωt
δφ̂k0(ω

′)

ω − k0u

∂

∂u
f̂0(ω − ω′)dωdω′ , (5.129)

f̂0(ω) =
i

2πω
F0 −

e2

m2

k20
ω

∫∫ +∞

−∞

[
δφ̂k0(ω

′)δφ̂−k0 (ω
′′)
∂

∂u

(
1

ω − ω′ + k0u

∂

∂u
f̂0(ω − ω′ − ω′′)

)

+δφ̂−k0(ω
′)δφ̂k0 (ω

′′)
∂

∂u

(
1

ω − ω′ − k0u

∂

∂u
f̂0(ω − ω′ − ω′′)

)]
dω′dω′′ . (5.130)

This last equation is the analogue of the Dyson’s equation [cf., e.g., (Kaku, 1993)] in quantum field theory, as noted
by (Al’tshul’ and Karpman, 1965, 1966), and is valid for arbitrary distortion of the initial distribution function F0(v).
The physics processes described by Eqs. (5.129) and (5.130) are schematically depicted in Fig. 5. When Eq. (5.130)

is solved by formal expansion in the field amplitudes, the lowest order solution is f̂0(ω) = iF0/(2πω). Assuming that

δφ̂k0 (ω) =
i

2π

δφk0
ω − ωk0

, (5.131)

with δφk0 being the k0 field with frequency ωk0 in the linear approximation, the subsequent steps in the iterative
expansion for the solution of the “Dyson” equation, Eq. (5.130), will have a second order pole at ω = 0, corresponding
to a secular term ∝ t in the t-representation and to the second order diagram in Fig. 5 (middle panel), and so on.
Similarly, in the solution of Eq. (5.129), a second order pole at ω = ωk0 in the nonlinear expression on the right hand
side corresponds to a secular term ∝ t exp(−iωk0t), and so on. Even accounting for a complex frequency ωk0 , would
replace the secular terms ∝ tℓ with terms ∝ (Reωk0/Imωk0)

ℓ ≫ 1 (Al’tshul’ and Karpman, 1965, 1966; Montgomery,
1963). For this reason, it is crucial to take into account all terms in the Dyson series, as shown in Fig. 5 (right panel,
bottom frame). In general, Eqs. (5.129) and (5.130) can be written for a generic fluctuation spectrum of waves with
|Imωk0/Reωk0 | ≪ 1 under the assumption that the evolution of the fluctuating fields is dominated by the nonlinear

modification of f̂0(ω), given by Eq. (5.130), rather than by the generation of nonlinear harmonics in the fields and the
distribution function. For the case of many waves with overlapping resonances, (Al’tshul’ and Karpman, 1965, 1966)
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FIG. 5 Left panel: Diagram showing the generation of the distribution δfk due to the interaction of f0 with the field δφk,
corresponding to the solution of Eq. (5.128). Middle panel: Nonlinear distortion of f0 due to emission and absorption of the
field δφk. Right panel: The diagram of the process is defined in the top frame, while the solution of the “Dyson” equation,
Eq. (5.130), corresponds to the summation of all terms in the Dyson series (bottom) (Al’tshul’ and Karpman, 1965, 1966).

have demonstrated that Eqs. (5.129) and (5.130) reduce to the well-known quasilinear theory of a weakly turbulent
plasma (Drummond and Pines, 1962; Vedenov et al., 1961a). In this sense, they can be referred to as generalized
quasilinear equations (Galeev et al., 1965). Meanwhile, in the case of a nearly monochromatic wave with constant
amplitude in time, Eq. (5.131), (Al’tshul’ and Karpman, 1965, 1966) have shown that Eq. (5.130) admits a solution
which oscillates around the coarse-grain distribution in the resonant region, with a frequency spectrum given by the
wave particle trapping frequency ωB and harmonics. More specifically,

F0(u, t) = F0(0) +
α

k0

∞∑

ℓ=0

βℓ
(2ℓ+ 1)

d

du
ψℓ

(
k0u

α

)[
1− cos

(√
2ℓ+ 1αt

)]
, (5.132)

with the notation α2 ≡
√
2|ek0Ek0/m| =

√
2ω2

B, x = k0u/α, ψℓ(x) ≡ (2ℓℓ!π1/2)−1/2e−x
2/2Hℓ(x) with Hℓ(x) the

Hermite polynomials, and βℓ ≡
∫∞

−∞(dF0(0)/dx)ψℓ(x)dx. Note that Eq. (5.132) describes the oscillations of particles
that are trapped in the wave, which, however, do not decay in time as expected in consequence of phase mixing.
Thus, the approach based on Eqs. (5.130) does not describe the relaxation to the coarse grain particle distribution
function (Sagdeev and Galeev, 1969). Unlike in (Mazitov, 1965; O’Neil, 1965) for the case of the nonlinear oscillations
of a large amplitude wave, which asymptotically decay in time, this solution continues oscillating as t → ∞. It was
pointed out by (O’Neil, 1965) that the reason for this stands in the assumption of negligible harmonic generation at
k = ℓk0(ℓ ≥ 2) in both δφk and δfk, which breaks down on long time scales; as discussed earlier in this subsection.

2. The nonlinear beam-plasma system with sources and collisions

In a series of papers in 1990s, (Berk and Breizman, 1990a,b,c) reconsidered the nonlinear beam-plasma problem (cf.
Sec. V.D.1) including the additional physics of sources and dissipations, and applied it to the description of nonlinear
dynamics of AEs near marginal stability. In this case (Berk and Breizman, 1990a), the coarse-grain distribution
function, Eq. (5.121), maintains a residual slope (Zakharov and Karpman, 1962, 1963) inside the separatrix including
the phase-space of resonant trapped particles, so that a steady state can be reached when the residual nonlinear
drive balances the background dissipation. The possibility of extending this analysis to the case of electrostatic waves
in a plasma slab with a sheared equilibrium magnetic field B0, destabilized by an energetic particle beam with a
spatial gradient transverse to B0, is discussed by (Berk and Breizman, 1990b). Meanwhile, (Berk and Breizman,
1990c) further extend the same approach to AEs destabilized by nonuniform EP sources. In general, fundamental
assumptions of these analyses are: (i) one single low amplitude wave, such that linear mode structures can be assumed
to drop out of the problem28; (ii) finite background dissipation that does not depend on the finite amplitude wave;
(iii) wave dispersiveness set by the background plasma and independent of the EP dynamics.

28 When the Hamiltonian is accidentally degenerate, i.e., the resonance condition is verified for particular values of the action coordinates,
the maximum excursion of the action about the resonance scales as the square root of the perturbation strength [cf., e.g., (Lichtenberg
and Lieberman, 1983, 2010)]
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a. Steady-state saturation of the collisional beam-plasma system.

The saturation level of fluctuations at steady state is reached when background dissipation balances wave drive reduced
by nonlinear interactions (cf. Sec. V.D.1)

d

dt
T =

nm

2

∫
dvv2

∂

∂t
[f ] ≃ nm

2

ω2
0

k20

∫
dv

∂

∂t
[f ] = −2γdW , (5.133)

where the left hand side is the rate of particle kinetic energy increase due to resonant wave-particle interactions and
the right hand side is the wave power dissipation by background damping.

With a simple source term Q(v) and particle annihilation at a rate ν(v), the Vlasov equation is

∂tf + v∂xf + v̇∂vf = −ν(v)f +Q(v) . (5.134)

For ν ≪ ωB, the lowest order time asymptotic [f ] is still given by the coarse-grain distribution function, Eqs. (5.121)
and (5.122), which is readily obtained with F0(v) = Q(v)/ν(v). At next order in ν/ωB, the small but finite residual
slope within the wave particle trapping region, κ > 1 with the notations of Eq. (5.120), yielding a residual drive with
respect to the linear expression (dT/dt)L, is given by (Berk and Breizman, 1990a)

(dT/dt) = 1.9 (ν/ωB) (dT/dt)L . (5.135)

Thus, noting (dT/dt)L = −2γLW , Eqs. (5.133) and (5.135) readily yield the saturation level ωB ≃ 1.9(ν/γd)γL.

In order to emulate a beam slowing down, (Berk and Breizman, 1990a) also consider the case of a source at fixed
velocity v0 and particle drag

∂tf + v∂xf + v̇∂vf = −ν(v)f +Q0δ(v − v0) + a∂vf . (5.136)

Denoting the Heaviside step function as H , the corresponding equilibrium steady state solution is F0 = (Q0/a)×
exp[(ν/a)(v − v0)]H(v0 − v), which, again, yields the lowest order time asymptotic [f ] in terms of the coarse-grain
distribution function by Eqs. (5.121) and (5.122). For ω2

B > ka, i.e., for a sufficiently large perturbation, the rate
at which particles cross a separatrix width in velocity space because of drag is νeff = kaω−1

B ∼ ν(ω/ωB). Thus,
ωB > νeff ≫ ν and, for adiabatically growing wave amplitude, trapping regions cannot be filled by drag, so that the
distribution function eventually vanishes because of particle annihilation. In this scenario, a discontinuity is expected
in the particle distribution function near the separatrix and the residual nonlinear drive is enhanced

(dT/dt) = (16/π2)(ν2eff/ν
2)(ν/ωB) (dT/dt)L . (5.137)

Using this expression, the steady state saturation level can be computed as for Eqs. (5.133) and (5.135) above.

In a more realistic description with sources and sinks, the Vlasov equation is (Berk and Breizman, 1990b)

dtf = νd∂λ(1− λ2)∂λf + (ν/v2)∂v
[
(v3 + v3c )f

]
+ (4πv20)

−2Qδ(v − v0) , (5.138)

where the term ∝ νd on the right hand side accounts for pitch angle scattering, with λ = v ·B0/(vB0). Depending on
the relative ordering of ν and νd, three different regimes can be identified: (i) νd(ω

2/ω2
B) ≪ ν, where particles slow

down completely, without appreciable pitch angle scattering; (ii) νd(ω/ωB) ≪ ν < νd(ω
2/ω2

B), particles slow down
one separatrix width without appreciable diffusion; (iii) ν ≪ νd(ω/ωB), particles are pitch angle scattered before they
slow down one separatrix width. The regime to be expected in fusion plasmas is (iii), for which the residual nonlinear
drive, given νeff = νd(ω

2/ω2
B) ≪ ωB, is given by29

(dT/dt) ∼ (νeff/ωB) (dT/dt)L , (5.139)

which, with help of Eq. (5.133), yields the respective saturation level.

29 Detailed discussions of the various collisional regimes and corresponding saturation levels are given by (Berk and Breizman, 1990b).
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b. Collisional beam-plasma system with periodic and chaotic pulsations.

Steady state solutions with constant amplitude are not the only possibility for nonlinear dynamics of the beam-
plasma system. Different scenarios are possible depending on the relative ordering of γL, νeff ∼ νd(ω

2/ω2
B) and γd

(Berk et al., 1992a; Breizman et al., 1993). In Sec. V.D.1, it is shown that a finite amplitude wave modifies the
particle distribution in a region of width ∆v ∼ ωB/k0 near an isolated resonance, eventually yielding to flattening
of the (coarse-grain) distribution function by phase mixing. Meanwhile, the distribution function is reconstructed
at a rate νeff , while energy is dissipated at a rate γd. Thus, for γd < νeff , the predicted steady state level trapping
frequency is larger than the linear drive ωB ∼ γLνeff/γd and steady state solutions can be sustained (cf. Sec. V.D.2.a).
Conversely, for γd > νeff , the background distribution is not effectively reconstructed and, after saturation at ωB ∼ γL
(cf. Sec. V.D.1), the mode amplitude decays at rate γd, so that fluctuation bursting must be expected. The typical
interval between bursts scales as ∼ 1/νeff, while the transition between steady state and bursting behaviors takes place
when ωB ∼ γL and νeff = νeff0 = νdω

2/γ2L ≃ γd (Berk et al., 1992a; Breizman et al., 1993). Numerical particle-in-cell
(PIC) simulations of a single Langmuir wave excited by an inverted (positive) gradient F0(v) = Q(v)/ν(v) confirm
analytical predictions about bursting vs. steady-state saturation for the bump-on-tail problem (Berk et al., 1995b).
Changing the externally imposed dissipation or, equivalently, changing γ ≡ γL − γd for fixed γL, changes the

qualitative features of numerical solutions of the Vlasov-Poisson system obtained for a monochromatic wave (Berk
et al., 1996b). In particular, ωB = α(γL − γd) at the maximum oscillation amplitude, with α varying from α = 3.2 to
α = 2.9 when γd/γL is varied from γd/γL = 0 to γd/γL = 0.6. More importantly, however, when γ is reduced to a
sufficiently low level, the amplitude of the system oscillates rather than decay at a rate ∼ γd after reaching the peak
amplitude at ωB ∼ γ. To investigate this phenomenology near marginal stability, the Poisson’s equation, Eq. (5.123),
can be replaced by (Berk et al., 1996b)

∂tEkz = 4πe

∫
dvvδfk − γdEkz , (5.140)

in order to introduce an imposed extrinsic damping. Again, treating the plasma as a linear dielectric medium and
using ω = ω0 + i∂t for a nearly monochromatic wave, Eq. (5.140) becomes

2

ωp

∂

∂t
δφk0 =

4π

k20
ie

∫
dvδfEk0 −

2γd
ωp

δφk0 ; (5.141)

i.e., Eq. (5.125) adding an ad hoc background dissipation. Meanwhile, the Vlasov equation, Eq. (5.124), is modified
to account for source/sink and collision terms on the right hand side, in the form of one of the models discussed above,
e.g., as in Eq. (5.134). Introducing E = E0(t) cos ξ, with ξ = k0z − ω0t = k0x and ω0 = ωp (cf. Sec. V.D.1), and
dropping subscripts k0 and E in Eq. (5.141) for the sake of simplicity, the solution of Eq. (5.134) can be cast as

f = f0 +

∞∑

n=1

δfne
inξ + c.c. , (5.142)

∂tf0 + νf0 = Q(v)− ω2
B(t)∂uReδf1 , (5.143)

∂tδf1 + iuδf1 + νδf1 = −(1/2)ω2
B(t)∂u (f0 + δf2) , (5.144)

and so on. Here, ω2
B(t) = ek0E0(t)/m and u = k0v − ω0, while Eq. (5.141) becomes

d

dt
ω2
B = −

ω2
p

n0

ω0

k0

∫ ∞

−∞

Reδf1du − γdω
2
B . (5.145)

For monochromatic fluctuations (dropping δf2), Eqs. (5.143) to (5.145) are the t-representation of Eqs. (5.128)
to (5.131), with the addition of finite ν, Q and γd. Near marginal stability, f0 = F0 + δf0, with F0 = Q(v)/ν(v), and
the problem can be solved iteratively, with a perturbative asymptotic expansion based on the ordering γ ≡ γL− γd ∼
ν ∼ |u| ≪ γL and expansion parameter ω2

B/ν
2 ∼ ω2

B/u
2 ∼ ω2

B/γ
2 ∼ (γ/γL)

1/2, which applies for ωBt ≪ 1 (Berk
et al., 1996b). The iterative solution corresponds to writing

δf0 = −
∫ t

0

e−ν(t−t1)ω2
B(t1)∂uRe(δf1L + . . .)dt1 ,

δf1 = −(1/2)

∫ t

0

e−(ν+iu)(t−t1)ω2
B(t1)∂uf0dt1 , (5.146)
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where δf1L is the linearized form of δf1, obtained for f0 → F0 = Q(v)/ν(v). Introducing τ = (γL−γd)t, ν̂ = ν/(γL−γd)
and A(τ) = (ω2

B/γ
2)γ

1/2
L /γ1/2, the validity limits of the asymptotic analysis impose τ ≪ (γ/γL)

−1/4 (from ωBt≪ 1)
and A ∼ ν̂ ∼ 1. Meanwhile, the iterative solution of Eqs. (5.145) and (5.146) yields

d

dτ
A = A− 1

2

∫ τ/2

0

z2A(τ − z)dz

∫ τ−2z

0

A(τ − z − x)A(τ − 2z − x)e−ν̂(2z+x)dx . (5.147)

Here, the occurrence of the secular term ∝ z2 in the normalized time variable is a consequence of the truncation of the
Dyson series in the iterative expansion (cf. Fig. 5), as discussed below Eq. (5.131). Equation (5.147) admits a fixed
point solution A0 = 2

√
2ν̂2, which is stable for ν̂ > ν̂cr ≃ 4.38. For ν̂ < ν̂cr the solution A(τ) first oscillates and, for

further decreasing ν̂, it looses the periodic behavior, entering a chaotic regime (Breizman et al., 1997). Meanwhile,
for sufficiently low values of ν̂ the system exhibits a finite time singularity, which is unphysical and consequence of
the truncation of the Dyson series.
The work of (Berk et al., 1996b) was generalized by (Breizman et al., 1997) [cf. also (Berk et al., 1997a)] to the

generic case of weakly unstable modes excited by resonant wave-particle interactions, for which

d

dτ
A = A− eiφ

∫ τ/2

0

z2A(τ − z)dz

∫ τ−2z

0

A(τ − z − x)A∗(τ − 2z − x)e−ν̂(2z+x)dx . (5.148)

Here, the factor eiφ depends on the linear physics of the underlying mode. (Breizman et al., 1997) also investigated the
effect of replacing the source/collisional term −ν(f − F0) and F0 = Q(v)/ν(v) with a diffusive-like collision operator
ν3eff(∂

2/∂Ω2)(f − F0), with Ω = ξ̇ = ∂H/∂I and (I, ξ) the action-angle coordinates of the relevant wave-particle
resonance. Thus, exp[−ν̂(2z + x)] in Eq. (5.148) is replaced by exp[−ν̂3z2(2z/3 + x)] with ν̂ = νeff/γ, yielding

d

dτ
A = A− eiφ

∫ τ/2

0

z2A(τ − z)dz

∫ τ−2z

0

A(τ − z − x)A∗(τ − 2z − x)e−ν̂
3z2(2z/3+x)dx . (5.149)

Similar to Eq. (5.147), Eqs. (5.148) and (5.149) also admit a fixed point for ν̂ > ν̂cr. At ν̂ = ν̂cr a first bifurcation
occurs and A(τ) has a solution in the form of a limit cycle, which then goes through subsequent period doubling
bifurcations for further decreasing ν̂ and eventually becomes chaotic (Breizman et al., 1997; Fasoli et al., 1998; Heeter
et al., 2000). In the case of Eq. (5.149), ν̂cr ≃ 2.05 for |φ| ≪ 1 (Breizman et al., 1997).
Systematic numerical investigations of the Vlasov-Poisson system were carried out (Lesur et al., 2009; Vann et al.,

2005, 2003) in order to characterize the fully nonlinear solutions of Eq. (5.140) and of the Vlasov equation for
monochromatic waves with different source/sink and collisionality models. In particular, (Lesur et al., 2009) and,
more recently, (Lesur and Idomura, 2012) adopt a model collision term in the form of Eq. (5.134) and carefully discuss
the validity limits of aforementioned analytical works, comparing fully nonlinear solutions with analytic ones where
appropriate. It is shown that there are conditions where the thermal plasma does not respond as a linear dielectric
medium, e.g., when the resonance involves a finite amount of thermal electrons. The bifurcation diagram in the
(γd, ν) parameter space, similar to that discussed by (Vann et al., 2003), confirms that, at fixed γd and for decreasing
values of ν, numerical solutions are damped, converge to a steady state (cf. Sec. V.D.2.a), are periodic, or chaotic,
or characterized by frequency sweeping phase space structures. This latter behavior is discussed in Sec. V.D.2.c
and corresponds to the parameter regime, where the analytic solutions of Eqs. (5.147) to (5.149) exhibit finite time
singularity. Furthermore, (Lesur et al., 2009) demonstrate the existence of subcritical states, consistent with former
numerical results (Berk et al., 1999) that nonlinear excitation of phase space structures is possible if fluctuation is
initialized at sufficiently large amplitude, ω2

B ∼ (ν + γ)5/2(γL)
−1/2 (Berk et al., 1999). Metastable kinetic modes are

also investigated by (Nguyen et al., 2010b), where it is shown that purely nonlinear steady-state regimes are found
by numerical simulations, when the nonlinear reduction of the resonant damping rate due to thermal plasma is larger
than the corresponding reduction of the EP drive. Such processes may be relevant for BAE nonlinear dynamics (cf.
Sec. IV.B.2), for which purely nonlinear steady-state regimes regimes could exist for typical tokamak equilibrium
conditions (Nguyen et al., 2010a). Nonlinear instabilities of phase-space structures in both marginally unstable and
linearly stable (subcritical) regimes have been recently discussed by (Lesur and Diamond, 2013).

c. Nonlinear dynamics of phase-space holes and clumps.

For sufficiently small ν̂, Eqs. (5.148) and (5.149) exhibit the same finite time singularity of Eq. (5.147) due to the
unphysical truncation of the Dyson series (cf. Fig. 5). This fourth dynamic regime of Eqs. (5.147) to (5.149), in
addition to steady-state (cf. Sec. V.D.2.a), periodic and chaotic regimes (cf. Sec. V.D.2.b) (Breizman et al., 1997),
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was investigated by numerical solution of the Poisson’s equation, Eq. (5.141), and the Vlasov equation with a variety
of source/sink and collision models (Berk et al., 1999, 1997a,b; Breizman et al., 1997). In particular, it was shown that
numerical solutions are characterized by the formation of pairs of phase space holes (Berk et al., 1970; Berman et al.,
1983; Dupree, 1982; Tetreault, 1983) and clumps (Berman et al., 1983; Dupree, 1970, 1972, 1982; Tetreault, 1983).
After formation, holes and clumps move away from the original resonance in velocity space, corresponding to energy
extraction from the particle distribution function and to respectively upward (hole) and downward (clump) frequency
sweeping phase space structures, which can be viewed as Bernstein-Greene-Kruskal (BGK) modes (Bernstein et al.,
1957). Since the work by (Breizman et al., 1997), the steady-state, periodic and chaotic regimes of the solution of the
Vlasov-Poisson system are referred to as “soft” nonlinear behaviors, to discriminate them from the “hard” nonlinear
regime, where hole/clump structures are formed. The definition of a “hard” nonlinear regime for describing the finite
time singularity of the solutions of Eqs. (5.147) to (5.149) is more properly justified by noting that, for fixed νeff ,
sufficiently low ν̂ can be achieved for sufficiently strong net drive γ = γL − γd. In the work by (Berk et al., 1999), it
was noted that this “hard” regime is not observed for γd/γL<∼ 0.4. On the other hand, (Lesur et al., 2009) show that
frequency chirping is observed in numerical simulations for γd/γL as low as γd/γL = 0.2.
Recently, (Lilley et al., 2009) re-considered Eqs. (5.143) to (5.145) with a model collision term in the form

dtf =
(
ν3k−2

0 ∂2v + α2k−1
0 ∂v − β

)
(f − F0) , (5.150)

where F0 is the equilibrium distribution function and ν, α and β control, respectively, velocity space diffusion,
dynamical friction and particle annihilation rate. Equations. (5.147) to (5.149) are then generalized to

d

dτ
A = A− 1

2

∫ τ/2

0

z2A(τ − z)dz

∫ τ−2z

0

A(τ − z − x)A∗(τ − 2z − x)e−ν̂
3z2(2z/3+x)−β̂(2z+x)+iα̂2z(z+x)dx , (5.151)

with ν̂ = ν/γ, α̂ = α/γ, β̂ = β/γ and γ = γL−γd. For ν̂ = β̂ = 0; i.e., with dominant dynamical friction, (Lilley et al.,
2009) showed that Eq. (5.151) always exhibits finite time singularity, in contrast to Eqs. (5.147) to (5.149), whose
evolutions exhibit both “soft” and “hard” nonlinear dynamic behaviors (cf. Sec. V.D.2.b). This result is confirmed
by numerical solutions of Eqs. (5.141) [or Eq. (5.145)] and (5.150), which show frequency sweeping holes and clumps
when dynamical friction is the dominant collisional process (Lilley et al., 2010).
The first analytical theory of hole-clump frequency sweeping was proposed by (Berk et al., 1999, 1997b), assuming

that the frequency separation of holes and clumps is larger than γL and ωB, so that they are treated independently
as isolated structures, and postulating an adiabatic evolution of mode amplitude and frequency, i.e., |ω̇| ≪ ω2

B,

|ω̇B| ≪ ω2
B, etc.. Defining ω = ω0+δω(t), the angle coordinate in the wave moving frame becomes q = ξ−

∫ t
0 δω(t

′)dt′

and, using the generating function F2 = (p+δω(t))
(
ξ −

∫ t
0
δω(t′)dt′

)
for the corresponding canonical transformation,

with p = Ω− ω0 − δω(t), ξ defined above in this section and Ω = ξ̇, the Hamiltonian is (Berk et al., 1999)

H = p2/2− δω2/2− ω2
B cos q + qδω̇ . (5.152)

Meanwhile, Eq. (5.141) becomes
(
d

dt
+ γd

)
A(t) = − i

π2

γL
∂F0/∂Ω

∫
dqdpe−iq−i

∫
t

0
δω(t′)dt′f(q, p, t) . (5.153)

Since wave amplitude and frequency change slowly, there exist an adiabatic action invariant and, at lowest order,
particle response is independent of the corresponding angle. Thus, f slightly deviates from the coarse-grain distribution
(cf. Sec. V.D.1) and, inside the separatrix, f = F0 + g that, at lowest order, becomes (Berk et al., 1999)

g ≃ g0 = F0(ω0)− F0(ω0 + δω) . (5.154)

Furthermore, the dynamics is adiabatic and maintains near marginal stability at every instant. Therefore, frequency
sweeping, connected with the hole/clump evolution, is obtained from the condition of balancing background dissipation
with power released by hole/clump motion in phase space (Berk et al., 1999). By means of Eqs. (5.153) and (5.154),
it is possible to show that the adiabatic evolution of hole-clump motion in the phase space becomes

ωB
γL

=
16

3π2
, and

δω

γL
=

16

3π2

√
2

3
(γdt)

1/2 ; (5.155)

having assumed ĝ(x) = [F0(ω0 + x) − F0(ω0)] / [F
′
0(ω0)x] ≃ 1. This result consistently describes the adiabatic evolu-

tion of hole/clump structures for times |ωBt| ≫ 1, as implied by the assumption |δω| ≫ ωB. This limit is the opposite
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one with respect to the |ωBt| ≪ 1 assumption underlying Eqs. (5.147) to (5.149) and reflects the condition under
which f is maintained near marginal stability during the adiabatic evolution of hole/clump structures.
The theory of adiabatic frequency chirping of hole/clump structures in phase space for the bump-on-tail problem

near marginal stability was recently investigated by (Breizman, 2010), extending the water bag model of driven,
continuously phase-locked coherent structures in uniform unmagnetized plasmas and of the associated BGK modes,
developed by (Barth et al., 2008; Khain and Friedland, 2007). The theoretical analysis of (Breizman, 2010) assumes
that the background plasma can be described as a linear dielectric medium (O’Neil et al., 1971) (cf. Sec. V.D.1) and
solves Poisson’s equation for the BGK mode in terms of the self-similar scalar potential

δφk0 ≡ −(1/e)U [z − s(t); t] , (5.156)

where U [z − s(t); t] is a periodic function of z − s(t) and a slowly varying function of t. The wave phase velocity
∝ ṡ = ds(t)/dt, with ṡ0 = ω0/k0 at the initial time, is determined by the condition that the power released by
the phase-space structure motion balances collisional dissipation due to the friction force exerted by bulk plasma
electrons. The exact nonlinear solution of this problem (Breizman, 2010) shows, as expected from Eq. (5.154), that
U [z−s(t); t] depends on the narrow depletion (hole) or protrusion (clump) inside the separatrix; i.e., on F0(ṡ)−F0(ṡ0).
Meanwhile, assuming that the motion of the hole/clump structure is adiabatic and maintained near marginal stability,
the predicted time evolution of the BGK mode recovers Eq. (5.155) in the early stage, where ṡ ≃ ṡ0; but it can
significantly depart from that at later times for significant deviations of ṡ from ṡ0. In this respect, this model can
describe long range frequency sweeping events (cf. also Sec. V.D.3), provided that the thermal plasma response
remains that of a linear dielectric medium. For a more detailed description of this recent theoretical analysis, we refer
the reader to the original work (Breizman, 2010) [cf. also (Breizman, 2011; Breizman and Sharapov, 2011)].
The first evidence of long range frequency sweeping was reported in numerical simulations of Eqs. (5.140) and (5.150)

with α = ν = 0, aimed at investigating the nonlinear behaviors of strongly driven 1D bump-on-tail systems (Vann
et al., 2007), with similar values of the thermal plasma and beam densities and as well as velocity spread. In these
simulations, upwards frequency sweeping holes are preferentially formed, connected with strong nonlinear distortions of
both thermal and energetic particle distribution functions (cf. Sec. V.D.1). Meanwhile, only the time averaged particle
distribution function is maintained near marginal stability, with a structure that is more stable than the marginal
distribution function (Vann et al., 2007), as it is expected for strongly nonlinear bursting behaviors, following which
the particle distribution function is slowly rebuilt by external sources.
For significantly less strong drive and near mode marginal stability, numerical simulation results of Eqs. (5.141)

and (5.150) confirm the existence of the long range frequency sweeping events described by (Breizman, 2010, 2011;
Breizman and Sharapov, 2011), which correspond to convective particle transport in buckets, due to the adiabatic
evolution of the underlying BGK modes. The frequency sweeping phase space structures, described by (Lilley et al.,
2010), move upwards (holes) and downwards (clumps) until the nonlinear frequency shift exceeds the frequency width
of the linear unstable spectrum30, which must be much smaller than the frequency of the initial linear instability
as underlying assumption of the adopted model31. Thus, holes and clumps eventually “stuck-up” and, by resonance
overlap, cause a relaxation of the particle distribution function to a plateau extending throughout the linearly unstable
region (Lilley et al., 2010), corresponding to maximized energy extraction from fast particle phase space. This extended
flattening has been recently shown to be more important near marginal stability than quasi-linear diffusion in the
presence of many modes (Lilley and Breizman, 2012). Long range chirping also occurs in the collisionless limit, near
marginal stability. In this case, the continuous generation of hole/clump pairs is due to the steepening of the ambient
distribution function in the wake of such structures (Lilley et al., 2010).

3. The bump-on-tail problem as paradigm for Alfvén Eigenmodes near marginal stability

A very detailed discussion of applications of the bump-on-tail paradigm to AE nonlinear dynamics is given by
(Breizman and Sharapov, 2011). Thus, readers that are specifically interested in these issues are referred to this
recent review paper. In this section, we only discuss the underlying physics assumptions on which such applications
are based. Meanwhile, Sec. V.D.4 presents different approaches that are used to investigate AE nonlinear dynamics
near marginal stability and to interpret their experimental observations; removing some of the limiting assumptions
of the 1D bump-on-tail paradigm.

30 Here, by frequency width of the linear unstable spectrum, we mean that which would be obtained in an infinite 1D plasma system, to
avoid the discretization effect of the continuous spectrum imposed by the finite length of the system.

31 Note, however, that using Eq. (5.140) and including the kinetic response of the thermal plasma component allows the investigation of
nonlinear frequency shift of the order of the linear mode frequency (Vann et al., 2007).
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The first application of the bump-on-tail paradigm to experimental observations is the interpretation of the pitchfork
splitting of TAE spectral lines in JET during Ion Cyclotron Resonance Heating (ICRH) (Fasoli et al., 1998; Heeter
et al., 2000) as manifestation of the “soft” nonlinear regime of the bump-on-tail nonlinear dynamics (Breizman et al.,
1997). More precisely, (Fasoli et al., 1998) used the frequency spectrum of the limit cycle solution of Eq. (5.149) at
the bifurcation point; i.e., with ν̂ = ν̂cr ≃ 2.05 for |φ| ≪ 1 (cf. Sec. V.D.2), and compared it with high resolution
measurements of TAE frequency. This work motivated further analyses, aimed at providing information on the values
of γL, γd and νeff from MHD spectroscopy (Fasoli et al., 2002; Pinches et al., 2004a,b), with the advantage of using a
simple paradigm model for interpreting some features of AE experimental observations and of having information on
local kinetic plasma parameters, which is otherwise difficult to obtain. In the work by (Pinches et al., 2004a), it was
also noted that the frequency chirping expression from Eq. (5.155) agrees with the experimentally observed chirping in
experimental devices near marginal stability. Meanwhile, (Vann et al., 2005) interpreted the observation of frequency
chirping AEs in MAST (Gryaznevich and Sharapov, 2004; Pinches et al., 2004a) as evidence of the “hard” nonlinear
regime of the bump-on-tail nonlinear dynamics (Breizman et al., 1997).
The different types of chirping modes observed in MAST (Gryaznevich and Sharapov, 2006; Gryaznevich et al., 2008)

have recently attracted significant interest in connection with the different dynamic behaviors that are predicted by
the 1D bump-on-tail paradigm with different collision models and EP sources (Lilley et al., 2009, 2010). In particular,
special emphasis was given to numerical solutions of Eqs. (5.145) and (5.150), showing that frequency sweeping holes
and clumps are the only type of nonlinear behavior when dynamical friction dominates (cf. Sec. V.D.2.c). These
findings have been proposed by (Lilley et al., 2009, 2010) as possible explanation of why “soft” nonlinear behaviors are
expected for ICRH heated plasmas, with prevailing velocity space diffusion, whereas Neutral Beam Injection (NBI),
mostly affected by dynamical friction, generally yields “hard” nonlinear regimes32.
As application of the numerical method by (Lesur et al., 2009) (cf. Sec. V.D.2), and with a model collision term in

the form of Eq. (5.150), (Lesur et al., 2010) analyzed experimental measurements of quasi-periodic chirping TAE in
JT-60U (Oyama and the JT-60 Team, 2009) and developed a fitting procedure for calculating γL, γd and collision fre-
quencies from the frequency spectrum provided by Mirnov coil measurements at the plasma edge. Reconstructed drive
and damping rates are in qualitative and quantitative agreement with experimental findings, as are the reconstructed
collision frequencies compared with values from experimental equilibrium data. Furthermore, dynamical friction and
velocity-space diffusion are found to be essential to reproduce nonlinear features observed in experiments, with dy-
namical friction playing a crucial role in the asymmetry between hole and clump chirping (Lesur and Idomura, 2012;
Lesur et al., 2010), as also noted by (Lilley et al., 2009, 2010). These analyses (Lesur et al., 2010) clarify that TAE
in JT-60U typically exist in regimes away from marginal stability and that frequency sweeping events are generally
non-adiabatic. This is indeed not surprising as adiabatic nonlinear dynamics is in one-to-one correspondence with the
proximity of the system to marginal stability [cf. Sec. V.D.2.c) and Eq. (5.155)].
The applicability of the bump-on-tail paradigm to AE nonlinear dynamics requires that the system be sufficiently

close to marginal stability that the three fundamental assumptions listed at the beginning of Sec. V.D.2 are preserved.
More precisely, the fluctuation-induced EP excursions must be small compared with the radial wavelength (Berk and
Breizman, 1990b,c), which allows assuming constant mode amplitude in the radial direction as implicitly required by
the formal equivalence r ↔ v. Quantitatively, how close the system must be to marginal stability in order to use
the 1D bump-on-tail paradigm is discussed in Sec. V.D.5. The answer depends on the type of resonant EPs that are
considered as well as on the wave dispersive properties and mode structures; i.e., on the plasma nonuniformity and
equilibrium geometry. For circulating resonant EPs, for which the validity limits of the bump-on-tail paradigm are less
stringent, the upper bound on the drive strength is in the range (γL/ω0)<∼ 10−2. Meanwhile, for EPM (Chen, 1994)
the bump-on-tail paradigm is never applicable, since mode structure and frequency depend on EPs and frequency
dependent background damping is due to the SAW continuous spectrum (cf. Secs. IV.B.4 and V.D.6). In order to
partly overcome these restrictions and with the aim of investigating long range chirping modes in MAST (Gryaznevich
and Sharapov, 2006), which, in some conditions, suggest that modes may be chirping down from the TAE frequency
gap into the continuous spectrum, (Ge Wang and Berk, 2012) have proposed to add a complex contribution to the
otherwise fixed damping rate, which is frequency dependent and modeled to account for the coupling with the SAW
continuum. While this assumption captures some aspects of frequency sweeping modes when the mode is outside
the frequency gap, other issues remain open (Ge Wang and Berk, 2012), connected with the existence of “singular”
mode structures in the continuous spectrum and the other general assumptions mentioned above (cf. Sec. V.D.2).
These same conditions for the applicability of the 1D bump-on-tail paradigm also imply that small EP redistributions

32 It is worthwhile mentioning that experimental observations of “hard” nonlinear behaviors in ICRH heated plasmas also exist, as in the
case of high-frequency fishbones (cf. Sec. IV.B.1 and V.D.7).
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are expected in the case of an isolated resonance and that the long range frequency sweeping events, described
by (Breizman, 2010, 2011; Breizman and Sharapov, 2011; Lilley and Breizman, 2012; Lilley et al., 2010), have no
counterpart in AE or EPM nonlinear dynamics. In fact, by exchanging r ↔ v, these events would correspond to
local radial perturbations in the EP distribution function propagating across B0 for a distance comparable with the
EP equilibrium profile scale length. Thus, the absence of mode structures and plasma nonuniformities in this model,
makes improper its generalization to either AE or EPM nonlinear dynamics in toroidal plasmas (cf. Sec. V.D.5.b).

Frequency sweeping is a very important phenomenon, as recognized since early experimental observations of chirping
AEs and EPMs (cf. Sec. IV.C) and the first theoretical analyses of these phenomena (Berk and Breizman, 1995),
emphasizing that wave-particle energy exchange can be enhanced by resonance sweeping. In particular, (Berk and
Breizman, 1995) show that this enhancement is higher for adiabatic than for non-adiabatic frequency chirping. This
result is consistent with the phenomenology of autoresonance (Meerson and Friedland, 1990), discussed in Sec. V.E,
where adiabatic chirping of a phase-locked resonance structure is imposed externally for optimized energy extraction
from the particle phase space. When the system dynamically evolves sufficiently near marginal stability, an adiabatic
evolution of hole/clump structures may be expected for nonlinear AEs. In these conditions, described in Sec. V.D.2.c,
the coarse-grain particle distribution function (cf. Sec. V.D.1) in the resonance region preserves its value at the initial
linear resonance and its dynamics is set by the balance between the power extraction from the particle phase space
and the energy dissipation rate, determined by background damping and collisions (Breizman, 2010). However, in the
case of AE and EPM nonlinear dynamics, the frequency sweeping rate is self-consistently determined by the evolution
of the system, composed by particles and fluctuations. It is, thus, the maximization of the wave-particle power
rather than energy exchange that determines the self-consistent mode frequency evolution. For sufficiently strong
drive that radial mode structures as well as plasma nonuniformity and equilibrium geometry become important, non-
adiabatic frequency sweeping via phase locking becomes the condition for maximized wave-particle power exchange
(cf. Sec. V.D.5.b) and is associated with rapid EP profile redistributions (Gorelenkov et al., 2000; Zonca and Chen,
2000). For EPM, furthermore, new distinctive features and non-adiabatic bursting behaviors that are discussed in
Sec. V.D.6 are expected, due to the interplay between nonlinear dynamics, mode structures, and EP transports.

Deviation from adiabatic frequency sweeping for sufficiently strong drive is also expected in the solutions of the 1D
bump-on-tail problem. This is observed, e.g., by numerical simulations of Eqs. (5.140) and (5.150) with α = ν = 0,
showing non-perturbative and fast chirping events with frequency sweeping ∝ t rather than ∝ t1/2. These are
qualitatively similar to EPM in their general phenomenological features, as they involve bursting behaviors of a
strongly driven nonlinear system. Non-adiabatic processes also underly the formation of phase-space structures, such
as clumps and holes. In fact, phase-space structures can be formed only if the separatrix of the initial resonance can
be crossed by particles before they become trapped in the structures that are about to form and then separate; which
is typically the case for ωBt ∼ 1. This is the mechanism underlying, e.g., the continuous generation of hole/clump
pairs in the collisionless 1D bump-on-tail problem near marginal stability (Lilley et al., 2010) (cf. Sec. V.D.2.c); with
similarities to what occurs in the case of EPM nonlinear dynamics (Briguglio, 2012; Briguglio et al., 2013; Zonca
et al., 2005) (cf. Sec. V.D.5.b). However, in both these examples, the absence of an intrinsic interplay between mode
structures and particle transports in the 1D bump-on-tail problem remains a crucial and fundamental difference.

We now briefly remark on the case of many modes, which is less explored in depth than the single-mode case discussed
above. The role of radial mode structures is more subtle in the case of the dense spectrum of AEs characterizing burning
plasmas (Chen and Zonca, 2007a) (cf. Sec. IV), where resonance overlap (Chirikov, 1979) of finite size phase space
islands can yield enhanced stochastic transport (Breizman et al., 1993; Hsu and Sigmar, 1992; Sigmar et al., 1992). The
qualitative scenario of onset of stochastic transport within the 1D bump-on-tail paradigm has been recently reviewed
by (Breizman, 2011; Breizman and Sharapov, 2011) and the implications of quasi-linear diffusion in the presence
of many modes have been discussed by (Lilley and Breizman, 2012). Sufficiently above stochasticity threshold and
for a sufficiently dense and broad AE spectrum, finite radial mode structures and, thus, plasma nonuniformities are
expected to not significantly affect diffusive transport. Nonetheless, equilibrium geometry will still play important
roles in setting the wave-particle decorrelation time via wave particle resonance conditions (Chen, 1999), as noted
in the work by (Zhang et al., 2010b) on EP turbulent transport (cf. Sec. VI.C) and as it more generally applies to
turbulent transport [cf., e.g., (Lin et al., 2007)]. The detailed mechanisms by which a 1D uniform plasma in the
presence of many modes reaches the onset condition for diffusive transport by stochastization of particle orbits in
the phase-space, due to resonance overlap (Chirikov, 1979), has been addressed by (Breizman et al., 1993). Onset of
stochasticity is rarely global in phase space (Lichtenberg and Lieberman, 1983, 2010) and, actually, the energy release
from the particle distribution function in the considered phase-space region affected by diffusive transport may induce
the growth of additional fluctuations, otherwise disallowed, in adjacent phase-space domains, where local gradients are
enhanced as predicted, e.g., by Eqs. (5.121) and (5.122). This “domino effect” (Berk et al., 1996a, 1995a) qualitatively
resembles that of avalanches in sandpile systems involving self organized criticality (SOC) (Bak et al., 1987); i.e., of
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“chain reactions” of transport events. For investigating this process applied to multiple toroidal mode number AEs,
(Berk et al., 1995a) introduced a “line-broadened quasi-linear burst model” for treating resonance overlap of modes
with bursting behavior and applied it to characterize the nonlinear response of driven systems in weak turbulence
theory (Berk et al., 1996a). These studies suggest that, near the onset of stochasticity, especially in present day
experiments, where the AE spectrum is discrete and characterized by moderate mode numbers, equilibrium geometry
and nonuniformity of plasma profiles significantly affect nonlinear dynamics through radial mode structures and their
influence on nonlinear particle orbits, whose typical size is of the order of the radial width of the single poloidal
Fourier harmonics [cf. Eq. (4.13) in Sec. IV] for typical values of the linear mode growth rate (cf. Sec. V.D.5). This
is supported by recent findings of test particle simulations of EP transports in DIII-D (White et al., 2010a,b), which
are the usually adopted method for studying EP transport in experimentally relevant conditions (cf. Sec. V.D.4) and
show that the stochastic threshold depends on modeling details, as reported in Sec. VI.A. These physics may also
be addressed within the theoretical framework of Eq. (5.3), as shown in Sec. V.D.5.c. Such investigations, however,
belong to ongoing research activities and are beyond the scope of the present review. These issues are also further
discussed in Sec. VII.A, when addressing EP transport studies in the presence of many modes.

4. Numerical simulations of perturbative excitation of Alfvén Eigenmodes

For the investigation of AE nonlinear dynamics driven by EPs, simplification of the numerical treatment is possible
by considering perturbative EP dynamics33. The mode structures, meanwhile, are computed from a linear stability
analysis and taken to be fixed. More specifically, the EP distribution function, computed in the given AE fields
taking into account sources and collisions, yields the corresponding EP currents, which are used to obtain the time
evolution of wave amplitudes and phases (Chen and White, 1997). This numerical approach is very efficient and can
provide an accurate description of AE nonlinear evolution with perturbative EP dynamics even in the presence of
many modes, provided that the predicted nonlinear frequency shifts are consistent with the fixed radial structure
of the single poloidal Fourier harmonics [cf. Eq. (4.13) in Sec. IV]34. For practical applications and comparisons
of numerical simulation results of EP transport with experimental observations, however, further simplifications are
often employed. In fact, test particle analyses are adopted (cf. Sec. VI.A), where not only AE mode structures are
assumed from linear stability computations, but also mode amplitude and phases are given from experimental data.
Perturbative EP numerical analyses have been adopted by (Wu et al., 1994) for investigating the effect of a single

TAE mode in typical TFTR and ITER plasmas; and by (Wu et al., 1995), where the saturation level of the bump-
on-tail problem in the absence of collisions and background dissipation was found to be ωB ≃ 3.3γL, consistent with
(Levin et al., 1972a,b), while the saturation of a n = 3 TAE mode in ITER was estimated to scale as ωB ≃ 4γL.
With a similar approach, (Candy et al., 1997) have developed a Lagrangian representation for AEs time evolution
driven weakly by a perturbative EP population. Meanwhile, introducing collisions with the simplified model of
Eq. (5.134), (Vernon Wong and Berk, 1998) verified the scaling of steady-state TAE saturation amplitude predicted
by Eq. (5.135) and, for decreasing collisionality, the existence of amplitude fluctuations, whose down- and up-shifted
frequency components are compatible with the ∝ t1/2 scaling of Eq. (5.155). A more systematic theoretical framework
for handling collisions was presented by (Chen and White, 1997) considering the same collision operator of Eq. (5.138),
by means of which (Chen et al., 1999) have verified the theoretically predicted scaling of the saturation amplitude with
linear growth rate and collision rate, as derived from Eq. (5.139). This approach was used to predict the saturation
levels of TAE excited by fusion alpha particles in TFTR and to successfully compare theoretical predictions with
experimental observations (Gorelenkov et al., 1999a). The same approach was also used by (Bergkvist and Hellsten,
2004) to show that ICRH can also have an effect similar to the pitch angle scattering term in Eq. (5.138), pointing out
that both processes have a diffusive nature in velocity space, but Coulomb collisions are more effective at low energies
while ICRH interactions are more effective at high energies. In plasma scenarios typical for JET, and accounting for
collisions and ICRH on the same footing, (Bergkvist et al., 2005) have shown that time evolution of TAE amplitude,
computed with the perturbative analysis of (Chen and White, 1997; Chen et al., 1999), is consistent with experimental
observations and typically dominated by the effect of ICRH. For example, accounting for ICRH effects improves the
comparison of the computed numerical TAE spectrum with the observed splitting of TAE spectral lines (Fasoli et al.,
1998; Heeter et al., 2000). Furthermore, due to the fact that ICRH acts as an effective resonance broadening (Bergkvist
et al., 2007), ICRH is expected to be important in the onset of stochasticity in phase space and enhanced fluctuation

33 This method does not apply to EPMs, for which even the linear description requires a non-perturbative analysis of the EP response (Chen,
1994) (cf. Sec. IV.B.4).

34 We recall, here, that the radial structure of poloidal Fourier harmonics changes with the mode frequency and tends to become singular
as the accumulation point of the SAW continuous spectrum is approached.
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induced transport in the case of resonance overlap in the case of many modes (cf. Secs. VI.A and VII.A). More
recently, (Fu et al., 2010) discussed plasma micro-turbulence as a possible mechanism to enhance EP phase space
diffusion (cf. Sec VI.C). In particular, letting Dr being the EP radial diffusion coefficient, it was argued that the pitch
angle scattering part of the collision operator in Eq. (5.138), near a resonance Ω = ω − k‖v‖ = 0, can be rewritten as

νd(1− λ2) (∂λΩ)
2
∂2Ωf , (5.157)

while the effect of turbulence driven radial diffusion becomes

Dr (∂rΩ)
2
∂2Ωf , (5.158)

to be added on the right hand side. On the basis of comparisons of Eqs. (5.157) and (5.158), (Fu et al., 2010) conclude
that turbulence-induced radial diffusion might be more important than collisional effects in determining the saturation
level of EP driven AEs near marginal stability in burning plasma experiments.
Hybrid MHD-gyrokinetic codes, which have the capability of treating non-perturbative kinetic EP responses and are

based on the model equations historically developed for studying the effect of an EP population on long wavelength
MHD modes (Park et al., 1992) (cf. Secs. II.E and II.F), have also been adopted for the investigation of EP driven
TAE nonlinear dynamics near marginal stability, showing the evidence of saturation by wave-particle trapping, as in
the case of the beam-plasma system (O’Neil et al., 1971) (cf. Sec. V.D.1), yielding the expected scaling ωB ∼ γL or,
equivalently, |δB⊥/B0| ∼ (γL/ω0)

2 for the fluctuation level at saturation (Fu and Park, 1995; Park et al., 1999; Todo
et al., 1995). Deviations from this scaling was shown to occur in hybrid MHD-gyrokinetic numerical simulations of
TAEs for increasing EP drive, when the nonlinear EP radial displacement was comparable with the characteristic radial
wavelength of the mode (Briguglio et al., 1998) (cf. Sec. V.D.5.b). Energetic particle losses have also been observed
in early hybrid MHD-gyrokinetic simulations in the presence of multiple TAEs (Todo and Sato, 1998). Fokker-Planck
collision models with source terms have also been implemented in hybrid MHD-gyrokinetic simulations (Lang et al.,
2010; Todo et al., 2001) and applied to verification of theoretical predictions (Berk et al., 1999) (cf. Sec V.D.2) based
on the bump-on-tail paradigm (Lang et al., 2010), as well as to the investigation of recurrent TAE bursts observed
in TFTR NBI heated plasmas (Todo et al., 2003), for which the numerical repetition time of subsequent TAE bursts
is close to experimental values. Neglecting mode-mode nonlinear couplings, the stored beam energy is found to be
∼ 40% of that expected in the absence of fluctuations, although the predicted saturation level of |δB⊥/B0| ≃ 2×10−2

is significantly larger than that observed experimentally, |δB⊥/B0| ∼ 10−3. Meanwhile, particle phase-space mapping
show that EP redistributions are due to both resonance overlap of different eigenmodes as well as stochastization of
particle orbits due to secondary and higher order resonances of a single eigenmode. The same numerical simulation
has been repeated recently (Todo et al., 2012a), with the inclusion of MHD mode-mode couplings, finding lower
TAE saturations levels and two possible scenarios; i.e., TAE steady-state saturation at |δB⊥/B0| ≃ 2 × 10−3 for
low MHD dissipation coefficients and TAE bursting with peak fluctuation levels at |δB⊥/B0| ≃ 5 × 10−3 for the
higher dissipation case. The lower saturation level, in this case, is attributed to the enhanced dissipation due to the
nonlinearly driven modes, with both n = 0 and n 6= 0. In other words, this process is essentially that of unstable
modes transferring energy to nonlinear driven oscillations, which are damped and eventually dissipate energy into
the short scales (Todo et al., 2010, 2012a), possibly through the fine structures connected with resonant excitation
of higher toroidal mode number continuous spectra (Todo et al., 2012b). Thus, it is different from the enhanced
nonlinear coupling with the SAW continuum or the spontaneous generation of ZS, analyzed in Secs. V.C.2 and V.C.3,
which are collisionless processes and are expected to play important roles in high temperature burning plasmas.
Model Fokker-Planck collision terms in the form of Eq. (5.138) have been also implemented in gyrokinetic codes

for investigating nonlinear TAE dynamics as, e.g., by (Chen and Parker, 2011). There, it is shown that an n = 15
TAE in ITER, found to be the most unstable mode from previous linear stability analyses of the considered reference
scenario (Chen et al., 2010c) (cf. Sec. IV.C), nonlinearly evolves up to a peak fluctuation amplitude, consistent with

ωB ∼ γL, and then decays to a steady state saturation level, which scales as ν
2/3
d , consistent with Eq. (5.139), and is

typically dominated by pitch angle scattering (Chen and Parker, 2011).

5. Nonlinear dynamics of Alfvénic fluctuations in nonuniform toroidal plasmas

Nonlinear wave-particle interactions are importantly modified by geometry of the plasma equilibrium and spatial
nonuniformities, as in Sec. V.C it is shown to be the case for nonlinear wave-wave couplings. In this section, we
first present a qualitative discussion of these modifications, showing that they occur for sufficiently strong EP drive,
giving estimates of the deviation from marginal stability that is necessary for them to take place. Then, we give a
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quantitative and formal description of the same phenomena, based on numerical simulation results and the general
theoretical framework introduced in Sec. V.A. This allows us to ultimately derive general equations for the nonlinear
dynamics of phase-space ZS and to demonstrate the unification of “bump-on-tail” and “fishbone” paradigms.
A detailed analysis of resonant wave particle interactions in 2D toroidal plasmas is given by (Zonca et al., 2013a,b),

using the general time scale ordering |ω0τNL|−1 ∼ |γL/ω0| ≫ ǫω ∼ O(ω/Ωi), discussed in Sec. II.D, to motivate
the assumption that for every bounce/transit the effect of nonlinear dynamics is small enough that wave-particle
resonances are not altered significantly or destroyed. In this way, nonlinear dynamics connected with wave-particle
resonances can be understood as cumulative effects of bounce/transit-averaged processes on linear particle motions.
The resonant particle response to a fluctuating field f(r, θ, ζ) can then be written as

f(r, θ, ζ) =
∑

m,n,ℓ

ei(nω̄d+ℓωb)τ+iΘn,m,ℓPm,n,ℓ ◦ fm,n(r̄ +∆r) . (5.159)

This is the nonlinear extension of Eq. (4.47); i.e., a lifting of f(r, θ, ζ) to the particle phase-space35, which is useful
for resonant particles satisfying the resonance conditions Eqs. (4.50) and (4.51). Here, the Pm,n,ℓ ◦ fm,n functions are
defined in Eq. (4.48), while Θm,n,ℓ is the nonlinear wave-particle phase shift, defined as (Zonca et al., 2013a,b)

Θn,m,ℓ = n∆ζ −m∆θ + n

(
∂ω̄d
∂Pφ

∫ τ

0

δPφdτ
′ +

∂ω̄d
∂J

∫ τ

0

δJdτ ′
)

+ℓ

(
∂ωb
∂Pφ

∫ τ

0

δPφdτ
′ +

∂ωb
∂J

∫ τ

0

δJdτ ′
)
−
∫ τ

0

δωdτ ′

+(nq̄(r̄)−m)

(
∂ωb
∂Pφ
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0

δPφdτ
′ +

∂ωb
∂J

∫ τ

0

δJdτ ′
)
+ nωb

dq̄

dr̄

∫ τ

0

δrdτ ′ , (5.160)

and accounting for “resonance detuning”. ∆ζ and ∆θ are the cumulative nonlinear shifts in ζ and θ, while δPφ and
δJ are the nonlinear deviations from particle constants of motions, corresponding to the radial nonlinear deviation
δr = r − r̄; and integrations are along the unperturbed particle orbits. Meanwhile, the nonlinear frequency shift
δω = ω(τ)−ω0 for a nearly monochromatic wave (cf. Sec. II.C) is explicitly taken into account, leaving implicit only
the time dependence of the reference linear instability. Note that the last line of Eq. (5.160) applies to circulating
particles only and is the nonlinear extension of (−i lnλm,n), with λm,n defined in Eq. (4.49). Furthermore, ∆r in
the argument of Pm,n,ℓ ◦ fm,n is the the bounce-averaged nonlinear radial particle displacement, which describes the
role of finite radial mode structures; i.e., “radial decoupling”. Equation (5.159) states that nonlinear wave-particle
resonant interactions must be computed with bounce averaged fields strength at the actual particle position, including
the nonlinear radial displacement. It is also worthwhile noting that both resonance detuning and radial decoupling
for EPs are dominated by ∆r, due to the fact that |ω∗E/ω0| ≫ 1 (Chen et al., 1988).
In nonuniform plasmas, it is important to compare the characteristic scale of radial mode structures (“radial

decoupling”) with the finite interaction length ∆rL for particles to detune from resonance (“resonance detuning”).
Assuming that τNL ∼ Θ̇−1

m,n,ℓ ∼ (3γL)
−1, ∆rL is respectively derived as (Zonca et al., 2013a,b)

3γL ∼ nq′ωǫω̇∆rL ; (5.161)

3γL ∼ ωǫω̇(∆rL/r) , (5.162)

for circulating and magnetically trapped EPs, noting that γL from now on is intended as net growth rate. In these
expressions, the factor ǫω̇ = 1 for fixed frequency modes, whereas ǫω̇ < 1 for non-adiabatic frequency sweeping modes
(ω̇ ∼ ω2

B, cf. Sec. V.D.5.a). For them, wave-particle resonance condition may be maintained via “phase locking”; i.e.,
|Θ̇m,n,ℓ| ≪ 1 is preserved during nonlinear interaction, within the constraints imposed by wave dispersive properties
and plasma nonuniformity. There is no adiabatic invariant connected with phase-space particle motion for “phase
locked” fluctuations, which may suppress wave-particle trapping, as the effective bounce frequency is reduced by

∼ ǫ
1/2
ω̇ and EPs explore regions of varying mode structure (radial decoupling) without significant resonance detuning.
When fluctuations maintain wave-particle resonance condition via “phase locking”, the chirping rate is proportional

to mode amplitude, as observed experimentally, e.g., by (Heidbrink, 2008; Podestà et al., 2011), and in numerical
simulations of nonlinear EPM evolutions (Briguglio et al., 2013, 2002, 1998; Vlad et al., 2004, 1999; Zonca et al., 2002)
as well as nonlinear fishbone dynamics (Fu et al., 2006; Vlad et al., 2012, 2013). This behavior is also demonstrated

35 This can be intended as the long time scale effective averaged action of f(r, θ, ζ) on a particle, given its constants of motion.
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analytically for nonlinear EPM dynamics (Zonca et al., 2005). Meanwhile, resonant particle motion is secular and
corresponding transport is ballistic/convective: this particular nonlinear dynamic regime has been dubbed “mode
particle pumping” in the original work (White et al., 1983), where it was proposed for interpreting EP transport
caused by fishbones (cf. Sec. V.D.7). Equations (5.161) and (5.162) can be concisely expressed as

(∆rL/r) ∼ 3ǫ−1
ω̇ λ−1

n (γL/ω) , (5.163)

where λn = |nrq′| for circulating EPs and λn = 1 for trapped EPs, respectively. This expression for (∆rL/r) implies
that circulating EP transport is expected to be mostly diffusive in the presence of many high-n modes, typical of
ITER conditions (cf. Secs. VI.A and VII.A). On the contrary, magnetically trapped EP transports may be affected
by convective (ballistic) processes (cf. Sec. V.D.6) with intrinsically non-local features (Briguglio et al., 2002, 1998;
Vlad et al., 2004, 1999); i.e., characterized by meso-scales larger than |nq′|−1, with analogies to electron behaviors
in gyrokinetic numerical simulations of collisionless trapped electron mode turbulence (Xiao and Lin, 2011). For
moderate or low-n fluctuations, more typical of present day tokamaks, the situation is less well defined and requires
more articulation, as shown hereafter.36

a. From local to meso-scale energetic particle redistributions

Equation (5.163) should be compared with the characteristic scale of radial mode structures, ∆rd, which determines
radial decoupling due to nonlinear wave-particle dynamics in nonuniform plasmas. From the general form of mode
structures in toroidal geometry [cf., e.g., Eq. (4.26) in Sec. IV.B], one can readily write

(∆rd/r) ∼ ǫ∆|nrq′|−1 , (5.164)

where ǫ∆ accounts for the mode frequency shift δωL with respect to the SAW continuum accumulation point. For

example, ǫ∆ ∼ β1/2(δωL/ω)
1/2 for BAE (cf. Sec. IV.B.2), while ǫ∆ ∼ ǫ

1/2
0 (δωL/ω)

1/2 for TAE (cf. Sec. IV.B.3). As
|δωL|>∼ γL, Eq. (5.164) reflects the short scale radial structure of both AEs and EPMs due to the removal of mode
degeneracy with the continuous spectrum. Meanwhile, if ǫ∆ ∼ 1 is assumed in Eq. (5.164), one obtains an estimate
of the radial scale length of single poloidal harmonics connected with magnetic shear. From Eqs. (5.163) and (5.164),
it is clear that “radial decoupling” becomes just as or more significant than “radial detuning” when

(γL/ω)>∼ λn|nrq′|−1ǫω̇ǫ∆/3 . (5.165)

This condition, which depends on mode dispersive properties via ǫω̇ǫ∆ and on the type of resonance via λn, can also
be considered as criterion for estimating the validity limits of the bump-on-tail paradigm for interpretation of AE
behaviors in toroidal plasmas. In addition, since significant EP radial redistributions take place on the characteristic
fluctuation length scale, both the mode dispersiveness and structures may be affected, when this condition is satisfied.
Equation (5.165) is most difficult for circulating EPs, for which λn = |nrq′| and the condition for “radial decoupling”
to become important can be estimated as

(γL/ω)>∼ ǫω̇ǫ∆/3 ∼ 3× 10−2 , (5.166)

as an upper bound, having assumed ǫω̇ǫ∆<∼ 10−1. Meanwhile, for magnetically trapped EPs, the corresponding

condition is (γL/ω)>∼ 10−2 for moderate mode numbers and (γL/ω)>∼ 10−3 for the high-n modes expected in ITER.
Once the condition of Eq. (5.165) is exceeded, the transition to a regime, where effects of mode structures become

important, is initially gradual and then gives rise to novel behaviors due to interplay between mode structures and
EP transport (Zonca et al., 2005). This transition can also be understood in terms of EP redistributions, which, for
isolated resonances, change in nature from the local character connected with the short radial scale of AEs, as upper
bound, to meso-scale features >∼ |nrq′|−1. That is, the initial gradual transition occurs when ǫ∆ reflects the short
AEs radial scale, as discussed after Eq. (5.164), and can be considered complete when ǫ∆ = 1 in Eq. (5.165), From
Eq. (5.165) with ǫ∆ = 1, this occurs for

(γL/ω)>∼ |nrq′|−1ǫω̇/3 , (5.167)

36 This point, together with similar remarks made earlier about wave-wave couplings (cf. Sec. V.C) and the different nonlinear dynamic
regimes expected in burning plasmas with respect to those in present day devices, may suggest that understanding nonlinear SAW and
EP physics in existing experiments may be more difficult than in burning plasmas. This indeed partly applies to sufficiently short time-
scale behaviors (cf. Secs. II.C and II.D). However, more generally, this point also shows the need of theory and numerical simulations
for reliable extrapolations of present understanding of nonlinear SAW dynamics to burning plasmas conditions, especially when tackling
new physics issues, as those of complex behaviors and spatiotemporal cross-scale couplings, discussed in Sec. VII.B.
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for magnetically trapped EPs. For circulating EPs, meanwhile, the same condition is more stringent and reads

(γL/ω)>∼ ǫω̇/3 . (5.168)

This means that for magnetically trapped EPs, the transition between local to meso-scale redistributions can take
place for (γL/ω) ∼ 10−2. On the contrary, for circulating EPs, the same transition would occur at (γL/ω) ∼ 10−1

with fast non-adiabatic frequency sweeping and “phase locking” (ǫω̇ < 1). For moderate mode numbers, for which
Eqs. (5.167) and (5.168) predict similar transition threshold from local to meso-scale EP transport, “mode particle
pumping” may convectively redistribute magnetically trapped and circulating resonant EPs on a significant portion of
the plasma37. For increasingly higher mode numbers, instead, typical of ITER conditions, redistribution of circulating
resonant EPs, unlike that of magnetically trapped EPs (cf. Sec. V.D.5), tends to become local, so that significant
(diffusive) transport may occur only above stochastic threshold in the presence of many modes (cf. Secs. VI.A
and VII.A). In the light of Eqs. (5.167) and (5.168), it is also possible to conclude that, for significant fast non-
adiabatic frequency sweeping and “phase locking”, particle redistributions are generally characterized by meso-scale
secular processes, typical of “mode particle pumping” (White et al., 1983). In other words, frequency chirping rate
gives a clear measure for discriminating weak from strong EP transports (cf. Sec. VI.B). Meanwhile, the spatial range
of EP redistributions is typically ∼ |nrq′|−1 for circulating particles and may be larger for magnetically trapped ones,
depending on radial mode structures; i.e., radial decoupling.
In general, both threshold conditions given by Eqs. (5.167) and (5.168) can be exceeded in situations of practical

interest. In fact, in weakly collisional plasmas of fusion interest, the short time scale (τ−1
NL ∼ γL; cf. Secs. II.C, II.D

and V.A) EP power density is linearly proportional to time and injected power (cf. Sec. V.D.7). Thus, the effective
strength of EP drive is directly controlled by additional power input, which may be tuned equally well to achieve
plasma conditions with either AEs excited near marginal stability (cf. Secs. V.D.3 and V.D.4) or with strongly driven
AE and EPM, as routinely observed in experiments with strong ICRH [e.g., (Bernabei et al., 1999, 2001; Nabais
et al., 2005; Zonca et al., 2009)] and neutral NBI [e.g., (Gryaznevich and Sharapov, 2004, 2006; Lesur et al., 2010;
Podestà et al., 2011)]. It is also interesting to note that threshold conditions given by Eqs. (5.167) and (5.168) can be
exceeded nonlinearly, due to the combined effect of different fluctuations. An experimental evidence of this case may
be given by “TAE avalanches” in NSTX (Fredrickson et al., 2009; Podestà et al., 2009), where significant rapid EP
losses occur in bursts of non-adiabatic frequency sweeping modes (Podestà et al., 2012, 2011), which are consistent
with the general features of EPMs and cause up to ∼ 30% EP losses, following the activity of quasi-periodic TAE
fluctuations with limited frequency chirping (Fredrickson et al., 2009; Podestà et al., 2009) . In this case, resonance
overlap may enhance the EP free energy source in the first phase of quasi-periodic TAE fluctuations (cf. Sec. V.D.5.b)
and, once the EPM excitation threshold is exceeded, the dominant “TAE avalanche” is triggered (cf. Sec. VI.B).

b. Numerical simulation results of meso-scale energetic particle redistributions

The transition from local to meso-scale nonlinear EP redistributions was investigated numerically for the first time
by (Briguglio et al., 1998) for the case of TAE and EPM. In this work, linear TAE and EPM regimes were identified
from the behavior of mode growth rate vs. EP energy density, revealing the EPM threshold condition as discussed
in Sec. IV.B.4 and Fig. 2(a). In the same work, it was also shown that TAE to EPM transition is properly described
only with a fully non-perturbative treatment of the EPs.
The work by (Briguglio et al., 1998) confirms that nonlinear saturation of TAE modes occurs because of wave-

particle trapping, as noted in earlier hybrid MHD-gyrokinetic simulations of TAE modes excited by EPs (Fu and
Park, 1995; Todo et al., 1995). However, for increasing growth rate, EP redistributions by finite amplitude TAE affect
an increasingly broader radial region, which eventually becomes of the same order of the characteristic fluctuations
length scale (cf. Sec. V.D.5.a). Thus, TAE saturation becomes gradually more affected by radial decoupling than
by resonance detuning. This is also visible in the scaling of TAE saturation amplitude vs. the linear growth rate
shown in Fig. 6(a). The overall EP density profile, however, is not appreciably affected, since only resonant EPs are
subject to a significant nonlinear radial displacement. As noted by (Briguglio et al., 1998), when the radial width of
the wave-particle resonant region becomes comparable with the finite mode width, the saturation amplitude deviates
from the simple scaling |δB⊥/B0| ∼ (γL/ω)

2 (cf. Secs. V.D.1 and V.D.4) and eventually becomes independent of
the linear drive. For this case of TAE excited by EPs via transit resonance, the |δB⊥/B0| ∼ (γL/ω)

2 behavior holds

37 It is also worthwhile noting that the effect of finite EP orbit widths and radial nonuniformity may also reduce the threshold condition of
this criterion. In fact, the estimate of Eq. (5.161), where Eq. (5.168) is derived from, predicts, e.g., that the transit resonance frequency
in Eq. (4.51) is reduced to zero for a radial displacement ∼ |nrq′|−1, while this may be an overestimate of resonance detuning as a
consequence of the equilibrium orbit averaging in the definition of q̄, Eq. (4.45). These effects may be precisely computed case by case
and the criterion of Eq. (5.168) may then be given more accurately. A similar argument also applies to trapped particles.
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(a)
(b)

FIG. 6 Left frame (a) [from the original Fig. 9 in Ref. (Briguglio et al., 1998)]: TAE saturation amplitude vs. the normalized
linear growth rate, expressed in Alfvén time units, τA = R0/vA, computed at the magnetic axis and with R0 denoting the
geometric center of the circular toroidal plasma (Briguglio et al., 1995). Right frame (b) [from the original Fig. 4 in Ref. (Wang
et al., 2012)]: BAE saturation amplitude, expressed by the peak scalar potential energy normalized with respect to the EP
birth energy, whose distribution function is an isotropic slowing down, is shown vs. the normalized mode linear growth rate.

FIG. 7 [from the original Fig. 4 in Ref. (Zhang et al., 2012)]: Nonlinear evolution of the EP distribution function during a
BAE nonlinear burst cycle. Pζ is the canonical angular momentum conjugate to the angle ζ (cf. Sec. IV.A), normalized to
(−eψ/c) (cf. Sec. IV.B) at the plasma boundary, and the particle marker color denotes the initial value of Pζ . Frame (a) refers
to the initial (linear) unstable phase, accompanied by non-adiabatic downward frequency chirping. Frames (b) and (c) capture
the early and later BAE decay phase after the mode burst maximum is reached. Frame (d) corresponds to the further growth
of the mode, i.e., the second BAE burst, after the minimum mode amplitude is reached.

for γL/ω<∼ 10−2, as shown in Fig. 6(a), consistent with the criterion of Eq. (5.166). The same type of behavior has
been recently observed in BAE hybrid MHD-gyrokinetic simulations and is reported in Fig. 6(b). The mechanism
by which radial decoupling changes the scaling of the saturation amplitude with (γL/ω0) is also explained by (Wang
et al., 2012) in terms of a simplified analytical model, which incorporates wave-particle resonance as well as finite
interaction domain due to mode localization. The observed deviation of the mode saturation amplitude from the
∼ (γL/ω)

2 scaling in simulations (Briguglio, 2012; Briguglio et al., 2013, 2012; Wang et al., 2012; Zhang et al., 2012)
is, thus, indicative of the increasing importance of radial decoupling with respect to resonance detuning.

Another important aspect of the transition from local to meso-scale EP redistributions is that the system is not near
marginal stability, as discussed in Secs. V.D.2 and V.D.3, and its dynamics is non-adiabatic. This is a consequence
of the fact that the non-perturbative power exchange between waves and EPs undergoes an O(1) variation on the
characteristic time τNL (cf. Sec V.D.5.a). These physics are clearly demonstrated in recent numerical simulations
of BAE nonlinear dynamics with both gyrokinetic (Zhang et al., 2012) and hybrid MHD-gyrokinetic (Wang et al.,
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FIG. 8 Left frame [from the original Fig. 2 in Ref. (Wang et al., 2012)]: BAE-EP power exchange in (µ, v‖) space in the
growing (upper panel) and saturation (lower panel) phases of the BAE burst. Velocity space variables µ and v‖ are normalized

w.r.t. E0/Ω and (E0/m)1/2, respectively, with E0 the maximum EP energy in the isotropic slowing down distribution function,
assumed as initial condition. The positive sign in the color bar corresponds to EPs driving the wave. Solid and dashed lines
are magnetically trapped to passing EP boundaries at the inner and outer limits of the mode radial half width. Right frame
[from the original Fig. 3 in Ref. (Wang et al., 2012)]: Kinetic Poincaré plots (Briguglio, 2012; White, 2012) of phase-space

ZS near v‖ > 0 (upper panel) and v‖ < 0 (lower panel) resonances in (Θ,−Pφ) space, normalized w.r.t. 2π and a(mE0)
1/2,

respectively, with a the plasma minor radius. Marker color denotes the initial Pφ value, and dashed horizontal lines indicate
the radial mode half width.

2012) approaches. In the work by (Zhang et al., 2012), BAE is excited predominantly by trapped EPs via precession
resonance and nonlinear mode evolution is characterized by continuous bursting without EP sources or sinks and
with EPs assumed to initially have an isotropic Maxwellian distribution function. These nonlinear dynamics are
illustrated in Fig. 7, showing the evolution of the EP distribution function in the (ζ, Pζ) space, with Pζ the canonical
angular momentum conjugate to the angle ζ (cf. Sec. IV.A), normalized to (−eψ/c) (cf. Sec. IV.B) at the plasma
boundary, and the particle marker color denoting the initial value of Pζ . In the growth phase of the BAE mode,
shown in Fig. 7(a), the frequency sweeps downward, consistently with the mode dispersion relation. Particles, which
are moving outward (upward in normalized Pζ) and drive the mode, more easily maintain the phase locking condition

for magnetically trapped particles, stemming from Θ̈m,n,ℓ ≃ 0 and Eq. (5.160), and noting |ω∗E/ω| ≫ 1 (Chen, 1988):

δω̇ ≃ (n∂r̄ω̄d + ℓ∂r̄ω̄b)∆ṙ . (5.169)

Vice-versa, particles that are moving inward (downward in normalized Pζ) and damp the mode are more easily
detuned from resonance. Thus, power transfer from particles to the wave is maximized, as well as are particle
nonlinear radial displacement and mode growth, which continues until mode saturates and then starts decaying due
to radial decoupling, as shown in Fig. 7(b). This is visible from two clear features (Zhang et al., 2012): (i) the
resonance detuning of the upper phase-space structure is limited with respect to that of the lower structures; (ii) the
wave amplitude decay starts before significant resonance detuning, suggesting the important role of radial decoupling,
which is also evident from the particle radial displacement compared to the mode width (Zhang et al., 2012). In
the further evolution of the mode, after resonant particles are radially decoupled with respect to the mode peak
and the mode amplitude further decreases as in Fig. 7(c), the distribution function free energy is partly recovered
in Fig. 7(d), when the wave-particle phase Θ (dropping the subscripts in Θm,n,ℓ) completes one whole oscillation in
the instantaneous fluctuation-induced potential well, producing a second BAE burst (Zhang et al., 2012). Similar
behaviors are observed by (Wang et al., 2012), where BAE is destabilized by EPs via transit resonance and nonlinear
mode dynamics is produced uniquely by wave-EP interaction, as thermal ion kinetic response is linearized. In this
case, the frequency sweeps upward in the growth phase of the BAE mode, consistently with the mode dispersion
relation (Wang et al., 2012). Thus, the phase locking condition analogous to Eq. (5.169) for circulating EPs,

δω̇ ≃ n(dr̄ q̄)ωt∆ṙ , (5.170)
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is more easily maintained for positive than negative parallel velocities for EPs that move outward and drive the mode,
causing symmetry breaking in v‖ for the wave-particle power exchange, as shown in Fig. 8 (left). As the mode grows,
frequency chirping and v‖ symmetry breaking are more evident. This is illustrated also in Fig. 8 (right), showing
kinetic Poincaré plots (Briguglio, 2012; White, 2012) for v‖ > 0 (upper panel) and v‖ < 0 (lower panel) resonances in
(Θ,−Pφ) space at mode saturation, which demonstrate rapid resonance detuning for v‖ < 0, while phase locking for
v‖ > 0 allows particles to be most efficiently transported outward, when driving the mode.
In both these recent works on nonlinear BAE dynamics (Wang et al., 2012; Zhang et al., 2012), the role of EPs is

non-perturbative and results in non-adiabatic frequency chirping, while dominant wave-EP resonant interactions are
those satisfying phase locking as predicted by Eqs. (5.169) and (5.170). As EPs are displaced outward while driving
the mode and phase-space ZS evolve in time, the mode behaves as wave packet driven at the local growth rate,
adjusting its radial structure to maximize wave-particle power exchange within the limits imposed by its dispersive
properties (cf. the following discussion). To further illuminate the physics of phase locking and radial decoupling,
(Briguglio, 2012) has set up a dedicated numerical simulation experiment, where radial equilibrium profiles are chosen
to excite a radially localized n = 2 EPM near the TAE frequency gap38; and introduced novel high-resolution
numerical diagnostics for the EP phase-space, based on Hamiltonian mapping techniques. In this case, radial EPM
localization is controlled by the choice of weak magnetic shear, which yields an EPM with two dominant Fourier
harmonics, (3, 2) and (4, 2), near the radial position where q ≃ 7/4. Kinetic Poincaré plots, analogous to those of
Fig. 8, demonstrate that mode saturation occurs by radial decoupling in a characteristic time, which is about half
of the wave-particle trapping time. When this occurs, similarly to the BAE cases discussed above, the wave-particle
power exchange becomes most negative (damping) at the original resonance location and, at the same time, steeper
gradient regions are formed at the outer limits of the radial mode structure, as these are the positions where EPs tend
to accumulate due to radial decoupling and diminishing fluctuation amplitude. This is clearly demonstrated by further
kinetic Poincaré plots, where EP markers label the instantaneous wave-particle power transfer rather than the initial
particle Pφ (Briguglio, 2012; Briguglio and Wang, 2013). However, unlike the BAE cases above, the instantaneous
strengthening of the mode drive at higher and lower frequencies, with respect to that of the original EPM, “locally
forces” wave packets of the SAW continuous spectrum; and EPM mode structure and frequency tend to split. In
the case of a radially extended EPM mode structure, only one of the two possible SAW continuum wave packets,
stemming from the original linear unstable EPM, is effectively driven due to the radial symmetry breaking caused
by global equilibrium nonuniformities; and the corresponding dynamics is that of an avalanche (Zonca et al., 2005)
(cf. Sec. V.D.6). Meanwhile, for radially localized EPM, the following EPM evolution shows merging of the separate
EPM wave-packets, which contribute to reconstructing the unstable EP distribution at the radial position of original
linear unstable EPM; while wave-packets in the strengthened drive regions farther in Pφ are not effectively excited due
to the increased continuum damping (Briguglio, 2012). The main difference of EPM evolution with respect to BAE
nonlinear dynamics consists in the “radial singular” structures characterizing the SAW continuum, which allow SAW
wave packets to readily respond to instantaneous local forcing, while broader mode structures and wave dispersiveness
cause BAE to be less suited to significant mode structure changes (Wang et al., 2012; Zhang et al., 2012). Nonetheless,
for sufficiently strong EP drive, also BAE and TAE exhibit mode structure splitting and merging as well as nonlinear
oscillation of mode amplitudes accompanying EP phase locking and AE saturation by radial decoupling (Briguglio,
2012; Briguglio and Wang, 2013).
The above results for both BAE and localized EPM clearly indicate that, for non-perturbative EP drive satisfying

Eqs. (5.167) and (5.168), the EP redistributions occur on meso-scales and dominant wave-particle interactions follow
the phase locking condition. Meanwhile, the mode frequency dynamics is non-adiabatic, ω̇ ∼ ω2

B, as it is readily

verified from Eqs. (5.169) and (5.170); and from the the estimate ∼ δ ˙̄X⊥ (cf. Sec. II.D), with

ω2
B ≃ λn

∣∣∣(ω/r)δ ˙̄X⊥

∣∣∣ ≃ λn |(ω/r)(nq/r)(c/B0)δφ| . (5.171)

These results, furthermore, confirm that formation and modification of phase-space ZS occur on a time scale ωBt ∼ 1,
as anticipated in Sec. V.D.3. They also suggest that the dynamic process underlying the “continuous generation”
of phase-space holes and clumps in the collisionless limit of the 1D bump-on-tail problem (Lilley and Breizman,
2012; Lilley et al., 2010), in the absence of sources and sinks, starts as a non-adiabatic process, similar to that
discussed above for localized EPM (Briguglio, 2012; Briguglio and Wang, 2013; Zonca et al., 2005), for then evolving
as adiabatic (Berk et al., 1999, 1997a,b; Breizman et al., 1997) or non-adiabatic process [cf., e.g., (Vann et al., 2007)],
depending on the proximity to marginal stability39.

38 The case of radially extended EPMs is discussed in Sec. V.D.6.
39 This remark is connected with the relevant time scales of the problem. In the case of adiabatic continuous generation of holes and clumps,
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c. Nonlinear equations for energetic particle phase-space zonal structures

After the original work by (Bernstein et al., 1957) on Bernstein-Greene-Kruskal (BGK) modes, significant attention
was devoted to the investigation of dynamics of phase-space structures in uniform plasmas, generally dubbed as
holes (Berk et al., 1970; Berman et al., 1983; Dupree, 1982; Tetreault, 1983), when the phase-space structure density
is lower than that of the phase-space containing it, or clumps (Berman et al., 1983; Dupree, 1970, 1972, 1982; Tetreault,
1983), if the phase-space structure density is higher than in the surrounding region (cf. Sec. V.D.2.c). These analyses
have been adopted and extended in the 1D bump-on-tail paradigm for the interpretation of AE behaviors in toroidal
plasmas by Berk, Breizman and coworkers since the early 1990’s (cf. Secs. V.D.2 and V.D.3).
When looking at transport processes in 2D systems with two periodic angle-like coordinates, one of which defines

the equilibrium symmetry, phase-space structures that are of direct interest are those obtained by averaging out
dependences on angle-like variables. In terms of the Fourier decomposition and general coordinates introduced in
Sec. IV.A, this means that most relevant phase-space structures are characterized by n = m = 0; i.e., they may be
generally referred to as “phase-space ZS” (Zonca et al., 2013a,b), as this condition is necessary and sufficient for having
k · b = 0 everywhere (cf. Secs. II.D and V)40. The concept of phase-space ZS is very general and encompasses the
modification of particle distribution functions as consequence of fluctuation induced transport processes and, thereby,
the corresponding corrugations of equilibrium radial profiles (Zonca et al., 2006, 2000, 2005) (cf. Sec. V.D.6); as well
as zonal flows and fields/currents (Chen et al., 2000, 2001; Gruzinov et al., 2002; Guzdar et al., 2001b; Hasegawa
et al., 1979; Lin et al., 1998) (cf. Secs. V.A, V.B.3 and V.C.2). In fact, zonal flows and fields/currents may be
considered as generators of nonlinear equilibria (Chen and Zonca, 2007b), which have their own “modified” particle
distribution functions and dynamically evolve on characteristic “transport” time scales, which are generally of the
same order of the nonlinear time scale of the underlying fluctuations, although time scale separation may apply in
various circumstances as, e.g., it is frequently (but not always) the case of drift-wave turbulence (shorter characteristic
times) and turbulent transport (longer time scales). Thus, zonal modifications of particle distribution functions and
zonal flows and fields/currents are fundamentally interconnected and should be consistently addressed on the same
footing, as argued in the general discussion of Sec. V.A.
Phase-space holes and clumps are particular cases of phase-space ZS, where time scale separation applies between

their long characteristic dynamic nonlinear evolution and the much shorter wave-particle trapping time. As a conse-
quence, it is always possible to identify an adiabatic invariant as the action integral connected with the EP bounce
motion in the trapping well of the wave, and the EP distribution function, at the lowest order, is independent of the
corresponding conjugate angle. Furthermore, there must exist a separatrix between the inner and outer phase-space
region of holes and clumps, which cannot be crossed by particles in the dynamic evolution of phase-space ZS (cf.
Secs. V.D.2 and V.D.3). More generally, for increasing drive strength, phase-space ZS evolve on typical scales of
wave-packet radial structures. One can identify this new condition as breaking of the action integral invariance in
the instantaneous trapping well of the wave, whose separatrix can now be crossed by resonant EPs interacting with
the wave-packet. Thus, the concept itself of phase-space holes and clumps becomes questionable in its generally
adopted meaning, although it maintains its literal sense of a lack or excess of particles in a certain phase-space region
with respect to the equilibrium particle distribution function. For these reasons, we will refer from now on only to
phase-space zonal structures, bearing in mind that this terminology is equivalent to phase-space holes and clumps in
the case of uniform plasmas, sufficiently near marginal stability and with adiabatic nonlinear dynamics.
In this section we analyze the self-consistent and generally non-adiabatic nonlinear evolution of Alfvénic fluctuations

and resonant EP phase-space ZS, allowing the investigation of the transition from local to meso-scale EP redistributions
(cf. Secs. V.D.5.a and V.D.5.b). Thus, the key novel feature, analyzed in the following, is connected with the role of
plasma nonuniformity and equilibrium magnetic field geometry in the dynamics of phase-space ZS.
For low frequency fluctuations, the nonlinear equations for EP phase-space ZS are obtained from the nonlinear

gyrokinetic equations (Frieman and Chen, 1982); i.e., the zonal particle distribution function, from Eq. (2.21), is

δfz =
∑

m

{
Pm,0,0 ◦ [J0(λ)δg]m,0

}
−
[
J0(λ)

(
e

m

1

B0

∂F̄0

∂µ
〈δLg〉

)]

0,0

+
e

m

[
∂F̄0

∂E δφ+
1

B0

∂F̄0

∂µ
δL

]

0,0

, (5.172)

where notations are those introduced in Sec. II.D, and the projection operator P0,0,0 is a particular case of Pm,n,ℓ
defined in Eq. (4.48) and used in the nonlinear representation of Eq. (5.159). Meanwhile, the evolution equation for

the process may be seen as “secondary instability” of the coarse-grain distribution function, connected with the BGK mode. In the case
of non-adiabatic formation of hole and clump pairs, there is no adiabatic invariant and resonant particles never reach the coarse-grain
distribution function (Sagdeev and Galeev, 1969). This issue is also connected with the existence of quasi-stationary states (Carlevaro
et al., 2013) in the context of the “Lynden-Bell approach” (cf. Sec. V.D.1).

40 More precisely, it is also necessary to take ℓ = 0 in the lifting of f(r, θ, ξ) to the particle phase-space, defined by Eq. (5.159).
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the zonal component of δg is obtained from Eq. (2.23)

∂δgz
∂t

= −
∑
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(
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∂
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−
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b×∇ 〈δLg〉 ·∇δg
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(5.173)
Assuming that |k‖| ≪ |k⊥| (cf. Sec. II.A), Eq. (5.173) can be cast as (Zonca et al., 2005)
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, (5.174)

where
∑
n stands for summation on toroidal mode numbers, which have been specified as subscript of fluctuating

fields where needed. In turn, the evolution equation for δgn is readily written as

(
∂
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∂δgz
∂r

)
〈δLg〉n . (5.175)

Here, QF̄0 is defined by Eq. (4.55), the contribution ∝ 〈δLg〉z on the left hand side represents the Doppler-shifted
mode frequency in the zonal flows and fields/currents, while the term ∝ ∂rδgz on the right hand side accounts for the
“quasilinear” modification of the equilibrium particle distribution function (cf. Secs. V.A, V.D.6 and V.D.7)

Equations (5.174) and (5.175), along with the field equations for Alfvénic fluctuations, i.e., Eq. (5.3) without the last
term on the right hand side; and Eqs. (2.26) and (2.30) for δφz and δA‖z , respectively, fully characterize the short time
scale nonlinear evolution of DAWs and EPs. These equations are, hence, the relevant equations for the self-consistent
evolution of phase-space ZS excited by EPs and related transports. Despite their general yet relatively simple form,
which makes them suitable for investigating various aspects of cross-scale couplings and complex behaviors in burning
plasmas (cf. also Secs. V.E and VII.B), these equations have so far been only investigated in simplified limits; either
dropping the second term on the right hand side of Eq. (5.174) (Chen et al., 2000, 2001; Chen and Zonca, 2007b,
2012, 2013; Guo et al., 2009), i.e., the contribution of wave-particle resonances; or neglecting 〈δLg〉z (Zonca et al.,
2006, 2000, 2005, 2007b), i.e., the effect of zonal flows and fields/currents. The former limit has been discussed
already in Sec. V.C, while the latter case will be analyzed in the following and in the remaining part of Sec. V.D.5.
Thus, as anticipated in Sec. V.A, the simplified evolution equations for phase-space ZS excited by EPs and related
transports, used hereafter, are the nonlinear Schrödinger [i.e., Gross-Pitaevsky (Gross, 1961; Pitaevsky, 1961) or
Zakharov (Zakharov, 1968)] equation, Eq. (5.3), without the last term on the right hand side, closed by Eqs. (5.174)
and (5.175), rewritten as

∂F0

∂t
= iP0,0,0 ◦

∑

m

Pm,0,0 ◦
c

dψ/dr

∂

∂r

∑

n

n
(
δgn 〈δLg〉−n

)
m,0

, (5.176)

and

(
∂

∂t
+ v‖∇‖ + vd ·∇⊥

)
δgn = i

e

m
QF0 〈δLg〉n . (5.177)

Here, F0 ≡ F̄0 + P0,0,0 ◦ δgz. Furthermore, we have taken into account that, for EPs with |ω∗E | ≫ |ω0| (Chen,
1988), the right hand side of Eq. (5.175) reduces to that of Eq. (5.177), except for an higher order term. These
equations may be used to investigate a number of nonlinear dynamics problems involving a generic DAW spectrum
with |γL/ω0| ∼ |ω0τNL|−1 ≪ 1, accounting the reaction of waves on the particle distribution function.

In order to simplify the present analysis further, we restrict Eqs. (5.176) and (5.177) to precessional resonance with
magnetically trapped EPs while neglecting finite orbit width effects. Then, Eq. (5.176) readily reduces to

∂F0

∂t
= i
∑
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nc

dψ/dr

∂

∂r

(
δḡnδφ̄−n − δḡ−nδφ̄n
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dψ/dr

∂

∂r

(
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dψ/dr

∂F0

∂r

∂

∂t

∣∣δφ̄n
∣∣2
)

+i
∑

n

nc

dψ/dr

∂

∂r

(
δK̄nδφ̄−n − δK̄−nδφ̄n

)
. (5.178)
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Here, we have accounted for the vanishing bounce averaged velocity of magnetically trapped EPs, and used the
analysis of Sec. V.D.5 to write

δḡn = ein(ζ−qθ)
∑

m

Pm,n,0 ◦ δgm,n (5.179)

for δḡn, the bounce averaged expression of δgn, while

δφ̄n = ein(ζ−qθ)
∑

m

Pm,n,0 ◦ δφm,n = e−inqθeinqθδφn , (5.180)

with (. . .) = τ−1
b

∮
(. . .)dθ/θ̇ denoting magnetic drift bounce averaging (cf. Sec. IV.B.1). Furthermore, we have used

the definition of δK given by Eq. (4.54) and the ideal MHD condition δφ = δψ to rewrite explicitly the right hand
side of Eq. (5.178), formally separating trivially reversible from irreversible processes connected with wave-particle
interactions, which dominate the nonlinear dynamics in Eq. (5.178). In fact, the contribution of reversible processes
is ∼ (ǫδ/ǫB)

2ǫF /ǫ⊥ with respect to the left hand side (cf. Sec. II.A) and, hence, will be neglected in the following.
Adopting the notation of Eq. (5.126) for the Fourier-Laplace transform, Eq. (5.178) is readily solved as

F̂0(ω) =
i

ω
StF̂0(ω) +

i

ω
Ŝ0(ω) +

i

2πω
F̄0(0) +

nc

ω(dψ/dr)

∂

∂r

∫ ∞

−∞

[
δ ˆ̄φk(y)δ

ˆ̄K−k(ω − y)− δ ˆ̄φ−k(y)δ
ˆ̄Kk(ω − y)

]
dy .

(5.181)
Here, we have straightforwardly included the effect of collisions, formally denoted by StF̂0(ω), and of an external
source term, Ŝ0(ω), while F̄0(0) denotes the initial value of F0 at t = 0. Moreover, for the sake of notation clarity,
we have explicitly indicated only the dependences on ω (and y, as dummy integration frequency variable) and the
summation on mode numbers has been replaced by an implicit summation on the subscript k, which, from now on, we
have adopted as short notation for (m,n). Meanwhile, by straightforward recasting of Eqs. (4.58) as Fourier-Laplace
transform, we readily obtain

δ ˆ̄Kk(ω) =
e

m

∫ +∞

−∞

ω̂dk
y

Qk,yF̂0(ω − y)

nω̄dk − ω
δ ˆ̄φk(y)dy , (5.182)

where the subscripts in Qk,yF̂0 denote wave number and frequency at which the operator defined by Eq. (4.55) must
be evaluated; and we have introduced the definition

e−inqθeinqθωdδφn ≡ ω̂dkδ
ˆ̄φk . (5.183)

It is straightforward to verify that Eq. (5.182) gives back the linear limit for F̂0(ω) = (2πω)−1iF̄0(0). By substitution
of Eq. (5.182) into Eq. (5.181), one readily obtains

F̂0(ω) =
i

ω
StF̂0(ω) +

i

ω
Ŝ(ω) +

i

2πω
F̄0(0) +

e

m

nc

ω(dψ/dr)

∂

∂r

∫∫ ∞

−∞

[
δ ˆ̄φk(y)

ω̂d−k
y′

Q−k,y′F̂0(ω − y − y′)

−nω̄d−k + y − ω
δ ˆ̄φ−k(y

′)

− δ ˆ̄φ−k(y)
ω̂dk
y′

Qk,y′ F̂0(ω − y − y′)

nω̄dk + y − ω
δ ˆ̄φk(y

′)

]
dydy′ . (5.184)

This equation is the analogue of Eq. (5.130); i.e., the Dyson’s equation [cf, e.g., (Kaku, 1993)] in quantum field theory,
describing the nonlinear processes schematically shown in Fig. 5, and extended to the case of nonuniform toroidal
plasmas under investigation with the addition of sources and collisions. Following (Al’tshul’ and Karpman, 1965,
1966), it is possible to show that, in the case of many waves with overlapping resonances, Eq. (5.184) reduces to the
quasilinear theory of a weakly turbulent plasma (Drummond and Pines, 1962; Vedenov et al., 1961a), as noted already
in Sec. V.D.1 for Eqs. (5.129) and (5.130). Thus, Eq. (5.184) can also be considered as a quasilinear equation (Galeev
et al., 1965); generalized to arbitrary distortions of the particle distribution function and including effects of equilibrium
geometries and plasma nonuniformity. It, thus, addresses resonance detuning and radial decoupling in wave-particle
interactions on the same footing. This demonstrates a fortiori that the present approach may be used to explore the
transition of EP transports through stochasticity threshold with all the necessary physics ingredients for a realistic
comparison with experimental observations.
In Secs. V.D.6 and V.D.7, we focus on the case where the DAW spectrum is very narrow, e.g., the case of a

“monochromatic” (cf. Sec. V.D.1) or, more precisely, periodic fluctuation, whose frequency may be evolving in time,
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provided that |ω̇k| ≪ |γLkωk|. Therefore, this case includes both adiabatic (|ω̇k| ≪ ω2
B) as well as non-adiabatic

(|ω̇k|<∼ ω2
B) frequency sweeping and may well represent the nonlinear dynamic evolution of a single toroidal mode

number AE or EPM41. Using the representation

δ ˆ̄φk(ω) =
i

2π

δφ̄k0(r, τ)

ω − ωk(τ)
, and δ ˆ̄φ−k(ω) =

i

2π

δφ̄−k0(r, τ)

ω + ω∗
k(τ)

, (5.185)

we readily reduce Eq. (5.184) to the following form

F̂0(ω) =
i

ω
StF̂0(ω) +

i

ω
Ŝ(ω) +

i

2πω
F̄0(0) +

e
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× F̂0 (ω − 2iγ(τ))

ω − ωk(τ) + nω̄dk
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Qk,ωk(τ)

ωk(τ)

F̂0 (ω − 2iγ(τ))

ω + ω∗
k(τ) − nω̄dk

]
ω̂dk

∣∣δφ̄k0(r, τ)
∣∣2
}

. (5.186)

Here, we have explicitly denoted the slow time dependence of the mode frequency as ωk(τ) in order to remind the
condition |ω̇k| ≪ |γLkωk|. Furthermore, we have kept explicit (r, τ) dependences only in δφ̄0k, as these are the most
relevant for emphasizing the important role of radial mode structures, which may change in time along with the particle
distribution function. Meanwhile, γk(τ) ≡ Im(ωk(τ)), (−n)ω̄d−k = −nω̄dk, ω̂d−k = −ω̂dk, Q−k,−ω∗

k
(τ) = −Q∗

k,ωk(τ)
,

and Eq. (5.185) is the analogue of Eq. (5.131) for frequency sweeping modes.
Equations (5.184) and (5.186) are the general formulation for nonlinear DAW interactions with a EP population and,

thus, and provide the unification of the “bump-on-tail” and “fishbone” paradigms (Chen and Zonca, 2013). More
specifically, the correspondence to the nonlinear beam-plasma system (cf. Sec. V.D.1) can be readily established

ignoring the effect of plasma nonuniformities and geometry. That is, postulating constant δ ˆ̄φk(ω) fluctuations, and,
with |ω∗E | ≫ |ω|, letting

k0
∂

∂u
↔ −m

e

nc

dψ/dr

∂

∂r
, (5.187)

and nω̄dk − ωk ≃ nω̄dk0(r − r0)/Ldk0 ↔ k0u, with Ldk0 the characteristic length of variation of ω̄dk
42, one can draw

a one on one correspondence between Eqs. (5.128) and (5.182) as well as between Eqs. (5.130) and (5.184), which
become identically the same. This also holds for the reduced forms, e.g., Eq. (5.186), once the monochromatic wave
hypothesis is introduced by Eqs. (5.131) and (5.185), respectively. As pointed out at the beginning of Sec. V.D,
this reduction of the general formulation for nonlinear DAW interactions with an EP population illuminates both
the validity limits of the “bump-on-tail” paradigm and its applicability conditions, as well as to the qualitative
and quantitative differences that are introduced by equilibrium geometry and plasma nonuniformity. These issues,
analyzed already in general in Secs. V.D.5.a and V.D.5.b, are summarized by Eqs. (5.184) and (5.186) for the simplified
case of precessional resonance with magnetically trapped EPs and no finite orbit width effects. Due to the invariance
of µ and J actions (cf. Sec. IV.B), this specific problem is one-dimensional and is particularly suited to discuss the
transition from the “bump-on-tail” to the “fishbone” paradigm. Properties pertinent to toroidal geometries, in this
case, are particle radial transport at essentially constant energy43, the energy dependence of ω̄dk and ω̂dk that gives
a completely different weighting of the particle phase-space contributing to the resonant mode drive with respect to
the uniform plasma case; and the characteristic radial displacement of magnetically trapped particles, which makes
radial decoupling dominant with respect to resonance detuning at relatively low mode growth rate, as indicated by
Eq. (5.165) with λn = 1 and Eq. (5.167).
To be more precise, let us consider the uniform plasma limit of Eq. (5.187). Introducing a simple Krook collision

operator, Eq. (5.184) then becomes

(−iω + ν)δf̂0(ω) = i
e2k20
m2

∂

∂u

∫∫ ∞

−∞

[
δφ̂k0(y)

−∂uF̂0(ω − y − y′)

y − k0u− ω − iν
δφ̂−k0(y

′)

− δφ̂−k0(y)
∂uF̂0(ω − y − y′)

y + k0u− ω − iν
δφ̂k0 (y

′)

]
dydy′ , (5.188)

41 Here, we remind the reader, again, that one single toroidal mode number involves the coupling of many poloidal harmonics, due to the
toroidal geometry of the plasma equilibrium.

42 Note that Eq. (5.187) implies that directions of incrementing u corresponds to decreasing r and vice-versa; however, ω̄dk is also a
generally decreasing function of r.

43 This property is an interesting combination of the conservation of particle Hamiltonian in the extended phase-space and of the condition
|ω∗E | ≫ |ω| (Chen, 1988) that typically applies to EPs resonantly interacting with DAWs.
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when expressed for the nonlinear deviation δf̂0(ω) of the particle distribution function from the equilibrium (initial)
value F0(0) = Q(v)/ν(v) (cf. Sec. V.D.2.b). The iterative solution of Eq. (5.146) corresponds to taking F̂0(ω−y−y′) =
i(2π)−1F0(0)(ω − y − y′)−1 in Eq. (5.188), i.e., to considering only the first loop in the Dyson series, schematically
shown in Fig 5. Moving to the t-representation, the recursive solution of Eq. (5.188) is then obtained as

(
∂

∂t
+ ν

)
δf0 = i

e2k20
m2

∂

∂u

∫∫ ∞

−∞

e−i(y+y
′)t

[
δφ̂k0 (y)

∂uF0(0)

y′ + k0u+ iν
δφ̂−k0(y

′)

+ δφ̂−k0(y)
∂uF0(0)

y′ − k0u+ iν
δφ̂k0 (y

′)

]
dydy′ , (5.189)

which is readily cast as

(
∂

∂t
+ ν

)
δf0 =

ω2
B(t)

4

∂

∂k0u

∫ t

0

[
e−(ν+ik0u)(t−t

′) + c.c.
]
ω2
B(t

′)
∂F0(0)

∂k0u
dt′ . (5.190)

This equation coincides with Eq. (5.146), noting that, here, ω4
B ≡ 4(e/m)2k40 |δφk0 |2, in order to preserve the same

normalizations of Fourier amplitudes used in Sec. V.D.2.b.
Finally, as elucidation of Eq. (5.186) in the uniform plasma case, we follow (Al’tshul’ and Karpman, 1965, 1966)

and assume that the periodic fluctuation of Eq. (5.185) is weakly growing (γL ≪ ωB) such that Eq. (5.186), with
no sources and collisions and accounting for Eq. (5.187), yields the solution of Eq. (5.132). Here, we remind that
Eq. (5.132) describes the oscillations of particles that are trapped in the wave, which, however, do not decay in time
as expected as consequence of phase mixing. Therefore, the scalar field δφk0 oscillations are also predicted to continue
indefinitely rather than to fade away, as in actual physical conditions (O’Neil, 1965), due to the fact that the processes
described in Fig. 5 do not account for k0-harmonics generation produced by spatial bunching (cf. Sec. V.D.1). This
limitation is not significative for the analyses of Secs. V.D.6 and V.D.7, since phase locking makes wave-particle
trapping essentially ineffective; de facto suppressing harmonic generation.

6. Nonlinear dynamics of Energetic Particle Modes and avalanches

The novel feature of EPM nonlinear dynamics with respect to that characterizing AEs is the interplay between
EP transport and mode structure evolution, which is crucially influenced by the structure of the SAW continuous
spectrum (Briguglio et al., 1998) [cf. also (Bierwage et al., 2012, 2011; Briguglio et al., 2007, 2002; Vlad et al., 2004,
2009, 2006, 1999)].
The first analysis of EPM nonlinear behaviors was given by (Briguglio et al., 1998), reporting numerical results

from hybrid MHD-gyrokinetic simulations. In that work, it is shown that, unlike in the TAE case analyzed therein (cf.
Sec. V.D.5.b), EPM saturation occurs because of “macroscopic outward displacement of the energetic-ion population”,
which is shown in Fig. 9 and is characterized by a convective secular process, demonstrated by the line-density rn(r)
contour plot in the (r/a, ωAt) plane. Figure 9 also proves that MHD nonlinearities weakly affect the EPM evolution by
direct comparison of two different simulations, carried out without (left) and with (right) MHD mode-mode couplings.
These results are consistent with theoretical analyses showing the fundamental role played by EPs in determining
EPM dispersive properties and threshold condition (Chen, 1994; Chen and Zonca, 1995; Zonca and Chen, 1996) as
well as radial mode structure and spatial localization (Zonca and Chen, 1996, 2000). The overall non-perturbative
effect of EPM nonlinear dynamics on the EP line-density profile is displayed in Fig. 10, while Fig. 11 shows the
outward secular motion of a resonant circulating particle, typical of mode particle pumping (White et al., 1983).
Most of the distinctive features of low mode number EPM are the same as those typical of fishbone modes, which

are discussed in greater detail in Sec. V.D.7. However, the property to be characterized by a nonperturbative interplay
of EP transport with mode structures is peculiar to EPM and is most evident, as well as relevant, for high mode
numbers typical of ITER (Briguglio et al., 2002; Vlad et al., 2004; Zonca et al., 2005), since the characteristic scale
of EP profiles are longer than the typical mode width (cf. Sec. IV). In these conditions and for sufficiently strong
wave-particle power exchange, EP transport occurs in avalanches, i.e., as a secular loss process that is accompanied
by a convectively amplified EPM wave packet (Briguglio et al., 2002; Vlad et al., 2004; Zonca et al., 2005) and by a
local gradient steepening of the EP pressure profile; followed eventually by a relaxation phase (Zonca et al., 2006).
This mechanism was demonstrated with hybrid MHD-gyrokinetic numerical simulation results by (Vlad et al., 2004),
investigating the EPM nonlinear dynamics in ITER-FEAT reversed shear scenario (cf. Sec. VI.B for more details).
The simulation results are summarized in Fig. 12, where βE radial profiles are shown along with (m,n) Fourier
components of the EPM scalar potential fluctuations during the linear growth (left), the end of the EPM avalanche
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FIG. 9 The total energy of the poloidal components of the n = 1 mode (a), and contour plot of the line-density rn(r) in the
(r/a, ωAt) plane (b) for the EPM simulation by (Briguglio et al., 1998). Normalized time is ωAt, with ωA = vA/R0 computed
at the magnetic axis. Left frame: without MHD nonlinearities [from the original Fig. 21 in Ref. (Briguglio et al., 1998)]. Right
frame: with MHD nonlinearities [from the original Fig. 19 in Ref. (Briguglio et al., 1998)].

(middle), and saturation phase (right). Meanwhile, Fig. 13 gives evidence of the peak EP pressure gradient value
steepening at the location where the EPM wave packet is localized (Zonca et al., 2005; Zonca and Chen, 2000). Thus,
an EPM avalanche consists of an unstable wave packet that is convectively amplified as it radially propagates outward,
in phase with the strengthening EP free energy source (pressure gradient). This process continues as long as the EPM
wave packet can be amplified by resonant wave-particle interactions and is eventually followed by mode saturation
due to radial decoupling, during which EP transport becomes diffusive and the pressure gradient relaxes (Zonca et al.,
2006), as shown in Fig. 13. Similar results were obtained by (Briguglio et al., 2002), studying EP transport in hollow
current profile plasmas and showing that the minimum-q magnetic surface is the natural location, where the radial
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FIG. 10 The initial (solid line) and final (dashed line) line-density profile for
the EPM simulation by (Briguglio et al., 1998). Left frame: without MHD
nonlinearities [from the original Fig. 22 in Ref. (Briguglio et al., 1998)].
Right frame: with MHD nonlinearities [from the original Fig. 20 in Ref.
(Briguglio et al., 1998)].
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FIG. 11 Poloidal-plane projection of a typical
resonant circulating EP orbit, with initial ra-
dial coordinate r/a = 0.4, showing secular radial
displacement [from the original Fig. 17 in Ref.
(Briguglio et al., 1998)].
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FIG. 12 Radial profiles of βE and (m,n = 2) Fourier components of the EPM scalar potential fluctuations during the linear
growth (left), the end of the EPM avalanche (middle), and saturation phase (right) [from the original Fig. 6 in Ref. (Vlad
et al., 2004)]. Time normalization is the same as in Figs. 9.

FIG. 13 Radial position (r/a)max (top) and value of the maximum gradient [d(rβE)/dr]max vs. ωAt for the EPM simulation
in Fig. 12. The strong convection, characteristic of the avalanche phase, is accompanied by gradient steepening, followed by a
relaxation phase, characterized by diffusive EP transport. [from the original Fig. 7 in Ref. (Vlad et al., 2004)].

propagation of EPM induced EP avalanches are expected to stop.

These peculiar EPM nonlinear dynamics have been studied analytically by (Zonca et al., 2005), where their distinc-
tive features and onset conditions are put in connection with the transition from local to meso-scale EP redistributions;
dubbed there as transition from weak to strong EP transports (cf. Sec. V.D.5.a). For the sake of simplicity, we analyze
EPM excitation by precessional resonance of magnetically trapped EPs, neglecting finite orbit width effects, which
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were kept in (Zonca et al., 2005). The description of nonlinear dynamics of phase-space ZS, thus, readily follows
the analysis of Sec. V.D.5.c. The theoretical framework adopted here for the non-perturbative description of the
interaction of a periodic EPM fluctuation with an EP population is, therefore, that of Eq. (5.3), without the last
term on the right hand side, and the Dyson equation, Eq. (5.186). We, furthermore, make the simplifying assumption
that the resonant EPs are deeply trapped and the EPM is located near the TAE gap for a tokamak equilibrium with
moderate (s, α) values and shifted circular magnetic flux surfaces (cf. Sec. IV.B.4). We also, in order to compare
analytic theory with hybrid MHD-gyrokinetic simulations of EPM avalanches, assume an initial (equilibrium) EP
distribution in the form of Eq. (4.106) as well as ignore source and collision terms terms in Eq. (5.186). The analy-
sis, consequently, is then reduced to computing the nonlinear contribution to δW̄nk, which, considering Eq. (4.105)
together with Eq. (5.182), can be written as

δW̄nk =

∫
EdEdλ

∑

v‖/|v‖|=±

π2qR0

c2k2ϑ|s|
e2

m

(
τbn

2ω̄2
dn

ω(τ)

)∫ +∞

−∞
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e−iωtQk,ω(τ)F̂0(ω)dω . (5.191)

Note that, here, ω(τ) = ω0(τ) + iγ(τ) is the slowly changing frequency of the periodic EPM fluctuation (cf.
Sec. V.D.5.c), allowing non-adiabatic frequency chirping processes. With the notations of Sec. V.A and the use
of Eq. (5.186), the nonlinear contribution to δW̄nk can be written as

δW̄NL
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, (5.192)

where we have, again, noted |ω∗E | ≫ |ω| (cf. Secs. IV.B.4 and V.D.5.c), v2E = TE/mE, TE = EF /mE , ρ
2
LE = v2E/Ω

2
E,

and ∂−2
t denotes action of −(ω+2iγ)−2 under the integration in dω. Meanwhile, the fluctuation intensity in Eq. (5.192)

can be rewritten as
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. (5.193)

Here, we have used the mode structure decomposition and notations of Eqs. (4.26) and (5.180). Equation (5.193)
demonstrates the existence of fine radial structures of the order of or less than |nq′|−1, due to nonlinear modulations
via wave-particle interactions of the EP radial profiles. While such fine structures are visible in the mode of Fig. 12,
they are smoothed out in the pressure profiles due to velocity space integration. These features are very general and
have been recently observed in gyrokinetic numerical simulations addressing the effect of Ion Temperature Gradient
turbulence driven zonal flows on nonlinear SAW dynamics excited by EPs (Bass and Waltz, 2010) (cf. Sec. VII.B).
These fine structures have been demonstrated to be modulationally stable below a critical threshold amplitude of the
driving modes (Zonca et al., 2000). For this reason, we consider for now only the ℓ′ = 0 component in Eq. (5.193). We
will discuss later the conditions under which radial corrugations in the EP profiles are produced spontaneously (Zonca
et al., 2000). Thus, Eq. (5.193) can be rewritten as (cf. Sec. IV.B.4)

∣∣∣∣
eE
TE

δφ̄n(r, t)

∣∣∣∣
2

≃ 2π2

|s|
(
δΦ̂†

−n0δΦ̂n0

) ∣∣∣∣
eE
TE

An(r, t)

∣∣∣∣
2

≡
∣∣Ān(r, t)

∣∣2 , (5.194)

where normalizations are consistent with those of (Zonca et al., 2005).
Equation (5.192) can be readily used to formally write the EPM nonlinear equation (Zonca et al., 2006, 2005)

Dn (x,−i∂x, ω0(t) + i∂t) Ān0(x, t) = δW̄NL
nk Ān0(x, t) , (5.195)

where the fast time dependence has been isolated and Ān(r, t) ≡ Ān0(x, t) exp(−i
∫ t
ω0(t

′)dt′). Equation (5.195) is
one example of possible applications of the GFLDR theoretical framework to nonlinear physics of SAW and EPs (cf.
Sec. V.A). Equations (5.192) and (5.195) are closed by the leading order evolution equation for F0(t); i.e.,

∂

∂t
F0(t) ≃ 2k2ϑv

2
Eρ

2
LE

(
nω̄dn
ω0

)
∂

∂r

[(∫ +∞

−∞

(γ − iω)

(nω̄dn − ω0)2 + (γ − iω)2
e−iωt

∂F̂0(ω)

∂r
dω

)
∣∣Ān0(r, t)

∣∣2
]

. (5.196)
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Note that, here, we have ignored terms ∝ StF̂0(ω) and ∝ Ŝ(ω) in Eq. (5.186). These terms, however, can be readily
included (cf. Sec. V.D.7). Furthermore, as in the case of Eq. (5.192), ∂−1

t formally applied on the right hand side,
when explicitly integrating Eq. (5.196), denotes the action of (−iω + 2γ)−1 under the integration in dω.
The complex features of EPM nonlinear dynamics and, more generally, of DAW resonantly excited by EPs are

clearly visible from the structure of Eq. (5.196). It was already emphasized by (Al’tshul’ and Karpman, 1965; Galeev
et al., 1965) that it can be considered as a generalized quasilinear equation, which formally reduces to quasilinear
theory for a sufficiently broad wave packet. However, as noted in Secs. V.D.5.a and V.D.5.b, Eq. (5.196) also describes
the phenomenon of mode particle pumping (White et al., 1983) for sufficiently strong EP drive such that the role
of plasma nonuniformities becomes important and “radial decoupling” competes with and becomes more important
than “resonance detuning” in the nonlinear wave-particle power exchange, maximized by “phase locking” (Wang
et al., 2012). Furthermore, in the case of EPM, the maximization of wave-particle power-exchange implies that radial
structures of F̂0(ω) and |Ān0| are varying self-consistently, while the mode frequency continuously readjusts to the
resonance condition due to mode dispersive properties and radial envelope structures, discussed in Sec. IV.B.4. In
turn, particles are most effectively transported outward as they amplify the mode. In Eq. (5.196), phase locking and
frequency chirping ensure that the ∝ (nω̄dn − ω0)

2 at the denominator is essentially vanishing for resonant particles.
Thus, it is readily recognized that the nature of Eq. (5.196) may change from parabolic to hyperbolic for “phase
locked” particles that play a fundamental role in the EPM avalanche of Fig. 12, the hyperbolic nature being strictly
connected with ballistic resonant particle transport.
The investigation of Eqs. (5.192), (5.195) and (5.196) is matter of ongoing research based on analytic/numerical

works and comparisons with hybrid MHD-gyrokinetic simulations (Briguglio, 2012; Briguglio et al., 2012; Briguglio
and Wang, 2013). However, their solution in the simple limit describing the early phase of the EPM wave packet
convective amplification was given by (Zonca et al., 2005) and is summarized hereafter, as it helps clarifying the
general concepts discussed above. In this case, the nonlinear distortion of the EP distribution function is sufficiently
small that F̂0(ω) in Eq. (5.192) takes on its equilibrium value, i.e., F̂0(ω) = (2πω)−1iF̄0(0), with F̄0(0) chosen as in
Eq. (4.106) and a Gaussian EP profile, as in Eq. (4.109). The expression of δW̄NL

nk is then readily reduced to

δW̄NL
nk0 ≃ 3π(r/R0)

1/2αE

8
√
2|s|

iπ
ω0

nω̄dnF
k2ϑv

2
Eρ

2
LE∂

−2
t

∂2

∂r2
∣∣Ān0

∣∣2 , (5.197)

where we have assumed that the radial scale of αE is longer than that of |Ān0| (cf. Sec. IV.B.4). In Eq. (5.197), it is
crucial to note that the whole right hand side is computed at the instantaneous frequency ω0 and at the radial location
of the EPM wave packet. With δW̄NL

nk0 replacing δW̄NL
nk , Eq. (5.195) recovers the nonlinear EPM envelope equation

of (Zonca et al., 2005), whose solution can be expressed as the convectively amplified propagating (self-similar) wave
packet

Ān0(ξ, t) = U(ξ)e
∫

t γ(t′)dt′ ≡W (ξ)eiϕ(ξ)+
∫

t

0
γ(t′)dt′ , (5.198)

with ξ given by

ξ − ξ0 ≡ kn0
|skϑ|

(x− x0) ≡
kn0
|skϑ|

(
x− |skϑ|

∫ t

0

vg(t
′)dt′

)
, (5.199)

kn0 denoting the nonlinear wave vector, vg the nonlinear group velocity and x = |skϑ|(r − r0) (cf. Sec. IV.B.4).
Adopting the general procedure for isolating the behavior of the wave packet soliton, one can balance the nonlinear
term in Eq. (5.195), for δW̄NL

nk → δW̄NL
nk0 , with the linear dispersiveness of Dn in Eq. (4.110), which gives

k2n0v
2
g =

3π(r/R0)
1/2αE

2
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ω0

ω̄dF
k4ϑv

2
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2
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(
2

∫ t

0

γ(t′)dt′
)

, (5.200)

in the notation of Sec. IV.B.4 (nω̄dnF ≡ ω̄dF ); while U(ξ) satisfies the nonlinear equation

∂2ξU = λ0U − 2iU |U |2 . (5.201)

Note that Eq. (5.200) fixes the product kn0vg, but the nonlinear group velocity still remains to be determined. For
the time being, we simply let

v2g ≃ k2ϑv
2
Eρ

2
LEλ

2
g exp

(
2

∫ t

0

γ(t′)dt′
)

, (5.202)
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FIG. 14 The functionsW (x) and ϕ(x) describing the self-similar shape U(x) =W (x)eiϕ(x) of the EPM wave packet propagation
in the early phase of its nonlinear evolution (Zonca et al., 2005).

where λg < 1 is a coefficient, whose value is set by the maximization of the wave-particle power transfer in the “phase
locking” regime, as discussed below. In this way, Eqs (5.200) and (5.202) can be rewritten as

k2n0 =
3π(r/R0)

1/2αE

2
√
2κ(s)

ω0

ω̄dF

k2ϑ
λ2g

. (5.203)

Meanwhile, the solution of Eq. (5.201) is shown in Fig. 14 for the value of λ0 ≃ −0.47 + i1.32, which corresponds to
the ground state of the corresponding complex nonlinear oscillator. Noting Eqs. (5.200) to (5.203), mode frequency
and growth rate are then defined by the dispersion relation
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= 0 , (5.204)
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]
; (5.205)

which are the nonlinear extension of Eqs. (4.112) and (4.113). The value of λ2g, by maximization of the wave-particle
power transfer in the phase locking regime, is obtained from Eqs. (5.204) and (5.205); and the condition

dγ

dλ2g
=

∂γ

∂λ2g
+

∂γ

∂ω0

dω0

dλ2g
= 0 . (5.206)

This equation has a solution λ2g
<∼ 1 due to the optimal ordering in the nonlinear dispersion relation above and to

the fact that dγ/dλ2g > 0 for λ2g → 0, while dγ/dλ2g < 0 for λ2g → ∞. For typical tokamak parameters, one obtains

λg ≃ 0.5÷0.6, with a spread ∆λg ≃ ∆λ2g ≃ γ1/2[−d2γ/(dλ2g)2]−1/2 ∼ 0.1. This is readily verified to yield phase locking
of the EPM wave packet with the dominant resonant particle fraction contributing to wave-particle power exchange. In
fact, the average value of W̄ in Fig. 1444, weighted by the wave particle power transfer∝W 2 (Briguglio, 2012; Briguglio
and Wang, 2013; Vlad et al., 2012, 2013), yields λ̄g = W̄ ≃ 0.635, while the deviation ∆λ̄g = (W 2 − W̄ 2)1/2 ≃ 0.305.

44 More precisely, W̄ =
∫
dτW ·W 2/

∫
dτW 2 =

∫
dxW 2/

∫
dxW .
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Therefore, resonant EPs that are co-moving with the EPM wave packet considerably slow down resonance detuning,
whereas counter-moving resonant EPs go out of phase with the wave roughly twice as fast with respect to the case of
a non-traveling wave-structure. These features are clearly recognizable in the numerical simulation results of Figs. 12
and 13. The residual resonance detuning that affects the nonlinear EPM evolution, i.e., the parameter ǫω̇ introduced

in Eqs. (5.161) and (5.162) and measuring the reduction by ∼ ǫ
1/2
ω̇ of the effective bounce frequency of trapped

resonant EPs, can be estimated as ǫω̇ ∼ ∆λg/λg ≪ 1 [cf. Eq. (5.202)]. An intrinsic contribution to ǫω̇ is also due to
plasma nonuniformities and finite size of the EPM wave packet. In the initial linear phase (cf. Sec. IV.B.4)

ǫω̇ ∼ (LpE/|kϑ|)1/2
r0

∼ 1

(|kϑ|LpE)1/2
, (5.207)

where r0 ∼ LpE has been considered; while in the early nonlinear evolution

ǫω̇ ∼ (kn0r0)
−1 ∼ κ(s)1/2

α
1/2
E (LpE/R0)1/4|kϑ|LpE

. (5.208)

Assuming, for typical tokamak parameters, κ(s) ∼ O(1), αE ∼ LpE/R0, |kϑ|LpE ∼ (R0/LpE)
2 and ρLE/R0 ∼

(LpE/R0)
3, so that |kϑ|ρLE ∼ O(1), Eqs. (5.207) and (5.208) give very similar results, which are also consistent with

ǫω̇ ∼ ∆λg/λg. Thus, the criterion for the onset of EPM avalanches and for the transition from weak to strong EP
transport is readily estimated by Eqs. (5.167) and (5.168), and is given by (Zonca et al., 2005)45
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3
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ω∗E

∣∣∣∣ , (5.209)

for magnetically trapped and circulating EPs, respectively.
In the initial EPM avalanche phase, characterized by phase locking and wave packet convective amplification,

Eq. (5.204) yields a frequency shift ∆ω, relative to the “linear” (initial) mode frequency ω0L,

∆ω

ω0L
≃ (s− 1)

x0
|skϑr0|

=
s− 1

r0

∫ t

0

vg(t
′)dt′ ; (5.210)

i.e., a frequency chirping rate that is proportional to the mode amplitude, as discussed at the beginning of Sec. V.D.5.
Meanwhile, Eq. (5.205) shows that the EPM wave packet can be convectively amplified, yielding the avalanching
process of Fig. 12, as long as the strengthening of mode drive, due to pressure gradient steepening, compensates the
reduced drive, due to equilibrium nonuniformities. Equilibrium geometry and plasma nonuniformities influence the
wave packet propagation speed and characteristic width as well. Because of its form, the intensity of the convectively
amplified wave packet grows as the square of the distance; reminding us, thus, of the superradiance (Dicke, 1954)
operation regime of a free electron laser (FEL), where the peak power also increases as the square of the distance
along the undulator (Bonifacio et al., 1990, 1994; Giannessi et al., 2005; Watanabe et al., 2007). The EPM wave
packet propagation could generally be in either radial directions. However, outward propagation is favored, as the
moving wave packet can more easily maintain the phase locking condition with the larger fraction of EPs that are
transported outward while driving the mode, due to the conservation of the Hamiltonian in the extended phase-
space. Another important factor that may break the symmetry in the radial propagation direction is equilibrium
nonuniformity, connected with both EP profiles and continuum damping. Thus, unless radial nonuniformity inhibits
outward propagation, frequency chirping is predicted to be generally downward for EPM avalanche events, since
characteristic EP resonant frequencies are radially decreasing for typical equilibrium radial profiles.
As a final point, we analyze the conditions under which radial corrugations in the EP profiles, briefly discussed

above in connection with Eq. (5.193), are excited spontaneously (Zonca et al., 2000). Adopting for upper/lower EPM
sidebands due to EPM wave packet pump scattering off the corrugated EP profile the same representation introduced
in Sec. V.C.2, the nonlinear dispersion relation for the EPM modulational instability can be written as

∣∣∣∣
∂D0

∂ω0

∣∣∣∣
2 (

∆2
T − (ωz + iγd)

2
)
+

4iγ2M
(ωz + 2iγ)

2

(
(ωz + iγd)

∂ReD0

∂ω0
− i∆T

∂ImD0

∂ω0

)
+

3γ4M
(ωz + 2iγ)

4 = 0 . (5.211)

45 This estimate may be obviously made more precise for a given specific problem under investigation.
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Here, D0 stands for Dn of the EPM pump with frequency ω0 and growth rate γ, γd is the sideband damping and ∆T

the frequency mismatch, while

γ2M =
3π2(r/R0)

1/2αE

8
√
2|s|

ω0

ω̄dF
k2ϑρ

2
LEk

2
zv

2
E |Ā0|2 . (5.212)

Equation (5.211) shows common features with the dispersion relation of ZS induced by finite amplitude TAE, discussed
in Sec. V.C.2. The novel element, here, is that resonant wave particle interactions typically produce modulational
instability of the EP pressure profile (Vlad et al., 2004; Zonca et al., 2006) characterized by both finite growth rate
as well as real frequency shift (Zonca et al., 2000). As pointed out in Sec. V.C.2, all physical processes yielding
fluctuation amplitude modulation may result in nonlinear splitting of the corresponding spectral lines. From ordering
considerations, it is evident that the onset condition for the EPM induced modulational instability gives |ωz| ∼ ǫ0ω0 ∼
γd ∼ γ ∼ γM/|∆T /ω0|1/2, with ∆T ∼ ǫ0ω0 (cf. Sec. IV.B.3 and IV.B.4). Thus, considering the normalizations of

Eq. (5.194), the threshold condition for |δBr/B0| in this case is ∼ ǫ
1/4
0 α

−1/2
E higher than in the case where TAE induced

ZS are dominated by the zonal current; and ∼ ǫ
1/2
0 q−1α

−1/2
E higher than when TAE induced ZS are dominated by

zonal flows (cf. Sec. V.C.2) (Chen and Zonca, 2012, 2013). These results suggest that, for sufficiently strong EP
drive, i.e., sufficiently high αE , zonal flows and fields are expected to not significantly modify the nonlinear EPM
dynamics (Zonca et al., 2000). In particular, when analyzing the modulational instability of EPM driven by EP

transit resonance, the criterion for neglecting the effect of zonal flows becomes αE ≫ ǫ
3/2
0 /q2, as the EPM drive is

not reduced by the trapped particle fraction. This is consistent with the empirical scaling αE > βeq
2, βe being the

thermal electron plasma β, obtained from numerical gyrokinetic simulation results (Bass and Waltz, 2010).
It is worthwhile to make further general remarks and comments as conclusion of this analysis of EPM nonlinear

dynamics. Note that Eq. (5.201) is similar to that of a nonlinear oscillator in the so-called “Sagdeev potential”
V = (−U2 + U4)/2, which generates the equation of motion

∂2ξU = U − 2U3 , (5.213)

and gives U = sech(ξ). This form appears in soliton-like solutions of the nonlinear Schrödinger equations; e.g.,
the Gross-Pitaevsky equation (Gross, 1961; Pitaevsky, 1961) describing the ground state of a quantum system of
identical bosons using the pseudo-potential interaction model, as well as the envelope of modulated water wave
groups, as demonstrated by (Zakharov, 1968). The same form has also been more recently shown to appear, e.g., in
the propagation of the short optical pulse of a FEL in the superradiant regime (Bonifacio et al., 1990, 1994; Giannessi
et al., 2005), briefly discussed above, as well as in the radial spreading of drift wave – zonal flow turbulence via soliton
formation (Guo et al., 2009). The complex nature of Eq. (5.201), however, is novel and connected with the unique
role of wave-particle resonances, which dominate the nonlinear dynamics of EPMs via resonant wave-particle power
exchange. Maximization of such power exchange yields two effects: (i) the mode radial localization, similar to the
analogous mechanism discussed for the linear EPM mode structure (cf. Sec. IV.B.4); and (ii) the strengthening of
mode drive [Imλ0 > 0 in Eq. (5.205)], connected with the steepening of pressure gradient, convectively propagating
with the EPM wave packet. These two effects are consistent with and clearly illustrated by the numerical simulation
results of Fig. 12 (Zonca et al., 2005).
More generally, Eqs. (5.192), (5.195) and (5.196) are of integro-differential nature and, thus, they describe processes

characterized by nonlocality in space and time connected with wave-particle resonant interactions of Alfvénic fluctu-
ations with EPs. This case can be appreciated from the structure of Eq. (5.192) and the operator ∂−2

t ∂2r . Assuming
that Eq. (5.195) admits a self-similar solution in the form Ān0(ξ), as in Eq. (5.198), and that the radial profile of F̂0(ω)
can be described by a stretched Gaussian distribution ∝ exp [−|ξ − ξ0|µ], with some fractional µ ∈ (1, 2), δW̄NL

nk Ān0
can be rewritten in terms of fractional derivative operators (Zonca et al., 2006), ∝ ∂2−µξ |Ān0|2, with

∂2−µξ Ψ ≡ 1

Γ(µ− 1)

∂

∂ξ

∫ ξ

−∞

Ψ(ξ′)

(ξ − ξ′)2−µ
dξ′ , (5.214)

corresponding to the Weyl definition of fractional derivative [cf., e.g., (Metzler and Klafter, 2000)]. Its appearance in
the nonlinear evolution equation above, Eq. (5.195), reminds about fractional generalizations of the Ginzburg-Landau
and nonlinear Schrödinger equations (Milovanov and Rasmussen, 2005; Weitzner and Zaslavsky, 2003), reviewed in
(Zelenyi and Milovanov, 2004), characterized by a competition between a weak nonlinearity and space-time nonlocal
properties. Indeed, equations built on fractional-derivative operators incorporate in a natural, unified way the key
features of non-Gaussianity and long-range dependence that often break down the restrictive assumptions of locality
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and lack of correlations underlying the conventional statistical mechanical paradigm [cf. (Metzler and Klafter, 2004)
for a review of this subject]. It is worthwhile noting that, following Eq. (5.214) and (Zonca et al., 2006), when the
free energy source function in Eq. (5.192) is taken to be Gaussian; i.e., F̂0(ω) ∝ exp

[
−(ξ − ξ0)

2
]
, Eq. (5.195) can

be reduced to the canonical form of the Ginzburg-Landau equation (Lifshitz and Pitaevsky, 1980), which finds many
applications other than fusion plasma physics.

Fractional time derivatives can also be introduced for the description of Eq. (5.196) nonlocality in time (and
correspondingly in space), which is strictly connected with ballistic resonant particle transport but, more generally,
may describe a wider class of behaviors as well. Doing so naturally yields fractional Fokker-Planck equations and,
thus, applications of general interest [cf., e.g., the recent work by (Górska et al., 2012)]; with their further extension to
nonlinear problems, which is intrinsic to Eq. (5.196). This shows the very peculiar role of EPs in fusion plasmas, which
introduce a completely novel class of nonlinear behaviors due to the existence of the SAW continuous spectrum, and
the property of EPMs to lock onto the proper resonance for maximizing wave-particle power exchange and particle
transport (Chen, 2008; Chen and Zonca, 2007a; Zonca et al., 2006).

7. The fishbone burst cycle

The observation of fishbone oscillations (McGuire et al., 1983), interpreted as bursts of internal kink modes reso-
nantly excited by EPs via precessional resonance (Chen et al., 1984; Coppi and Porcelli, 1986), is undoubtedly the
first key experimental evidence of the rich nonlinear dynamics involving the self-consistent interaction of EPs with
MHD as well as Alfvénic fluctuations. The extremely diverse phenomenologies connected with fishbones observations
are due to the correspondingly diverse experimental conditions, characterized by a variety of external power sources,
generating both supra-thermal ions by ICRH/NBI and supra-thermal electrons by ECHR/LHH/LHCD, and different
reference plasma scenarios and corresponding MHD equilibria and stability properties. These observations, briefly
summarized in Sec. IV.C, demonstrate that nonlinear fishbone dynamics is determined by both wave-wave (MHD)
nonlinearities as well as wave-particle nonlinear interactions. However, the key role played by EPs in the fishbone dy-
namics, described in Sec. IV.B.1, was clear from the early experimental evidence that fluctuations are locked onto the
characteristic (precessional) frequency of EPs that resonantly excite them, while they are transported out preserving
the resonance condition by the mode particle pumping mechanism (White et al., 1983). Thus, it is intuitive that, for
sufficiently strong power input, fishbone dynamics must be dominated by wave-particle nonlinear interactions.

Due to complexities intrinsic to self-consistent kinetic analyses of interactions between MHD modes and EPs,
the early analyses of the fishbone burt cycle relied on simplified predator-prey models (Chen et al., 1984; Coppi
et al., 1988b; Coppi and Porcelli, 1986); on which more detailed discussions are given later in this section. Fishbone
induced EP transports studies and comparisons with experimental observations were, meanwhile, based on test-particle
numerical simulations (White et al., 1983) (cf. Secs. VI and VI.A). The first nonlinear numerical studies of fishbone
excitation by non-perturbative wave-particle interactions with EPs are reported by (Candy et al., 1999), assuming a
linear MHD description and mode structure given by a rigid (m,n) = (1, 1) radial displacement (Chen et al., 1984).
The nonlinear EP kinetic response is computed numerically and used to calculate EP nonlinear contribution to the
potential energy in a kinetic energy principle; i.e., Eq. (4.52) with a simplified form of the inertia enhancement (Glasser
et al., 1975). In their work, (Candy et al., 1999) reproduce the dynamics of a fishbone burst, with downward frequency
chirping and mode saturation due to nonlinear wave-particle interactions. From dimensional analysis, they obtain the
estimate |δξr/rs| ∼ 1 at mode saturation for the radial displacement δξr with respect to rs, the radial position of the
q = 1 surface; which is an upper bound for fishbone saturation and a factor ∼ 10 larger than the value obtained in
the numerical simulation. Meanwhile, (Candy et al., 1999) also estimate that MHD nonlinearity can be neglected if
“through diffusive effects the plasma can cross a magnetic island in a time short compared to the time to complete a
bounce inside the island” itself, concluding that in their case this condition is marginally satisfied. The relative role of
MHD and EP nonlinearities can, however, be more precisely estimated on the basis of Eq. (4.20), by comparing ΛNLn ,
i.e., the contribution of MHD wave-wave couplings to the generalized inertia in the singular layer region (Ödblom
et al., 2002), with the nonlinear contribution δŴNL

nk of EPs to the potential energy in the regular region (Zonca et al.,

2007a,b). In Ref. (Ödblom et al., 2002), it is demonstrated that ΛNLn is predominantly determined by ZS (flows and
currents), generated self-consistently by the dominant (m,n) = (1, 1) component of the fishbone fluctuation, since the
contribution of higher resonant toroidal harmonics is typically smaller by the ratio of the singular layer width to rs.
The MHD model employed by (Ödblom et al., 2002) ignores kinetic thermal ion and geometry effects and yields

ΛNL ∼ |δξr0|2
∆2

Λ ∼ |δξr0|2
r2s(γL/ω0)2

s2

Λ
, (5.215)
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FIG. 15 Left [from the original Fig. 9 in Ref. (Fu et al., 2006)]: Evolution of the fishbone frequency versus time. Frequency
is expressed in units of ωA0 = vA0/R0 and time in units of ω−1

A0 . Right [from the original Fig. 11 in Ref. (Fu et al., 2006)]:
Evolution of the resonant EP distribution function for v/vA0 = 0.8 and µB0/E = 1.

where we have dropped the n subscript as n = 1 in this case, δξr0 represents the rigid (m,n) = (1, 1) radial
displacement, ∆ ∼ rs(Λ/s)(γL/ω0) is the inertial layer width, s is the magnetic shear at the q = 1 surface and Λ can
be estimated at its typical linear value. Including inertia enhancement, Eq. (5.215) still applies but a realistic estimate
yields |Λ| ∼ |s| (Zonca et al., 2007b). Meanwhile, using the theoretical framework of Sec. V.D.5.c, the estimate for
δŴNL

nk is readily obtained as [cf. Eq. (5.226) below]

δŴNL
k ∼ ImδŴL

k

|δξr0|2
r2s(γL/ω0)2

, (5.216)

where ImδŴL
k ∼ (R0/rs)βEr, with βEr being the βE value of resonant EPs. Thus, noting Eqs. (4.20), (5.215)

and (5.216), one can conclude that EP nonlinearities dominate the fishbone burst cycle for βEr ≫ |s|3(rs/R0)|Λ|−1.
Meanwhile, for typical |Λ| ∼ |s| and near marginal stability for precessional fishbones, both nonlinear effects have, in
general, to be kept on the same footing. A similar argument can also be constructed for the diamagnetic fishbone
(cf. Sec. IV.B.1). In this section, we focus on fishbone nonlinear dynamics well above excitation threshold, where
wave-wave (MHD) nonlinearities can be neglected and the evolution of the system is dominated by the self-consistent
interplay between mode frequency chirping and EP transport via the mode particle pumping mechanism (Chen et al.,
1984; White et al., 1983). This allows us to explain the physics underlying frequency chirping and fishbone burst
saturation by secular EP ejection from the region where the mode drive is localized in the linear unstable phase.
Comprehensive numerical fishbone simulations based on the hybrid MHD-gyrokinetic model equations (Park et al.,

1992) (cf. Sec. II) are more recent (Fu et al., 2006; Vlad et al., 2012, 2013). Fishbone linear stability analyses
based on the same approach are reported by (Park et al., 1999). Meanwhile, the first nonlinear simulation of a
fishbone burst cycle is given by (Fu et al., 2006), where it is shown that mode saturation and frequency chirping
are connected with the secular outward motion of resonant EPs, as depicted in Fig. 15. More specifically, Fig. 15
shows both frequency variation in time and the change in the resonant EP distribution function for v/vA0 = 0.8
and µB0/E = 1 (cf. Sec. II.D), with vA0 the Alfvén speed on magnetic axis. The normalization of Pφ is such that
Pφ = −0.42 corresponds to the plasma center and Pφ = 0 to the plasma boundary. In the numerical simulations by
(Fu et al., 2006), MHD nonlinearities are found to reduce the mode saturation level, but not drastically, yielding to
the conclusion that wave-particle nonlinear interplay is sufficient to explain the dominant features of mode saturation
and frequency dynamics; consistent with comparing Eq. (5.215) and Eq. (5.216). Although (Fu et al., 2006) noted
the possible qualitative similarity of the mode frequency evolution in Fig. 15 with the ∝ t1/2 frequency chirping of
phase-space holes and clumps (Berk et al., 1999), discussed in Sec. V.D.2.c, it can be readily recognized that the
nonlinear fishbone dynamics is non-adiabatic, in the sense discussed in Secs. V.D.5 and V.D.6 above. Thus, frequency
chirping and phase locking are expected to accompany the secular loss of resonant particles, while mode saturation is
due to radial decoupling.
Further demonstration of the nonlinear physics underlying the fishbone burst cycle has been recently provided by

hybrid MHD-gyrokinetic simulations of “electron fishbones” (e-fishbones) (Vlad et al., 2012, 2013) (cf. Sec. IV.B.1).
The relevance of e-fishbones is primarily related to the fact that supra-thermal electrons are characterized by relatively
small orbit width compared with those of fast ions, similar to the case of alpha particles in burning plasmas. Moreover,
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precessional resonance depends on energy, not mass. Thus, e-fishbones give the opportunity to study the coupling
between EPs and MHD like modes in burning plasma relevant conditions even in present day machines. In particular,
supra-thermal electron transport perpendicular to the equilibrium magnetic field caused by these modes can reflect
some properties of fluctuation induced transport of fusion alphas due to precessional resonance (Zonca et al., 2007a,b).
The numerical simulation results by (Vlad et al., 2012, 2013) are consistent with those by (Fu et al., 2006) and
demonstrate that nonlinear mode saturation is accompanied by downward frequency chirping. In addition, they
illuminate and fully clarify the nonlinear dynamics of the strongly driven fishbone burst cycle by means of the phase-
space numerical diagnostics introduced by (Briguglio, 2012; Briguglio and Wang, 2013) (cf. Sec. V.D.6). In this case,
in order to model typical Frascati Tokamak Upgrade (FTU) operations with e-fishbones (Zonca et al., 2007a), the q
profile has slightly negative shear inside the minimum q surface at rs/a ≃ 0.35, where qmin(rs) ≃ 1.05, while q0 ≃ 1.25
on the magnetic axis. For this reason, the dominant (m,n) = (1, 1) component of the fishbone fluctuation is different
form the usual rigid displacement inside the q = 1 surface and decreases more gradually from r ∼ rs toward the
plasma edge (cf. Fig. 16). In these simulations (Vlad et al., 2012, 2013), supra-thermal electron are represented by an
anisotropic Maxwellian (magnetically trapped particles), with a peak radial gradient located slightly inside rs. This
distribution is given as initial value and let self-consistently evolve with e-fishbone fluctuations without external sources
and collisions, as in (Fu et al., 2006). Meanwhile, thermal ion kinetic effects are also included (Wang et al., 2011) to
properly handle enhanced plasma inertia and ion Landau damping (Kolesnichenko et al., 2010a; Zonca et al., 2007a,
2009) (cf. Sec. IV.B.1)46. The convective resonant particle motion yielding mode saturation by radial decoupling
is demonstrated by a time sequence of kinetic Poincaré plots (White, 2012), which show EPs moving outward at
essentially constant wave-particle phase and the formation of a steeper gradient region that is also outward moving.
At the same time, a flatter region in the EP particle distribution is formed at smaller radii, which extends further
inward as more EPs are convectively pumped outward. This evidence is consistent with Fig. 15 (Fu et al., 2006).
Meanwhile, as resonant EPs are convected outward and their ω̄d decreases, the mode chirps downward and readjusts
its frequency by minimizing resonance detuning in order to maximize wave-particle power exchange; corresponding to
maximizing mode growth and resonant EP transport at the same time, as in the case of EPM (cf. Sec. V.D.6). This
is shown in Fig. 16(left), which illustrates the time evolution of ω̄D and δωD, defined as (Vlad et al., 2012, 2013)

ω̄D ≡
∑
i P

lin
i ω̄di∑
i P

lin
i

, and δωD ≡
[∑

i P
lin
i (ω̄di − ω̄D)

2

∑
i P

lin
i

]1/2
; (5.217)

with the summation extended on simulation particles and weighted by P lin
i , the wave-particle power exchange in the

linear phase. With the same definition of Eq. (5.217), it is also possible to define ¯̇Θ and δΘ̇, as well as the average
radial position of EPs contributing to the initial (linear) drive, r̄, and its corresponding spread, δr, which are also
shown in Fig. 16(center) and Fig. 16(right), respectively. In particular, Fig. 16(center) shows that frequency chirping

is due to phase locking (black line) and that, with no frequency chirping accounted for, ¯̇Θ|ω=const (red line) would
yield rapid resonance detuning. Saturation of the fishbone burst, instead, is due to radial decoupling, as illustrated
in Fig. 16(right), showing the time evolution of r̄ (black line) and r̄ ± δr (red lines), referred to the linear mode
structure (in arbitrary units) |(m/r)δφm,n| ∝ |δξrm,n|. Note that ω̄D = ω̄d(r̄) for resonant EPs. Due to the strong

energy weighting ∝ ω̄2
d in the definition of δŴk and the anisotropic Maxwellian distribution assumed as initial reference

equilibrium for EPs in this case, the values of δωD and δΘ̇ ∼ δωD/ωA0 overestimate the actual frequency spread around
the phase locking condition in EP phase space, which is more precisely represented by ∼ (1/2)|ω̄d(r̄+δr)− ω̄d(r̄−δr)|.
We may understand the above simulation results on the nonlinear fishbone dynamics (Fu et al., 2006; Vlad et al.,

2012, 2013) within the theoretical framework introduced in Sec. V.D.5.c. Assuming deeply trapped EPs and neglecting
finite orbit widths, as in Sec. V.D.6, in order to simplify the detailed analyses, and considering a rigid plasma
displacement as dominant component of the fishbone fluctuation47, from Eq. (4.59) we readily have

δŴk = 2
π2

B2
0

mΩ2R0

r2s

∫ rs

0

r3

q
dr

∫
EdEdλ

∑

v‖/|v‖|=±1

τbω̄
2
d

ω(τ)

∫ ∞

−∞

ω + ω(τ)

ω̄d − ω(τ)− ω
e−iωtQk,ω(τ)F̂0(ω)dω , (5.218)

where, in analogy with Eq. (5.191), ω(τ) = ω0(τ) + iγ(τ) is the time evolving complex fishbone frequency. The

46 Please, refer to (Vlad et al., 2012, 2013) for further details about equilibrium profiles used in numerical simulations.
47 A fully self-consistent treatment must generally allow the mode structure to evolve due to non-perturbative redistributions of EPs.
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FIG. 16 [From the original Fig. 11 in Ref. (Vlad et al., 2013)]: (Left) Time evolution of ω̄D (red line) and ω̄D ± δωD (dashed

red lines), compared with the time evolving mode frequency from simulation results (black line). (Center) Time evolution of ¯̇Θ

(black line) and ¯̇Θ± δΘ̇ (dashed black lines); ¯̇Θ|ω=const, obtained neglecting frequency chirping is also shown (red line). (Right)
[from the original Fig. 12 in Ref. (Vlad et al., 2013)]: Time evolution of r̄, the average radial position of EPs contributing to the
initial (linear) drive (black line), and of r̄± δr (red lines). The linear mode structure is also shown by |(m/r)δφm,n| ∝ |δξrm,n|
in abscissa, vs. the normalized radial position on the vertical axis. The harmonic in red refers to the dominant (m,n) = (1, 1)
component.

evolution equation for F0(t), meanwhile, is also readily obtained from Eq. (5.186) and, assuming |ω∗E | ≫ |ω(τ)|,

∂

∂t
F0(t) ≃ StF0(t) + S(t) + 2

(
ω̄d

ω0(τ)

)
∂

∂r

[(∫ +∞

−∞

(γ − iω)− (ω̄d − ω0)(γ/ω0)

(ω̄d − ω0)2 + (γ − iω)2
e−iωt

∂F̂0(ω)

∂r
|ω0(τ)|2|δξr0|2dω

)]
.

(5.219)
Equation (5.219) is the analogue of Eq. (5.196), having maintained explicitly external source and collision terms as
well as the next order correction terms in the asymptotic expansion in γ/ω0. Note that, as in Eq. (5.196), the inverse
operator ∂−1

t acting on the nonlinear term on the right hand side, when integrating Eq. (5.219) in time, corresponds
to (2γ − iω)−1 under the integration in dω. Furthermore, recalling the discussion following Eq. (5.196), Eq. (5.219)
can be considered as a generalized quasilinear equation (Al’tshul’ and Karpman, 1965; Galeev et al., 1965), which also
accounts for mode-particle pumping (White et al., 1983) when frequency chirping and phase locking are considered.
With δŴk given by Eqs. (5.218) and (5.219), the GFLDR Eq. (4.20)48 provides a description of the fishbone burst
cycle dominated by EP nonlinearity (Zonca et al., 2007b), reducing to the case investigated numerically by (Candy
et al., 1999) if the core plasma response is described by ideal MHD (Glasser et al., 1975). Due to the global nature
of the fishbone mode structures, these equations generally require a numerical solution, which is not given in the
literature except that in the MHD limit considered by (Candy et al., 1999). However, further analytic progress is
possible if one introduces subsidiary approximations, which help elucidating the nature of saturation process and EP
transport due to fishbone bursts (Zonca et al., 2007b).
We may assume that the EP response δŴk is predominantly provided from a localized radial region inside rs;

consistent with numerical simulation results in Fig. 16 (Vlad et al., 2012, 2013). The same assumption is also
consistent with our focus on strongly driven fishbone modes, which are characterized by steep EP radial gradients
inside rs, and with the radial structure of the integrand in the expression for δŴk provided by Eq. (5.218). Using
the formal decomposition δŴk ≡ δŴL

k + δŴNL
k as in Sec. V.D.6, it is readily verified that ReδŴk ≃ ReδŴL

k at the
leading order of the asymptotic expansion in γ/ω0; i.e., the non-resonant EP response is formally linear. For radially
localized EP response,

(ω̄d − ω(τ)− ω)−1 ≃ ω̃−1
d (E − E0 − i(γ − iω)/ω̃d)

−1 , (5.220)

with ω̄d ≡ ω̃dE and ω0 ≡ ω̃dE0. Meanwhile, noting that τb = 2πqR0E−1/2(R0/r)
1/2 for deeply trapped particles, as

well as kϑ ∝ −(nq/r), ω̄2
d ∝ ω̃2

d ∝ (nq/r)2 and |ω∗E | ≫ |ω(τ)| (Chen, 1988), we can write

ReδŴk ≃ ReδŴL
k = −R0

rs

∫ rs

0

q2
r

rs

(
R0

r

)1/2
∂

∂r

[(
r

R0

)1/2

β̂E(r;ω0(τ))

]
dr , (5.221)

48 This is equivalent to Eq. (4.52) with the inclusion of a general kinetic expression of the inertia enhancement.
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where

β̂E(r;ω0(τ)) = 2
π2

B2
0

m |Ω| r
q2

∫
EdEdλ

∑

v‖/|v‖|=±1

τbω̄
2
d

∫ ∞

−∞

(ω̄d − ω0)

(ω̄d − ω0)2 + (γ − iω)2
e−iωtF̂0(ω)dω . (5.222)

This definition, for simplicity, assumes that modes have positive frequency when rotating in the particle diamagnetic
direction; i.e., n = 1 for energetic ions and n = −1 for energetic electrons. The expression of β̂E depends only on the
ratio ω0/ω̄dF , with ω̄dF the characteristic EP precessional frequency that, in the case of the isotropic slowing down
distribution function considered in Secs. IV.B.4 and V.D.6, is the precessional frequency at the injection energy of
the EP beam. Thus, Eq. (4.20) yields

δŴf + ReδŴL
k ≃ 0 , (5.223)

and Eq. (5.221) shows that the fishbone frequency is set by the condition ω0/ω̄dF ≃ const, to be computed at the
position of the radial shell where the most significant EP contribution is localized. Meanwhile, we can write49

ImδŴk = −R0

rs

∫ rs
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r
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2
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, (5.224)

where the resonant EP βE is defined as

βEr(r;ω0(τ)) = 2
π2
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m |Ω| r
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EdEdλ
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τbω̄
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d
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(γ − iω)

(ω̄d − ω0)2 + (γ − iω)2
e−iωtF̂0(ω)dω . (5.225)

By substitution of the formal solution of Eq. (5.219) into Eq. (5.224), it is possible to obtain

βEr = ∂−1
t

(
β̇ErS − νextβEr

)
+ ∂−2

t

(
R0

r

)1/2
{
q

r

∂

∂r

[
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q
|ω0|2|δξr0|2

∂

∂r

((
r

R0

)1/2

βEr

)]}
. (5.226)

Together with Eq. (5.224), this last equation justifies the estimate for δŴNL
k given in Eq. (5.216), which yields the

optimal ordering for the saturation amplitude of the fishbone burst as |δξr0| ∼ rs|γL/ω0|, consistent with numerical
simulation results reported by (Vlad et al., 2013). Here, we have also introduced the effects of sources and collisions
on the resonant EP population using the definitions

β̇ErS ≡ 2
π2

B2
0

m |Ω| r
q2

∫
EdEdλ
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v‖/|v‖|=±1

τbω̄
2
d

γ

(ω̄d − ω0)2 + γ2
S(t) , (5.227)

νextβEr ≡ −2
π2
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EdEdλ
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τbω̄
2
d

γ

(ω̄d − ω0)2 + γ2
StF0(t) , (5.228)

which explicitly separate these contributions as suggested by (White, 2010), to emphasize their different roles in the
dynamics of fishbone burst cycle on time scales longer than τNL ∼ γ−1

L (cf. following discussion). Finally, the system
of Eqs. (5.221) to (5.228) is closed by the evolution equation for |δξr0| that, using Eq. (4.20), can be written as
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|s|Λ(ω0)

)}
.

(5.229)
Without sources and collisions, and assuming q ∼ const as well as ω0/ω̄dF ∼ const, Eq. (5.226) describes the

propagation of (r/R0)
1/2βEr as a function of (r2 − 2r|ω0||δξr0|); i.e., for sufficiently steep pressure gradient, the

49 Note that, here, we use a slightly different definition than in (Zonca et al., 2007b) in order to take into account the assumption of deeply
trapped EPs.
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radial shell location providing the dominant contribution to the mode drive and EP compression propagates with
speed ṙ ≃ |ω0||δξr0|, which is a function of r. This is the mechanism of mode particle pumping (White et al.,
1983) that yields mode saturation by ejection of resonant particles from the r = rs surface when the ejection rate
∼ |ω0||δξr0|/rs balances the growth rate ∼ γL. Thus, as resonant EPs are convected outward and the mode growth
rate decreases, the downward frequency shift can be computed by Eq. (5.210), with vg = |ω0||δξr0|. This picture is
consistent with numerical simulation results reported in Fig. 16 (right) (Vlad et al., 2012, 2013) and is, in essence,
similar to that of nonlinear EPM dynamics (cf. Sec. V.D.6) with one additional twist connected with the different
underlying mode structure. In the case of EPM, the nonlinear interplay of EP transport and mode structure causes
convective wave-packet amplification as a soliton structure, while resonant EPs are transported outward locked into
resonance at essentially constant energy, due to the conservation of the Hamiltonian in the extended phase space and
the condition |ω∗E | ≫ |ω(τ)|. The same process occurs in the fishbone case but, when particles that most efficiently
provide mode drive are transported sufficiently outward that radial decoupling becomes important, they are gradually
replaced by lower energy particles, which resonate at smaller r value and continue driving the mode (White, 2000).
In this way, particles can be extracted from increasingly lower energies and inner regions of the plasma core (Fu et al.,
2006; Vlad et al., 2012, 2013) (cf., e.g., Fig. 15) and be pumped outward, far beyond the rs surface and up to the
plasma boundary (White et al., 1983). Proceeding further in the γ/ω0 asymptotic expansion, at O(γ/ω0) it is found
that resonant particles also determine ReδŴNL

k , while non-resonant particles enter only at O(γ2/ω2
0) (Zonca et al.,

2007b). This higher order expansion can be used to determine frequency sweeping rate with a better precision than
based on the simple expression ω0/ω̄dF ∼ const.
Equations (5.226) with sources and collisions and (5.229) can be used to derive reduced nonlinear models for the

fishbone burst cycle. Without nonlinear term, Eq. (5.226) gives the asymptotic solution βEr = βEr0 = β̇ErS/νext.
For the strongly driven fishbone case, considered here, we may consider βEr0 significantly larger that the threshold
condition for fishbone excitation. Thus, when the threshold condition βEr = βc is reached, we may well assume that
βEr is linearly increasing in time due to β̇ErS . Formally acting with ∂t on Eq. (5.226), estimating ∂2r ∼ −1/r2s, and
considering the remaining ∂−1

t ∼ τNL ∼ rs/(|ω0||δξr0|), Eqs. (5.226) and (5.229) can be modeled as

dβ/dτ = S −Aβc ,

dA/dτ = γ0 (β/βc − 1)A , (5.230)

where we have dropped the subscript in βEr to introduce the same notation used by (White, 1989), τ is a normalized
time, A = |δξr0|/rs is the normalized fishbone amplitude and γ0 is a measure of the linear growth rate. Equa-
tions (5.230), given here in the form adopted in problem # 3 on p. 280 of the book by (White, 1989), is the same as
that originally proposed by (Chen et al., 1984) for the interpretation of the fishbone burst cycle50. As noted by (Chen
et al., 1984; White, 1989), the solution of Eqs. (5.230) is cyclic; i.e., it can be generally written as F (A, β) = const,
where F (A, β) has a maximum at the fixed point position β = βc, A = S/βc. A crucial feature of Eqs. (5.230) is the
linear dependence on A of the loss term in the β evolution equation. From Eq. (5.226), this is readily recognized to be
a consequence of the ∂−2

t operator acting on the nonlinear response, which is the manifestation of secular resonant EP
losses by mode particle pumping (White et al., 1983). This term was proposed in the original model by (Chen et al.,
1984) on the basis of intuitive representation of the underlying physics of the fishbone burst cycle, and indicates the
fundamental difference of that approach with respect to the predator-prey model discussed by (Coppi et al., 1988b;
Coppi and Porcelli, 1986), which adopts a loss term ∝ A2.
In the form of Eqs. (5.230), the temporal nonlocality built in Eq. (5.226) and, more generally, in Eq. (5.219) is

lost. However, it has been recently proposed, in the context of predator-prey modeling of TAE bursting behaviors,
that nonlocal time behaviors may be accounted for by introducing a time delay in the wave-particle power exchange
and in the phase-space island induced particle diffusion (Parker and White, 2010). When doing so, the nature of
solutions of the nonlinear dynamic system may change and, e.g., solutions modeling TAE nonlinear behaviors may
change from stable limit point to limit cycle. Similar behaviors may be expected for the fishbone case (White, 2010).
Another worthwhile remark concerns the role of the collision term ∝ −νextβEr in Eq. (5.226). By definition, νext
reduces to the well-known (linear) effective collision frequency only in the weakly nonlinear case. For sufficiently
strong nonlinear distortions νext may even change sign and, therefore, modify the nonlinear behavior of the dynamic
system of Eqs. (5.230) with a formal substitution S → S + νβ → νβ, as hinted at in (Zonca et al., 2007b), while the
loss term may become ∼ −Aβ for large fluctuations. Both the time delay (Parker and White, 2010) and the nonlinear
νext models (Zonca et al., 2007b), however, have not yet been fully explored.

50 Note that (Chen et al., 1984) assume that the nonlinear term in the β evolution equation is multiplied by the Heaviside function
H(β − βmin); i.e., it is considered effective only if β is above a minimum βmin value, considered to be that reached as consequence of
the secular expulsion of EPs from within the r = rs magnetic surface.
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Much richer physics is expected to become increasingly more relevant as plasma conditions approach marginal
stability; e.g., MHD nonlinearities cannot be neglected (Ödblom et al., 2002). Correspondingly, more theory and
simulation studies are needed to fully understand and explain the diverse experimental evidence discussed in Sec. IV.C,
and more recently reported and summarized by (Guimarães-Filho et al., 2012) for the specific case of electron fishbones.
In general, the present understanding of wave-particle and wave-wave nonlinear effects on fishbone dynamics call for
a comprehensive treatment addressing these physics on the same footing, while accounting for kinetic core plasma
response in realistic toroidal geometry.

E. Further remarks on general theoretical issues and broader implications

Equation (5.3) evidently has similarities with the wave kinetic equation

∂

∂t
I(r,k, t) +

∂ω

∂k
· ∂
∂r
I(r,k, t)− ∂ω

∂r
· ∂
∂k

I(r,k, t) = 2γL(k)I(r,k, t) + [NL TERMS] , (5.231)

where I(r,k, t) is proportional to the wave energy density, which has been derived in plasma physics literature in
different ways: (1) from qualitative extension to weakly nonuniform system of the evolution equation of the occupation
number of a mode due to nonlinear interaction with other modes (Kadomtsev, 1965; Sagdeev and Galeev, 1969; Swift,
1972); (2) by use of geometric optics in space and time varying plasmas (Bernstein and Baldwin, 1977); (3) by
adopting the Weyl representation (Weyl, 1931) for electromagnetic waves (McDonald and Kaufman, 1985)51. While
this formal similarity may seem striking, it is generally a consequence of the procedure used for obtaining kinetic
equations for weakly-nonideal systems (Balescu, 1963; Prigogine, 1962; Van Hove, 1955). The similarity with the
analyses given by (Kadomtsev, 1965; Sagdeev and Galeev, 1969; Swift, 1972), instead, is only formal, because in that
case the wave kinetic equation is seen as random-phase spectral evolution equation. Furthermore, the τNL ∼ γ−1

L

ordering with |γL/ω0| ≪ 1 (cf. Sec. II.C) is crucial in the present case for coherent resonant wave particle interactions
to play important roles both in the linear excitation of DAWs as well as in their nonlinear dynamic evolution. On the
contrary, the phase coherence between wave and particles is rapidly lost in the case of weak turbulence theory, where
the simultaneous action of many waves with relative random phases are considered (Sagdeev and Galeev, 1969), and
becomes a notion of lesser importance when dealing with transport in fully developed plasma turbulence. Another
difference is given by the role of equilibrium geometry and plasma nonuniformity in determining the wave packet
propagation in Eq. (5.3), which is clearly not accounted for in Eq. (5.231) while it plays important roles in the DAW
dynamics.
By construction, Eq. (5.3) is inapplicable to investigations of broad band plasma turbulence. However, it has

been used successfully to investigate nonlinear processes in drift wave (DW) turbulence, where time scale separation
may be systematically applied. Notable examples are the excitation of ZS by coherent wave-wave interactions (Chen
et al., 2000, 2001; Guzdar et al., 2001a), turbulence spreading (Hahm et al., 2004; Lin et al., 2002; Lin and Hahm,
2004) due to the propagation of dispersive waves enhanced by DW-zonal flow interaction (Chen et al., 2004; White
et al., 2005; Zonca et al., 2004b); and saturation of electron temperature gradient driven turbulence due to inverse
cascade via scatterings off driven low mode-number quasi-modes (Chen et al., 2005; Lin et al., 2005). Equation (5.3)
can also be used for addressing spatiotemporal cross-scale couplings between DAWs and EP dynamics on one hand
and DW turbulence and turbulent transport on the other hand (see also Sec. VII.B). In fact, due to the disparate
spatiotemporal scale involved in these process, it may be conjectured that cross-scale coupling are mediated by the
formation of ZS (Zonca et al., 2006), which could eventually determine the long time scale behaviors of burning
plasmas (Zonca, 2008; Zonca and Chen, 2008a). Furthermore, ZS may be spontaneously excited above a critical
amplitude threshold of the driving fluctuation and, hence, they can be very efficient in providing a self-regulation
mechanism of plasma turbulence and fluctuation induced transports (Diamond et al., 2005)52. Thus, the formal
separation of nonlinear interaction with ZS on the right hand side of Eq. (5.3) captures two different processes, i.e.,
the coherent nonlinear interaction with the ZS generated by the fluctuation itself (self-interaction) and the incoherent
interaction with ZS generated by other fluctuating fields, including DW turbulence. Assuming, for illustration, non-
dispersive waves along with local nonlinear interactions in n-space, the form of Eq. (5.3) becomes that of a discrete
Anderson nonlinear Schrödinger equation with randomness, e.g., (Iomin, 2010; Krivolapov et al., 2010; Pikovsky and

51 For application to the analysis of scalar fields, see also (Katou, 1981).
52 The importance of spontaneous excitation of ZS in collisionless burning plasmas is also analyzed in Secs. V.C.2 and V.D.6.
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Shepelyansky, 2008; Shepelyansky, 1993)

i~
∂

∂t
ψn = ĤLψn + ζ|ψn|2ψn , (5.232)

where ĤL is the Hamiltonian of the linear problem in the tight-binding approximation, accounting for the random
transitions between nearest-neighbor states on a lattice in terms of a hopping matrix with disorder (Anderson, 1958).
In Eq. (5.3), the ZS self-interaction gives the nonlinearity, while ZS incoherent coupling and the three wave inter-
action term act as random potential53. An important feature, which arises in the analysis of Eq. (5.232) as well
as Eq. (5.3), is competition between nonlinearity and randomness. Indeed, it has been argued and discussed in the
literature that, when the nonlinearity parameter ζ is sufficiently small, the random properties play the dominant
role through the dynamics, e.g., (Krivolapov et al., 2010; Wang and Zhang, 2009), thus sustaining the phenomena
of Anderson localization, likewise to the linear localization case (Anderson, 1958). That means that the diffusion
is suppressed and an initially localized wave packet will not spread to infinity. Despite this evidence, it is found
that, in direct numerical simulations of one-dimensional discrete nonlinear Schrödinger lattice with disorder (Flach
et al., 2009; Pikovsky and Shepelyansky, 2008), the phenomena of Anderson localization are destroyed above a certain
critical strength of repulsive (ζ > 0) nonlinearity and an unlimited subdiffusive spreading of the wave field across the
lattice occurs. In the attempt to bridge the various specialized model regimes, (Milovanov and Iomin, 2012) have
proposed that the loss of Anderson localization in the presence of nonlinearity is a critical phenomenon and that the
delocalization occurs spontaneously above a threshold value of ζ, similarly to the percolation transition in random
lattices. Meanwhile, soliton solutions of Eq. (5.232) are typically found for attractive nonlinearity (ζ < 0) (Zelenyi
and Milovanov, 2004). Similarities with DW turbulence spreading due to coherent DW-zonal flow interaction, again,
become evident; considering that the zonal flow self-interaction term is attractive (Chen et al., 2004) and, therefore,
that turbulence spreading may occur via soliton structure formation (Guo et al., 2009).
Furthermore, the theoretical analysis of AE nonlinear dynamics near marginal stability, presented in Sec. V.D.2,

suggests a clear connection between these studies and autoresonance in driven 1D Vlasov-Poisson systems. Au-
toresonance (Meerson and Friedland, 1990) is the phenomenon of a nonlinear pendulum that can be driven to large
amplitude, which evolves in time to instantaneously match the nonlinear pendulum frequency with that of an external
drive with sufficiently slow downward frequency sweeping. This phenomenon is common in many fields of physics
and “was first observed in particle accelerators, and has since been noted in atomic physics, fluid dynamics, plasmas,
nonlinear waves, and planetary dynamics”, as remarked in the review of the autoresonance fundamental physics given
by (Fajans and Friedland, 2001). In fusion plasmas, the idea of autoresonance and resonant particle transport in
buckets was proposed by (Mynick and Pomphrey, 1994) for removing helium ash from the plasma core and other
possible applications, such as burn control, profile control and diagnostic tool. The same notion has clear analogies
to the idea of affecting the direct coupling of fusion alpha particle power, known as “alpha channeling” (Fisch and
Rax, 1992) (cf. Sec. VII). Autoresonance is a process with a critical threshold in the amplitude of the external drive,
which scales as ∼ ω̇3/4 and was observed in experiments with trapped electron clouds (Fajans et al., 1999). Electron
phase space holes were formed and controlled in a plasma by adiabatic nonlinear phase locking (autoresonance) with
a chirped frequency driving wave via Cherenkov-type resonance (Friedland et al., 2006), for which a kinetic theory
interpretation was given by (Khain and Friedland, 2007), based on the phase-locked evolution of dissipationless non-
linear waves; i.e., BGK modes (Bernstein et al., 1957). As noted by (Friedland et al., 2006), one important difference
emerges when BGK structures are formed by instabilities, as they are poorly controllable. As long as the effect of EP
transport on the plasma dielectric response can be considered small, as in the case of the 1D beam-plasma system
(cf. Sec. V.D.1) or when AE are sufficiently close to marginal stability (cf. Sec. V.D.2), the connection between
autoresonance in driven 1D Vlasov-Poisson systems and the hole-clump nonlinear dynamics in the 1D beam-plasma
problem with sources and sinks (Berk et al., 1999, 1997b) is preserved. In the former case, the frequency sweeping is
imposed by the external drive; in the latter one, chirping is set by balancing the rate of energy extraction of hole-clump
dynamics in phase space with dissipation. However, when EPM induced transport significantly affects the nonlinear
dynamics by changing the plasma dielectric response, resonant particle radial motion is secular as long as wave-particle
phase locking is maintained and frequency chirping is nonadiabatic, as discussed in Secs. V.D.5 and V.D.6. The same
remark applies to the case of fishbones (Chen et al., 1984; White et al., 1983) (cf. Sec. V.D.7). The secular EP loss,
predicted theoretically (White et al., 1983) and observed experimentally (Duong et al., 1993), may also be considered

53 The structure of Eq. (5.232) is obtained from Eq. (5.3) even without the three wave interaction term, since each An0 has different possible
radial states due toroidicity induced poloidal mode couplings, corresponding to different radial localizations. Three wave interactions
are, thus, a further twist in the physics described by Eq. (5.3).
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an autoresonant effect, spontaneously driven by EP transport for sufficiently strong drive. In between these two
limiting behaviors, there is a transition where the role of equilibrium geometry and plasma nonuniformity becomes
increasingly more important for increasing mode drive (Briguglio et al., 2013; Wang et al., 2012; Zhang et al., 2012).
These physics, embedded in Eq. (5.3) by the integro-differential nature of nonlinear terms and, more specifically,
by the renormalized solution for the EP distribution function, Eqs. (5.184) and (5.186) (Dyson equation), suggest a
number of possible model nonlinear Schrödinger equations, possibly with fractional partial derivatives, to be used for
the description of multi spatiotemporal scale dynamics, as discussed in Secs. V.D.6 and V.D.7.

VI. ENERGETIC PARTICLE TRANSPORT IN FUSION PLASMAS

One fundamental issue in studies of collective mode excitation by energetic ions in burning plasmas is to assess
whether or not significant degradation in the plasma performance can be expected in the presence of shear Alfvén
wave (SAW) fluctuations and, if yes, what level of wall loading and damaging of plasma facing materials can be caused
by energy and momentum fluxes due to collective fast ion losses. Energetic particle (EP) losses up to 70% of the
entire fast particle population have both been predicted theoretically and found experimentally (Duong et al., 1993;
Heidbrink and Sadler, 1994; Strait et al., 1993).
The standard approach to modeling EP losses due to a given spectrum of SAW fluctuations (AEs and EPMs; cf.

Sec.¿IV) is based on test-particle transport studies. These are expected to well represent the actual transport phe-
nomena provided that transport processes themselves do not significantly modify the fluctuation spectrum. However,
it cannot describe the transition to secular transport phenomena, where the interplay of nonlinear mode dynamics
and transport processes themselves is intrinsically nonperturbative, as in the case of EPM avalanches, discussed in
Sec. V.D.6 (cf. also Sec. VII.A). One important “exception” is the case of fishbones, for which the interplay of
nonlinear mode dynamics and transport processes does not significantly modify the linear MHD mode structure54,
but predominantly causes the mode frequency to rapidly chirp downward (cf. Secs. V.D.7 and VI.B). In this case
test particle transport studies give good agreement between simulation results and experimental measurements of
EP redistributions even assuming that the mode frequency is fixed, for the projection of the particle phase-space
island (cf. Sec. V.D) along the plasma radial coordinate is comparable with the machine size, due to the weak radial
dependence of the precessional frequency (White et al., 1983). Thus, accounting for the observed frequency sweeping
is not crucial for EPs to be pumped out of the system. In many cases of practical interest, however, test-particle
transport improves accuracy in comparisons of simulation results against experimental observations when the mea-
sured frequency sweeping is accounted for [cf. e.g. (Fredrickson et al., 2009)]. This important point was noted in the
early test-particle simulations of EPs by fast frequency chirping modes (White, 2000).

A. Supra-thermal test particle transport

Test particle loss mechanism is essentially of two types (Hsu and Sigmar, 1992; Sigmar et al., 1992): (1) transient
losses, which scale linearly (≈ δBr/B) with the mode amplitude, due to resonant drift motion across the orbit-loss
boundaries in the EP phase space; (2) diffusive losses above a stochastic threshold, which scale as ≈ (δBr/B)2, due
to EP stochastic diffusion and eventually transport across the orbit-loss boundaries. Due to the large system size,
mainly stochastic losses are expected to play a significant role in ITER, while the dominant loss mechanism below
stochastic threshold is expected to be that of scattering of barely counter-passing particles into unconfined “fat” banana
orbits (Hsu and Sigmar, 1992; Sigmar et al., 1992)55. After the first work on fishbone induced EP losses (White et al.,
1983), numerical simulations of test particle transport have been successfully adopted for investigating alpha particle
redistributions by MHD activity in TFTR (Zweben et al., 1999), beam ion transport during tearing modes in the
DIII-D tokamak (Carolipio et al., 2002), EP confinement in the presence of stochastic magnetic fields in the MST
reversed field pinch (Fiksel et al., 2005) and, more recently, to model neoclassical tearing mode induced EP losses in
ASDEX Upgrade (Garćıa-Muñoz et al., 2007).
Supra-thermal particle transport by AEs has been addressed in many works (Appel et al., 1995; Candy et al., 1999;

Carolipio et al., 2001; Pinches et al., 2006; Sigmar et al., 1992; Todo et al., 2003; Todo and Sato, 1998), all yielding
the similar conclusion that appreciable losses (above the stochastic threshold) require mode amplitudes in the order of

54 The linear fishbone mode structure may instead be importantly modified in the case of high frequency fishbones (cf. Sec. IV.B.1), as
discussed by (Kolesnichenko et al., 2010a).

55 This same mechanism has been experimentally shown to be the dominant EP loss mechanism due to RSAE (Pace et al., 2011) and
EGAM (Kramer et al., 2011) in some recent DIII-D experiments.
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δBr/B ∼ 10−3, when single-n (toroidal mode number) modes are considered. An actual quantitative estimate of the
stochastic threshold in the multiple-n modes case depends on the specific features of the system being considered (see
following discussions), although it has been shown that the multiple-mode stochastic threshold may be greatly reduced
[(δBr/B)<∼ 10−4] with respect to the single-n mode case (Hsu and Sigmar, 1992; Sigmar et al., 1992). The critical
aspects connected with the stochastic threshold for EP transport have been discussed in a pair of recent works (White
et al., 2010a,b), which analyzed in detail the modification of deuterium beam distribution in DIII-D plasmas due to
the interaction with AEs (TAE and RSAE). The main finding of test particle transport analyses is that observed
fluctuation levels are slightly above the stochastic threshold of the system, making simulation very sensitive not only
to mode amplitudes but also to other small effects: e.g., omitting the scalar potential fluctuations component of the
magnetic perturbations while retaining all other relevant features in the modeling “leads to beam transport more than
an order of magnitude too small to explain the observed profile flattening”. Near the onset of local stochasticity in
the particle phase-space (Chirikov, 1979; Lichtenberg and Lieberman, 1983, 2010), transport events due to resonance
overlap of different-n AEs (Berk et al., 1996a, 1995a; Breizman et al., 1993) (avalanches) may exhibit characteristic
aspects of sandpile physics and have been observed in numerical simulations of ITER plasmas (Candy et al., 1997);
showing negligible α-particle transport due to weakly damped core-localized modes, and of TAE mode bursting in
a TFTR-like plasma during Neutral Beam Injection (NBI) (Candy et al., 1999). These issues are closely connected
with the crucial roles played by equilibrium geometry and plasma nonuniformity in the nonlinear EP phase space
dynamics and the onset of stochasticity.

Hybrid MHD gyrokinetic simulations have also been used to analyze central flattening of the EP profile in reversed-
shear DIII-D discharges, assuming an initial EP profile computed from classical NBI deposition (Vlad et al., 2009).
Simulation results show a good agreement of the relaxed EP profile due to fast growing n = 1 and n = 2 EPMs with
the experimental profiles measured with the FIDA diagnostics. Furthermore, in the EPM saturated phase, EPMs are
transformed to weak RSAE modes, which agree well with experimental measurement both in frequency and radial
localization. After the initial nonlinear evolution, remarkably, multi-mode hybrid MHD gyrokinetic simulations (Vlad
et al., 2009) obtain results for EP redistributions consistent with those obtained by test particle transport (White
et al., 2010a,b). This suggests that, with an adequate modeling of the EP source, nonlinear gyrokinetic or equivalent
numerical simulations (cf. Sec. II.F) have the capability of analyzing EP transport in the presence of multiple AEs,
and the results may be comparable to test particle transport calculations, if particle redistributions and nonlinear
mode dynamics are not strongly interlinked.

B. Self-consistent non-perturbative energetic particle transport

When the interplay of nonlinear mode dynamics and transport processes themselves is intrinsically nonperturbative
(cf. Secs. V.D and VII.A), test particle transport simulations do not necessarily reflect the physics of the processes
underlying EP redistributions. The first evidence of secular EP transport by EPM is given by (Briguglio et al., 1998),
showing that mode saturation is due to radial particle redistribution and that, at saturation, the finite radial mode
structure characteristic scale is comparable to the fluctuation induced EP displacement (cf. Sec. V.D.5).

Hybrid MHD gyrokinetic numerical simulations have confirmed the fact that rapid EP transport is expected when
the system is significantly above marginal stability and that fast radial particle redistributions lead to fishbone mode
saturation and downward frequency chirping (Fu et al., 2006; Vlad et al., 2012). Simulation results also elucidate that
fluid nonlinearities do not qualitatively alter the nonlinear dynamics of the fishbone burst cycle and EP transport (Fu
et al., 2006).

Dramatic transport events, such as those observed in connection with fishbones and EPMs, occur on time scales
of a few inverse linear growth rates (generally, 100 ÷ 200 Alfvén times) and have a ballistic character (White et al.,
1983) that basically differentiates them from the diffusive nature of multiple-n AE induced transport. Experimental
observations in the JT-60U tokamak have also confirmed macroscopic and rapid EP radial redistributions in connection
with the so-called abrupt large amplitude events (ALE) (Shinohara et al., 2001). Numerical simulations of an n = 1
EPM burst (Briguglio et al., 2007) show that radial profiles of EPs, computed before and after the EPM induced
particle redistributions, agree qualitatively and quantitatively with experimental measurements (Shinohara et al.,
2004). Good agreement is also obtained on the burst duration. The EP transport, meanwhile, also explains the
saturation of the ALE burst. These simulation results have been recently confirmed by further numerical studies of
ALE nonlinear dynamics, with detailed investigations of the importance of equilibrium geometry (Bierwage et al.,
2011) and plasma compressibility effects (Bierwage et al., 2012). Hybrid MHD gyrokinetic simulations of single-n
modes were also used to compare linear and nonlinear dynamics of Alfvénic oscillations in ITER burning plasmas
scenarios (Gorelenkov et al., 2003; Vlad et al., 2006).
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In experimental conditions of practical interest, situations in which AE and EPMmay coexist and even be interlinked
by nonlinear transport processes are not infrequent. This is, e.g., the case of slow upward sweeping ACs observed in
JET together with repeated rapid down-sweeping modes (Pinches et al., 2004a). This observation, as suggested by
hybrid MHD gyrokinetic simulations of JET experimental conditions (Zonca et al., 2002), may be explained in terms
of early resonant excitation of a EPM within the q-minimum surface and followed later, due to nonlinear dynamic
evolution of the fluctuations, by the formation of a cascade mode at the q-minimum surface. Similar coexistence of
TAE and EPM are the plausible interpretation of “TAE avalanches” in NSTX (Fredrickson et al., 2009; Podestà et al.,
2011, 2009), where the activity of quasi-periodic TAE fluctuations with limited frequency chirping is followed by the
so called “TAE avalanche”. Such phenomenon causes EP losses of up to ∼ 30% over 1ms and manifests itself as a
larger burst amplitude with nonadiabatic frequency sweeping. Test particle transport simulations show reasonable
agreement of predicted particle losses with experimental observations, whose features are consistent with the onset
of stochastic diffusion discussed by (Berk et al., 1996a, 1995a). On the other hand, the evidence of nonadiabatic
frequency chirping suggests that resonance overlap may enhance the free energy source in the first phase of quasi-
periodic TAE fluctuations with limited frequency chirping and, once the EPM excitation threshold is exceeded56,
EPMs may be triggered that are characterized by nonadiabatic frequency sweeping and cause rapid and secular
particle redistributions discussed in Sec. V.D.5. Further indications in support of interesting nonlinear interplay
between mode structures and EP transport in the case of “TAE avalanches” (Fredrickson et al., 2009) come from
the experimental growth rates, ∼ 10−1(ω0/2π) (Podestà et al., 2011), that are typically larger than those computed
from linear stability analyses, ∼ 10−2(ω0/2π), and from the mode structures that are not always the same as those
reconstructed from reflectometry measurements (Podestà et al., 2009).
The synergy between AE and MHD activity, notably sawteeth, is also connected with nonperturbative redistribu-

tions of EPs. In the case of DIII-D, e.g., the use of high harmonic ICRH generates an EP population that transiently
stabilizes the sawtooth instability (cf. Sec. IV.B.1) but destabilizes TAEs (Heidbrink et al., 1999). In the further
evolution of the plasma discharge, saturation of the central heating correlates with the onset of the TAEs, while
sawtooth crash is eventually caused by the continued expansion of the q = 1 surface radius. Similar observations are
made in TFTR plasmas (Bernabei et al., 2000, 2001), where the eventual crash of long-period sawteeth is explained
in terms of the loss of the stabilizing effect of EPs that are transported outward by EPM from within the q = 1
surface. An effect similar to that of EPM on sawteeth can also be induced by TAEs when, with high values of the
safety factor at the q(r = a) at the plasma boundary, their mode structures are shifted deeper into the plasma core,
where they can cause sufficient EP redistributions to affect sawtooth stabilization. Meanwhile, in some TFTR plasma
discharges, it has been demonstrated that the loss of ICRH efficiency may be due to the combined effect of EPM and
TAE, which eventually redistribute EPs in a broader region of the plasma volume and may even cause global particle
losses (Bernabei et al., 1999). More recent analyses of the impact of strongly driven fishbones and AEs on EP losses
in JET is given by (Nabais et al., 2010).

C. Transport of energetic particles by microscopic turbulence

The problem of EP transport by microscopic turbulence was addressed in the early work by (Belikov et al., 1976),
discussing the energy spectrum of α-particles escaping from a plasma as a result of turbulent diffusion. A later and
more systematic theoretical description of the fusion α-particles confinement in tokamaks was provided by (White and
Mynick, 1989), demonstrating that supra-thermal particle confinement is much less deteriorated by microturbulence
than that of thermal plasma, due to orbit averaging and wave-particle decorrelation effects. This picture was also
confirmed by numerical simulations of test-particle transport in strong electrostatic drift wave turbulence (Manfredi
and Dendy, 1996) and, more recently, by numerical simulation of turbulent transport of a slowing down distribution
of supra-thermal particles with high birth energy compared to the thermal plasma energy (Angioni and Peeters,
2008; Angioni et al., 2009; Zhang et al., 2008a). Experimental observations confirmed these general expectations and
quantitatively estimated the turbulent diffusivity of EPs to be one order of magnitude less than that of thermal ions
for particle energies E/Tc>∼ 10 (Heidbrink and Sadler, 1994; Zweben et al., 2000), Tc standing for the core plasma
thermal energy. Significant interest in this topic was revived more recently by experimental observations in plasmas
with NBI, showing evidence of anomalies in EP transport in AUG (Günter et al., 2007), JT-60U (Suzuki et al.,

56 Note that, for sufficiently strong mode drive, of the order of the real frequency shift from the continuous spectrum accumulation point,
there is no clear distinction between AE and EPM, as discussed in Sec. IV.A, and EPMs could easily exist inside the SAW frequency
gap. In addition, in typical NSTX experimental conditions, equilibrium mean flow shear is strong enough to significantly alter the SAW
continuous spectrum and generally cause strong coupling of TAEs with the SAW continuous spectrum and, thereby, with EPMs (Podestà,
2012).
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2008) and DIII-D (Heidbrink et al., 2009a,b), which might have raised concerns about the negative NBI efficiency
in ITER. These observations were connected with theoretical (Vlad and Spineanu, 2005) and numerical simulation
analyses (Albergante et al., 2009; Angioni et al., 2009; Estrada-Mila et al., 2005, 2006), supporting that a significant
level of EP transport could be driven by microturbulence. The nature of the discrepancy of experimental measurements
from neo-classical predictions of cross-field diffusion of EPs was clarified by (Heidbrink et al., 2009a,b), looking at DIII-
D plasmas where EP diffusivity was dominated by Ion Temperature Gradient (ITG) driven turbulence and showing
that anomalies were more pronounced at low E/Tc, where the effect of microturbulence is strongest. Numerical
simulation results (Zhang et al., 2010b) have demonstrated that supra-thermal particle diffusivities are consistent with
theoretical predictions based on quasi-linear theory (Chen, 1999), confirming the conclusions of original theoretical
and numerical works. Thus, EP transport by microturbulence in reactor relevant conditions and above the critical
energy (at which plasma ions and electrons are heated at equal rates by EPs) is negligible and supra-thermal particle
turbulent diffusivities have intrinsic interest mostly in connection with the explanation of present day experiments
with low characteristic values of E/Tc. The potential problem of EP transport that might have been induced in ITER
by magnetic fluctuations (Hauff et al., 2009), as also reported in the recent review by (Breizman and Sharapov, 2011),
is, therefore, resolved by these findings (Heidbrink et al., 2009a,b; Zhang et al., 2010b), and is further confirmed
in dedicated numerical simulations of electromagnetic turbulent transport of EPs in burning plasmas (Albergante
et al., 2012, 2011, 2010). The main possible concern remains the increased supra-thermal particle diffusivities that
may be expected in DEMO (DEMOnstration Power Plant), due to the significantly larger operation temperature and
consequent lower value of E/Tc (Albergante et al., 2012).

A final aspect which is worthwhile mentioning is the impact of SAW oscillations on thermal plasma transport. In
Sec. IV.B, the broad range of frequencies and mode numbers of drift Alfvén wave (DAW) are emphasized together
with the different roles of EPs and thermal plasma acting as free energy source in the various regimes. The continuous
transition between EP driven long wavelength fluctuations to thermal plasma driven DAW turbulence (Zonca and
Chen, 2008c) (cf. also Sec. IV.B.2) corresponds to a similar transition in the weighting of fluctuation induced transport
from mainly affecting supra-thermal particles to predominantly contributing to thermal plasma losses (Scott, 1997).
There are not many detailed experimental studies of such behaviors, but some interesting evidence in this respect is
given by the direct observations of the local plasma potential perturbation and turbulent particle flux in NBI plasmas
of TJ-II stellarator, using Heavy Ion Beam Probe (HIBP) diagnostics. The results show that AE’s contribution to the
turbulent particle flux was typically found to be widely variable from a negligibly low level up to being comparable
to the total turbulence flux (Melnikov et al., 2010).

VII. CONCLUDING REMARKS AND OUTLOOKS

The present work has addressed a wide range of linear and nonlinear physics problems related with shear Alfvén
waves (SAWs) and energetic particles (EPs) in burning plasmas, without the intention of being comprehensive.

Among the physics issues addressed in this work, the theoretical formulation of the general fishbone like dispersion
relation provides a unified framework for linear as well as nonlinear physics studies and may serve as useful inter-
pretative tool for numerical simulation results and experimental observations. Linear stability problems essentially
require the use of already available comprehensive gyrokinetic (or equivalent) codes together with careful modeling
of realistic plasma equilibria and physical boundary conditions in order to allow realistic predictions of drift-Alfvén
wave (DAW) stability properties in burning plasmas, such as ITER. The many benchmarking activities in progress
worldwide give confidence that such predictions on linear physics will be available in the near future. As to nonlinear
physics, we have shown that the governing equation has the theoretical structure of a nonlinear Schrödinger equation
with integro-differential nonlinear terms. In simplified examples, this equation is shown to yield convective amplifica-
tion of radially outward moving energetic particle mode (EPM) wave packets, accompanied by secular displacement
of resonant EPs; as well as fishbone burst cycle, which is the first and probably best known example of EPM. Com-
parisons between reduced nonlinear theoretical models, numerical simulations results and experimental observations
in present toroidal devices have already started providing new insights into the fundamental issues underlying these
processes. Current theoretical understandings of nonlinear physics have, in particular, indicated the crucial impor-
tance of equilibrium geometry, plasma nonuniformities, and kinetic processes. Simplified descriptions, based on the
analogy of the resonant excitation of SAWs by EPs with the 1D bump-on-tail problem, are capable of capturing some
of the important nonlinear dynamics near marginal stability and have been extensively applied to the interpretation of
experimental observations. However, by assumptions, these theories do not address the important roles of radial mode
structures and plasma nonuniformities, which can change the nonlinear behaviors qualitatively and quantitatively.
Nonlinear physics, therefore, would require substantially more significant efforts to reach the level of maturity for
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actual and reliable predictions of Alfvénic fluctuation and related transports in reactor relevant conditions. The rapid
development of impressive diagnostics systems and numerical simulation capabilities renders it feasible that one can
expect rapid advance in this important area.

The intended scope of the present review has left out several important issues. For example, high frequency
fluctuations (|ω|>∼ Ωi) have been entirely neglected, although there are evidences of fusion alpha particle driven
ion cyclotron emission [see, e.g., (Cauffman et al., 1995)], interpreted as resonantly excited Compressional Alfvén
Eigenmodes (CAE) (Belikov et al., 1995; Fülöp et al., 1997; Gorelenkov and Cheng, 1995a,b). In fact, the CAE
phenomenology has been widely studied in NSTX (Fredrickson et al., 2004), but their global implication on fast
ion confinement is minor (Fredrickson et al., 2002). Another important aspect, involving the interaction of EPs
with waves in the high Radio Frequency (RF) range, is the so-called “alpha channeling” (Fisch and Rax, 1992);
i.e., “the diversion of energy from energetic alpha particles to waves” (Fisch, 2000), as “attempt at detailed control
over plasma behavior”. This, of course, is a very ambitious but highly rewarding task, for it could considerably
facilitate the development of an economical fusion reactor. For a recent review of the elementary processes underlying
alpha channeling in tokamaks, we refer the reader to (Fisch, 2012) and to the comprehensive, but somewhat more
outdated work (Fisch, 2000), which was further articulated in (Fisch, 2006, 2010). The idea of alpha-channeling is
generally connected with the global character of nonlinear dynamics of DAW in fusion plasmas and related transport
phenomena. The use of bucket transport in fusion plasmas for removing helium ash from the plasma core as well
as burn control, profile control and diagnostic tool was proposed by (Mynick and Pomphrey, 1994) (cf. Sec. V.E).
Recently, (Kolesnichenko et al., 2010b,c) have pointed out that DAW may channel the energy and momentum of EPs
to different spatial regions, where waves are absorbed. In this way, EP driven instabilities may not only affect the EP
radial profiles, but alter thermal plasma transport as well, notably the electron heat transport across the equilibrium
magnetic field and the plasma rotation profile (Kolesnichenko et al., 2010b). In (Kolesnichenko et al., 2010c), it is
further argued that these processes are consistent with the observation of thermal electron transport by broad-band
GAE in NSTX (Stutman et al., 2009) and the strong thermal crashes in W7-AS, connected with the outward radial
propagation of KAW (Kolesnichenko et al., 2005). Furthermore, it is worthwhile mentioning that (Wong et al., 2005)
have shown the possibility of producing an internal transport barrier, induced by radial redistribution of EPs due
to Alfvénic instabilities. Finally, this review has not addressed important issues related to the intrinsic 3D nature
of all real systems, including “axisymmetric” toroidal devices. For problems, such as toroidal field ripple induced
transport (Goldston and Towner, 1981; Goldston et al., 1981), which arise from the breaking of axisymmetry in 2D
toroidal system, we refer readers to the comprehensive ITER summaries (Fasoli et al., 2007; ITER Physics Expert
Group on Energetic Particles, Heating and Current Drive, ITER Physics Basis Editors, 1999). Here, we emphasize
that AEs may cause global EP losses through induced ripple trapping, as discussed by (White et al., 1995). For
the similarities and differences between tokamaks and stellarators, the most recent and comprehensive reviews are
(Kolesnichenko et al., 2011; Toi et al., 2011), as mentioned already.

Looking beyond, we note that there are two issues, which have received increasing attention within the fusion
community. One deals with EP transport in the presence of many modes; as expected in ITER. The other deals with
the investigation of burning fusion plasmas as complex systems, with many interacting degrees of freedom, where the
long time scale behaviors will ultimately determine the reactor performance. These two interlinked issues are further
articulated in the following two subsections, which then conclude the present review.

A. Energetic particle transport in the presence of many modes

Collective oscillations excited by EPs in burning plasmas are characterized by a dense spectrum of modes with
characteristic frequencies and spatial locations (Chen, 2008; Chen and Zonca, 2007a). One crucial issue, as noted at
the beginning Sec. VI, remains the realistic prediction of global transports of EPs/fusion products and their impact
on the system material walls. While quasilinear theory is suited for explaining EP transport by plasma turbulence (cf.
Sec. VI), it was argued that the onset of phase-space stochasticity may be described by a “line-broadened” quasilinear
model (Berk et al., 1995a), accounting for a discrete spectrum of overlapping modes in the case of multiple AE (Berk
et al., 1996a) and which has been recently extended and applied to the analysis of beams interacting with AE in DIII-
D (Ghantous et al., 2012). The actual transition to stochastic behaviors in realistic systems, however, depends on the
details of plasma nonuniformities and equilibrium geometries via resonance conditions and finite mode structures (cf.
Sec. VI), as recently shown by (White et al., 2010a,b). For this reason, the only presently viable modeling of EP losses
by multiple AE are test particle transport or more sophisticated nonlinear simulations with gyrokinetic or equivalent
codes (cf. Sec. II.F). Other reduced nonlinear dynamic description are possible, as discussed in Secs. V.A and V.D.5.c,
which may offer a useful tool for gaining deeper insights into the underlying physics. Meanwhile, EP transport can
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occur not only via phase-space stochastic diffusion, but also as rapid secular loss, as in the case of fishbones (Chen
et al., 1984; White et al., 1983) and EPM (Briguglio et al., 1998; Zonca et al., 2000, 2005), for which the spectrum
is nearly monochromatic, due to the more stringent excitation condition. In addition, the mode frequency is rapidly
(non-adiabatically) sweeping in time due to phase locking, de facto preventing wave-particle trapping to occur and
thereby maximizing wave-particle power exchange as well as particle transport (cf. Secs. V.D.5, V.D.6 and V.D.7).
The qualitative difference between AE and EPM non-linear dynamics and the fluctuation induced EP transports

they respectively cause can be intuitively explained within the conceptual framework of (Newman et al., 1996),
which assumes that magnetized fusion plasmas are close to marginal stability and their dynamics are governed
by self-organized criticality (SOC) (Bak et al., 1987). In this context, the single transport events due to AEs
(avalanches) (Berk et al., 1996a, 1995a) may exhibit characteristic aspects of sandpile physics involving SOC (Dendy
and Helander, 1997). Meanwhile, EPMs are excited when the system is driven significantly away from marginal
stability and the single transport events due to EPMs are characterized by radially moving unstable fronts, which are
convectively amplified via self-consistent profile steepening before the final gradient relaxation phase (cf. Sec. V.D.6).
In this respect, EPM bursts and transport events have also been dubbed as avalanches (Zonca et al., 2005), although
the intrinsic coherent nature of nonlinear wave-particle interactions and the ballistic (secular) EP transport basically
differentiates them from the diffusive phase space trajectories due to multiple AE induced transport events.
Another important difference between AE and EPM nonlinear dynamics stands in the fact that self-consistent

description of DAW nonlinear behaviors requires taking into account wave dynamics and related transport on the
same footing, i.e., allowing for a significant change in the system response to fluctuations and vice-versa; and that, a
transition from AE to EPM behavior occurs for increasing strength of the EP free energy source and of the fluctuation
level. Here, it is interesting to note that similar notions apply to SOC since, to qualify as SOC, the system must
possess many interacting spatial degrees of freedom, be open and coupled with the exterior, and its dynamics must
be thresholded and nonlinear (Sornette, 1992). “Nonlinear”, here, implies that a feedback occurs between the various
dynamical processes involved. Examples of this include feedback of the order parameter on the control parameter(s),
as discussed by (Sornette, 1992), as well as a feedback of boundary dissipation on the dynamical fluctuation state of the
lattice (Milovanov, 2010). By analogy with the nonlinear behaviors in fusion plasmas, and in particular with the case
of fishbone nonlinear dynamics57, an ideal SOC state is destabilized above a certain critical level of external forcing
and that the dynamics become dominated by bursting periodic relaxation events, for which the name of “fishbone-like
instability of SOC” has been suggested (Milovanov, 2010, 2011). Equilibrium geometry and plasma nonuniformity
also play crucial roles in the transition between these two behaviors (cf. Secs. V.D.3, V.D.5 and VI).
The DAW spectrum in present day experiments is significantly different from that of burning plasmas (much lower

mode numbers, corresponding to much larger relative EP orbits compared with machine size). The same holds for the
associated kinetic processes and cross-scale couplings yielding to complex behaviors, which will be further discussed
in Sec. VII.B. Nonetheless, some aspects of complex behaviors may still be addressed in existing machines, providing
precious feedbacks for theory and modeling, and, thereby, the basis for predictions and extrapolations to burning
plasmas conditions. One example is the analysis of EP transport during “TAE avalanches” in NSTX, where multiple
modes are excited and the resultant EP redistributions are so far not completely understood (cf. Sec. VI). Nonlinear
hybrid codes (Briguglio et al., 1995, 1998; Park et al., 1999, 1992; Todo, 2006; Todo and Sato, 1998; Todo et al., 1995,
2005; Wang et al., 2011) or equivalent gyrokinetic (Bass and Waltz, 2010; Bottino et al., 2011; Chen and Parker, 2001,
2007; Deng et al., 2012a; Görler et al., 2011; Holod et al., 2009) or gyrofluid (Kendl et al., 2010; Spong et al., 1992,
1994) simulation tools may be needed to yield more reliable interpretations of these observations (Fredrickson et al.,
2009). The impressive advance of numerical simulation capabilities and of experimental diagnostics, together with
continuing progress in fundamental nonlinear theory, are the fundamental ingredients that will significantly advance
the physics understanding in this area.

B. Complex behaviors in burning plasmas

A burning plasma is a complex self-organized system, where among the crucial processes to understand there are
(turbulent) transport and fast ion/fusion product induced collective effects (Zonca et al., 2006). Complexity and
self-organization are intrinsic to the very nature of burning plasmas, where the self-sustainment of fusion reactions for
efficient power production requires that stationary conditions are achieved when, in D-T plasmas, (almost) the whole

57 Here, the feedback of boundary dissipation on the dynamical fluctuation state of the lattice plays the role of the feedback of transport
processes on the nonlinear mode dynamics.
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power density balance to compensate losses is provided by heating from fusion alphas. Meanwhile, fast ions in the
same (MeV) energy range will be used to heat and fuel the thermal plasma, to provide rotation and to drive current,
mainly by Ion Cyclotron Resonance Heating (ICRH) and Negative Neutral Beam Injection (NNBI). Together with
fusion produced alphas, these fast ions are a potential free energy source for driving collective plasma oscillations,
which may induce or enhance transport processes. Complexity and self-organization are consequence of the interaction
of EPs with plasma instabilities and turbulence; of the strong nonlinear coupling that will take place between fusion
reactivity profiles, pressure driven currents, MHD stability, transport and plasma boundary interactions, mediated
by the EP population; and finally of the long time scale nonlinear (complex) behaviors that may affect the overall
fusion performance and eventually pose issues for the stability and control of the fusion burn. The role of EPs is
also unique as mediators of cross-scale couplings, for they can drive instabilities on the meso-scales, intermediate
between the microscopic thermal ion Larmor radius and the macroscopic plasma equilibrium scale length. Energetic
particle driven Alfvénic instabilities could provide a nonlinear feedback onto the system on the macro-scales via the
interplay of plasma equilibrium and fusion reactivity profiles, as well as excite microscopic radial mode structures
at SAW continuum resonances, which by mode conversion yield fluctuations that may propagate and be absorbed
elsewhere (Kolesnichenko et al., 2010b). The role of EPs as mediators of micro- to meso- to macro-scales was recently
emphasized by (Qiu et al., 2012). Furthermore, noting that instabilities may also be excited from micro- to meso-
to macro-scales (cf. Sec. IV) has made the theoretical approach based on an extended inertial range (Goldreich and
Sridhar, 1995, 1997) dubious at best for burning fusion plasmas.
These physics are unique to burning plasmas and require a conceptual shift with respect to the way phenomena

are currently investigated in present day experiments. For example, EP power density profiles and characteristic
wavelengths of the collective modes in reactor relevant plasmas will be different, while MeV energy ion tails introduce
dominant electron heating and different weighting of the electron driven micro-turbulence. Furthermore, plasma
operation scenarios will reflect different plasma edge conditions and plasma wall interactions at high density and low
collisionality. For these reasons, among others, important roles will be played by predictive capabilities based on
numerical simulations (Batchelor et al., 2007) as well as by fundamental theories for developing simplified yet relevant
models, needed for gaining insights into the basic physics processes, which determine the long time scale nonlinear
dynamics of burning plasmas. Experiments have a key role in this respect and provide experimental evidences for
modeling verification and validation. In the perspective of ITER (Aymar et al., 1997; Tamabechi et al., 1991), it
is crucial to investigate these physics, exploiting positive feedbacks between experiment, numerical simulation and
theory, and integrating the largest number of aspects that are important for complexity in reactor relevant plasmas.
Interest in developing experimental capabilities to explore multi-scale physics is a common element of plasma physics
in general; e.g., in magnetic fusion (Pizzuto et al., 2010) and geo-space physics (Savin et al., 2011).
It has been recognized that drift wave (DW) turbulence is the channel through which turbulent transport occurs.

Meanwhile, in the description of turbulent transport processes, it is crucially important to account for the radial
structures that are spontaneously generated by turbulence itself and regulate turbulence intensity and turbulent
transport (Diamond et al., 2005). Among those structures, zonal flows (ZF) (Hasegawa et al., 1979) or, more generally,
zonal structures (ZS) play a major role in the nonlinear dynamics of DWs. These are toroidally and poloidally
symmetric flow patterns, due to the low frequency radial electric field nonlinearly generated by DWs (Hasegawa et al.,
1979), which regulate turbulence intensity and turbulent transport, as demonstrated in numerical simulations (Lin
et al., 1998). Zonal flows are ubiquitous in plasmas and fluids, e.g., in atmospheric pressure systems where Coriolis
forces drive Rossby wave turbulence (Rossby, 1940), which is known to obey the same nonlinear partial differential
equations as DW turbulence (Hasegawa et al., 1979). As a consequence, it is often said that ZFs in burning plasmas
are the counterpart of the Jupiter’s stripes, which are signatures of ZFs driven by Rossby wave turbulence (Busse,
1994). Similar to ZF, other toroidally symmetric flow patterns with more complicated poloidal structures and finite
frequency, the geodesic acoustic modes (GAM) (Winsor et al., 1968), are known to play a role in regulating plasma
turbulence (Diamond et al., 2005; Itoh et al., 2006). Magnetic field patterns can be generated as well (Fujisawa et al.,
2007), generically dubbed as zonal fields (Chen et al., 2001; Gruzinov et al., 2002; Guzdar et al., 2001b).

Zonal flows and fields are also generated by nonlinear AE and EPM dynamics, depending on proximity to marginal
stability (cf. Sec. V.C). Meanwhile, strongly driven EPM cause radial modulations in EP profiles, thus affecting
the EP distribution function (cf. Secs. V.D.5 and V.D.6), which may produce similar structures in the electron
temperature profile and eventually alter the free energy source driving DW turbulence and transport. In general, all
these ZS can be viewed as generators of nonlinear equilibria (Chen and Zonca, 2007b), whose intrinsic time scale is
that of DAWs (cf. Secs. II.B and II.D), τNL ∼ γ−1

L , and whose evolution must be self-consistently determined with
that of all other relevant nonlinearly coupled degrees of freedom. Thus, these behaviors determine the long time scale
nonlinear dynamics of burning plasmas, affecting the reactor fusion performance.

Due to the very disparate spatiotemporal scales involved in the mutual interactions between collective modes and
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EP dynamics with DW turbulence and turbulent transport, complex self-organized behaviors will be likely dominated
by their nonlinear interplay via ZS (Zonca, 2008; Zonca and Chen, 2008a). Furthermore, the different ZS (ω,k)
spectra generated by the different degrees of freedom will have important effects on the cross-scale couplings. Thus,
one relevant open issue is the determination of hierarchy of relevant non-linear time scales for cross-scale couplings
in realistic conditions; such as proper equilibrium geometry, spatial nonuniformity and kinetic effects. Since all scales
are involved on the same footing, no unique approach is applicable to analyze nonlinear mode dynamics (e.g., local
vs. non-local spectral transfers in k space) and particle transports. Numerical simulations as well as experimental
studies are beginning to address these issues. Multi-scale simulations of plasma turbulence have been reported, e.g.,
by (Li et al., 2009), and recent numerical simulation work has addressed the effect of zonal flows on AE nonlinear
dynamics (Bass and Waltz, 2010).
In the analysis of complex burning plasma behaviors, the low-frequency SAW continuous spectrum has attracted

significant attention because of the similar frequencies of DAWs, plasma turbulence and ZS (cf. Sec. IV.B.2), and
because a variety of modes with different wavelengths can be driven unstable by both thermal ion temperature
gradients and EPs (Nazikian et al., 2006; Zonca et al., 1999) in the kinetic thermal ion gap (Chen and Zonca, 2007a).
Furthermore, the experimental evidence of EP driven GAM (EGAM) (Berk et al., 2006; Nazikian et al., 2008) has
motivated even further interest (Berk and Zhou, 2010; Fu, 2008; Qiu et al., 2010, 2011, 2012; Sasaki et al., 2011), due
to the possible effects of EGAM on plasma transport. The actual relevance of EGAM in burning plasmas is, however,
not obvious, since anisotropic EP distribution functions are needed for its linear excitation (Berk et al., 2006; Fu,
2008; Nazikian et al., 2008).
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10053.
Estrada-Mila, C., J. Candy, and R. E. Waltz, 2005, Phys. Plasmas 12, 022305.
Estrada-Mila, C., J. Candy, and R. E. Waltz, 2006, Phys. Plasmas 13, 112303.
Fajans, J., and L. Friedland, 2001, Am. J. Phys. 69, 1096.
Fajans, J., E. Gilson, and L. Friedland, 1999, Phys. Rev. Lett. 82, 4444.
Falchetto, G. L., J. Vaclavik, and L. Villard, 2003, Phys. Plasmas 10, 1424.
Fasoli, A., D. Borba, G. Bosia, D. J. Campbell, J. A. Dobbing, C. Gormezano, J. Jacquinot, P. Lavanchy, J. B. Lister,

P. Marmillod, J.-M. Moret, A. Santagiustina, and S. Sharapov, 1995a, Phys. Rev. Lett. 75, 645.
Fasoli, A., B. N. Breizman, D. Borba, R. F. Heeter, M. S. Pekker, , and S. E. Sharapov, 1998, Phys. Rev. Lett. 81, 5564.
Fasoli, A., C. Gormenzano, H. L. Berk, B. N. Breizman, S. Briguglio, D. S. Darrow, N. N. Gorelenkov, W. W. Heidbrink,

A. Jaun, S. V. Konovalov, R. Nazikian, J. Noterdaeme, S. E. Sharapov, K. Shinohara, D. Testa, K. Tobita, Y. Todo,
G. Vlad, and F. Zonca, 2007, Nucl. Fusion 47, S264.

Fasoli, A., J. B. Lister, S. E. Sharapov, S. Ali-Arshad, G. Bosia, D. Borba, D. J. Campbell, N. Deliyanakis, J. A. Dob-
bing, C. Gormezano, H. A. Holties, G. Huysmans, J. Jacquinot, A. Jaun, W. Kerner, P. Lavanchy, J. Moret, L. Porte,
A. Santagiustina, and L. Villard, 1995b, Nucl. Fusion 35, 1485.

Fasoli, A., D. Testa, S. Sharapov, H. L. Berk, B. Breizman, A. Gondhalekar, R. F. Heeter, M. Mantsinen, and contributors to
the EFDA-JET Workprogramme, 2002, Plasma Phys. Control. Fusion 33, B159.

Fiksel, G., B. Hudson, D. J. Den Hartog, R. M. Magee, R. OConnell, S. C. Prager, A. D. Beklemishev, V. I. Davydenko, A. A.
Ivanov, and Yu. A. Tsidulko, 2005, Phys. Rev. Lett. 95, 125001.

Finn, J., 1995, Phys. Plasmas 2, 198.
Fisch, N., 2000, Nucl. Fusion 40, 1095.
Fisch, N. J., 2006, Phys. Rev. Lett. 97, 225001.
Fisch, N. J., 2010, J. Plasma Phys. 76, 627.
Fisch, N. J., 2012, in Internal Report PPPL-4766 (PPL, Princeton, NJ).
Fisch, N. J., and J. M. Rax, 1992, Phys. Rev. Lett. 69, 612.
Fitzpatrick, R., and A. Y. Aydemir, 1996, Nucl. Fusion 36, 11.
Flach, S., D. O. Krimer, and Ch. Skokos, 2009, Phys. Rev. Lett. 102, 024101.
Fogaccia, G., and F. Romanelli, 1995, Phys. Plasmas 2, 227.
Fredrickson, E., R. V. Budny, D. Darrow, G. Y. Fu, J. Hosea, C. K. Phillips, J. R. Wilson, and J. W. Van Dam, 2000, Phys.

Plasmas 7, 4121.
Fredrickson, E. D., 2011, Private Communication.
Fredrickson, E. D., L. Chen, and R. B. White, 2003, Nucl. Fusion 43, 1258.
Fredrickson, E. D., N. A. Crocker, R. E. Bell, D. S. Darrow, N. N. Gorelenkov, G. J. Kramer, S. Kubota, F. M. Levinton,
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Górska, K., K. A. Penson, D. Babusci, G. Dattoli, and G. H. E. Duchamp, 2012, Phys. Rev. E 85, 031138.
Grad, H., 1969, Phys. Today 32 (12), 34.
Graves, J. P., I. T. Chapman, S. Coda, T. Johnson, M. Lennholm, B. Alper, M. de Baar, K. Crombe, L.-G. Eriksson, R. Felton,

D. Howell, V. Kiptily, H. R. Koslowski, M.-L. Mayoral, I. Monakhov, I. Nunes, S. D. Pinches, and JET-EFDA Contributors,
2010, Nucl. Fusion 50, 052002.

Graves, J. P., R. J. Hastie, and K. I. Hopcraft, 2000, Plasma Phys. Control. Fusion 42, 1049.
Greene, J. M., and J. L. Johnson, 1968, Plasma Phys. 10, 729.
Gregoratto, D., A. Bondeson, M. S. Chu, and A. M. Garofalo, 2001, Plasma Phys. Control. Fusion 43, 1425.
Gross, E. P., 1961, Nuovo Cimento 20, 454.
Grossman, W., and J. Tataronis, 1973, Z. Phys. 261, 217.
Grove, D. J., and D. M. Meade, 1985, Nucl. Fusion 25, 1167.
Gruzinov, I., A. Das, P. H. Diamond, and A. Smolyakov, 2002, Phys. Lett A 302, 119.
Gryaznevich, M. P., and S. E. Sharapov, 2004, Plasma Phys. Control. Fusion 46, S15.
Gryaznevich, M. P., and S. E. Sharapov, 2006, Nucl. Fusion 46, S942.
Gryaznevich, M. P., S. E. Sharapov, M. Lilley, S. D. Pinches, A. R. Field, D. Howell, D. Keeling, R. Martin, H. Meyer, H. Smith,

R. Vann, P. Denner, E. Verwichte, and the MAST Team, 2008, Nucl. Fusion 48, 084003.
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