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Fast lon Regulated Enhancement (FIRE)

In KSTAR, a stationary ITB was established in NB (+optional ECH) heated plasmas at qqs ~ 4-5.
L-H transition was avoided by keeping low density (7,~1.5 x 10*° m~3) and unfavorable VB USN.

Fast ions play crucial roles to this new enhanced confinement regime, so it is coined to

“Fast-lon-Regulated Enhancement (FIRE).”
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ITB Characteristics of FIRE mode

Thermal lon Heat Diffusivity and S-curve

The time evolution of the ion heat diffusivity was calculated from the power balance analysis.

The thermal ion heat diffusivity reduces in time correlated with the expansion of ITB.

The relation between the ion energy flux and the ion temperature gradient shows that there is a

“S-curve” in the 3D landscape™ [P.H. Diamond et al., PRL '97] implying a transport bifurcation.

ITB foot is correlated with fast ion population!
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FIRE mode as a New ITB Scenario

Conventional ITB FIRE mode
Severe instabilities =) No severe instabilities with high [;
ELMs and heat load = No ELMs and reduced heat load
Impurity accumulations =) No clear impurity accumulations

Sophisticated profile control =) Self-organized

— High performance (3,Hgg ) €ven comparable to Hybrid mode
— Almost non-inductive current drive (V5o < 0.1V)
— High thermal ion temperature ~ 10 keV
» Worth to analyze the physical mechanism of the
confinement enhancement in FIRE mode
[Y.-S. Na et al., submitted to Nucl. Fusion (2024)]
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GKW linear simulation

ITG growth rate
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Significant linear stabilization of microturbulence (ITG mode)
+ Further nonlinear suppression of turbulent transport

Candidates: EM (finite-B) effect, Dilution, Wave-particle interaction, ExB shear flow

CGYRO non-linear simulation
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Gyrokinetic Simulation of FIRE mode

Local electromagnetic (EM) gyrokinetic simulations at just inside ITB foot
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EM (finite-B) Stabilization

Electromagnetic (finite-f) effect reduces both the linear growth rate y of ITG turbulence [B.G. Hong et al.,
PPCF ‘89] and the nonlinear turbulent heat flux Q [M.J. Pueschel et al., PoP ‘08].

In FIRE mode, fast ion contribution to total £ is profound, so that both y and Q reduces by ~1/4 by the
inclusion of fast ions. (cf. [J. Critin et al., PRL ‘13])
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Fast lon-induced Dilution

Dilution: due to significant fast ion population (i.e., density ns), thermal ions n; are

diluted because of quasi-neutrality n, = n; + ny. “Fast ion as a different ion species”

It has appeared as the primary contributor of transport reduction in FIRE mode.
Note the featured inverted thermal ion density in KSTAR FIRE mode

vs. inverted electron density in TFTR hot ion mode
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Wave-particle Interaction

« While the dilution is the essential and thus simplest effect of fast ion as a different ion species, wave-particle
interaction b/w fast ion and ITG turbulence could give more complicated effect. [A. Di Siena et al., PoP ‘18]

* In FIRE mode, NUBEAM-based modelled non-Maxwellian fast ion yields only small difference in linear
stability of ITG mode, compared to the case with Maxwellian fast ion.

= Linear ITG-fast ion interaction seems to give only minor impact on ITG stability.
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ExXB Flow Shear Suppression

« The most widely-accepted, universal mechanism for transport barrier formation [E.J. Synakowski et al., PoP ‘97]
is the ExB flow shear suppression of turbulence. [K.H. Burrell, PoP '97, ‘20] TFTR ERS 20 MW

3
« . . ” . i (a) [
+ "Rule-of-thumb criterion” for the EXB shear suppression: % [ Transtion WExB
WExB > AwT ~ Yin [T.S. Hahm-K.H. Burrell, PoP ‘95], [R. Waltz et al., PoP ‘94] m8 :
« In FIRE mode simulations, suppression of turbulent transport by the equilibrium = 1" 03
rfa =0.
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Self-generated Zonal Flow

At the meantime, FIRE mode simulations show significant increase of self-generated zonal flow by fast ions.

Zonal flow self-generation by taking energy from turbulence is ubiquitously observed in gyrokinetic
simulations [Z. Lin et al., Science ‘98], and is well-known to trigger transition to an enhanced confinement
regime [P.H. Diamond et al., PPCF ‘05]. = “Rule-of-thumb criterion” — Energetics

In FIRE mode, fast ions give only moderate change in residual zonal flow level [Y.W. Cho-T.S. Hahm, NF “19]
(i.e., response), indicating significantly enhanced zonal flow generation (i.e., source).
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Derivation of Hasegawa-Mima Equation

« The modified Hasegawa-Mima equation [A. Hasegawa-K. Mima, PoF ‘87] is the paradigm equation to study zonal
flow generation from drift wave turbulence. It can be naturally derived from the gyrokinetics.

ON; + onpe = 01, Quasi-neutrality [A.J. Brizard-T.S. Hahm, RMP '07]
egp 8613 lon polarization density (long-wavelength limit expression)
2172

= . . _ = _

ON; + Niops Vi T, Meo T, Adiabatic electron response
N ON; . % 292 % lon gyrocenter density 6N; is the gyrokinetic realization of the

Neo B T, + T, Potential Vorticity (PV)!
ON; ) - | |
™ — §V¢ XZ-VN; =0 lon gyrocenter continuity equation (= PV equation)

o . 1 (9N, 3¢
T (¢ — p2V2¢) + pscs|d, d — p2Vad| + pscs -~ ( a;)) 5y = 0

[T.S. Hahm et al., Phys. Plasmas 30, 172501 (2023)]



Simple Fast lon Response to Drift Wave

* For drift waves (DWs), with w, . < k"va and Maxwellian fast ion Fy,, the linearized gyrokinetic equation

. _ e
—i(w = kyvyp)6Fy — i(w.r — kyvys) T_fJO(kle)FfO =0

yields a fast ion gyrocenter density response

SN ed
f 2 2
= _FO(kJ_pT )
Ny 77T

which together with fast ion polarization density

on (Z)
fpol [1 Fo(l JZ_ %f)] e
Ty

~

N¢o
gives adiabatic fast ion response
Ofly ed

Neo T

 Therefore, fast ion response to DW §7i¢ Is negligible compared to the electron response due to Tr > T,.

[T.S. Hahm et al., Phys. Plasmas 30, 172501 (2023)]
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Simple Fast lon Response to Zonal Flow

« Meanwhile, for the fast ion response to zonal flows (ZFs), since we have ((SNf) =0,

(6my) _ (671p01) = —[1—To(k2p2,)] %;b) - —kipf@

for k pr <1

N¢o Nt Te ( \
on;
The same with pol
N;
 As aresult, in the long-wavelength limit k, p «< 1, the potential vorticity with fast ions becomes
6N; 6n, Ongpe Ong (e.g. KSTAR FIRE mode : T;/T, ~ 10)
Neg Neo Neo Neo
ed ed e n
_P_ (1- f)pSZVi—gb — p2Vi \P) where f =22 fast ion population
Te Te Te Neo

DW vorticity reduced by  ZF vorticity unchanged
fast ion-induced dilution by fast ions

[T.S. Hahm et al., Phys. Plasmas 30, 172501 (2023)]

16



Hasegawa-Mima Equation with Fast lons

Substituting 6 N; to the continuity equation, we obtain the modified Hasegawa-Mima equation as follows.

0 (= 2 7 2 7 2 7 2 0 _ L

a{¢ — (1= Vi —Vi(P)}+|p, ¢ — (1 — HViP — Vi(p)] — Mgy = 0 where 7, =7—
ne

e
( Normalization: T_¢ - ¢, 0 - Q;0;, V- p V. )
e

EXxB nonlinearity is unchanged; Hasegawa-Mima nonlinearity («= Reynolds stress) is reduced by (1 — f).

After linearization we obtain the electron DW eigenfrequency

. (1_f)77n
CTIra-preE™ \ 2

is considerably decreased by thermal ion dilution (1 — f) and profile gradient reduction n,, < 1.

[T.S. Hahm et al., Phys. Plasmas 30, 172501 (2023)]
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Dilution Effect on Zonal Flow Generation

As a consequence, with fast ions, the modulational zonal flow growth rate I' becomes

[? = yr%qod _ A%nm

N

from Reynolds Stress Drive from Frequency Mismatch

where

Viod = 2(1 — f)k§q§|$0|2 Reynolds stress drive is reduced

1 2
Afom = {E (((Uo —wy) + (wg + w_))} = (1- f)4771%k32/q9%

Frequency mismatch is reduced much more strongly!

Therefore, we have significant reduction of threshold for zonal flow growth by fast ions
In other words, we have an easier zonal flow generation with fast ions!

[T.S. Hahm et al., Phys. Plasmas 30, 172501 (2023)]
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/F Generation from Broadband Turbulence

Using wave-kinetic equation and zonal flow vorticity equation, a standard calculation with fast ions yields

o kyw., d(N)
—i0 = —(1- f)zqznnzk: T ek

Ryt = —i(Q—qugy) + 2y

gk_[1+(1_f)ka_]|~ |2
o o Pk

where  N(x,k,t) = Wave action density Likely relevant to core

confinement enhancement

We have two limiting forms of the zonal flow dispersion relation as follows.

1. Strong turbulence (resonant) regime 2. Weak turbulence (non-resonant) regime
k2w, 1 9(N) k5w, 1 d(N)
Fz—(l—f)zqznnz: > LT QZ(l—f)zqznnz o x o7
= [1+ (1 - k2] ~Y x = [1+ (1 - Hk?] qVgx x

= Recover the 3+3-wave calculation with

_ 20— f)*mmw.qkx  Continuum version of
[1+(1- f)kﬂz Frequency Mismatch

[G.J. Choi, P.H. Diamond and T.S. Hahm, Nucl. Fusion 64, 016029 (2024)]

qQUgx =
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Dilution Effect on Turbulence-ZF System

Usual Story without Fast lons With Dilution from Fast lons
Inhomogeneity Inhomogeneity
from Thermals from Thermals
. Drift Wave
Drift Wave — Turbulence
Turbulence Dilution reduces Enhanced
DW dispersion, | ‘ t <« Random
lowers ZF shearing of
generation DWT by ZF
Zonal Flows threshold Zonal Flows

— presented already.

t extended to t

Zonal Flow lejrslisre]:gnble of DWs Zonal Flow
I o Damping
Damping Wave Kinetics.

[G.J. Choi, P.H. Diamond and T.S. Hahm, Nucl. Fusion 64, 016029 (2024)]



Dilution Effect on Turbulence-ZF System

Usual Story without Fast lons With Dilution from Fast lons
Inhomogeneity Inhomogeneity
from Thermals Reduced Linear from Thermals
Drive due to
‘ Dilution and > ‘
Profile flattening :
. Drift Wave
Drift Wave Turbulence
Turbulence

Zonal Flows Collisional damping Zonal Flows

of ZF reduced

t due to negligible |—p t

participation of
Zonal Flow Fast ions Zonal Flow

Damping Damping

[G.J. Choi, P.H. Diamond and T.S. Hahm, Nucl. Fusion 64, 016029 (2024)]



Predator-Prey model with Dilution Effect

« Put everything together, for weak turbulence regime relevant to core turbulence,

ZF atu2 = \/yrznod - A%an(ymod - Amm)u2 — (1 - f)yd(o)uz

DWT : 9,6 = 2y€ — \/yémd A2 H(Vanod — D)t — (1 — f)BE?

« The general expression for the nontrivial fixed point : ]/élod = A%nm + chz

That is, either DW frequency mismatch or collisional ZF damping provide the threshold for ZF generation.

= Collisionless limit relevant to core confinement enhancement:

(1- f)SU%Afnm(o) Significant reduction by
& =~ A fast ion-induced dilution ~1/3for f~1/3
which is determined by ~ Ymoa = (1 — f)A'E : modulational zonal flow drive
a balance between Aom = (1 — )* 202w  frequency mismatch

[G.J. Choi, P.H. Diamond and T.S. Hahm, Nucl. Fusion 64, 016029 (2024)]
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T; [keV]

Predictive Modelling of FIRE mode
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FIRE mode Edge shows I-mode-like feature

KSTAR FIRE mode Courtesy: C.H. Heo C-Mod I-mode
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[C.H. Heo et al., submitted to Nucl. Fusion (2024)]
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WCM observed in FIRE mode

Broadband turbulence of L-mode is replaced by the WCM (Weakly Coherent Mode)-like fluctuation!
KSTAR
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[C.H. Heo et al., submitted to Nucl. Fusion (2024)]
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Nonlinear WCM-Zonal Flow Interaction

Cross-bicoherence analyses of FIRE mode have revealed the existence of zonal flow (2 — 4 kHz) which

nonlinearly interact with WCM at the location where WCM is the strongest.
The zonal flow consistently shows phase delay with respect to the WCM, manifesting predator (ZF)-prey

(WCM) relation between the two.
Ongoing effort to measure zonal flow velocity: so far, what we have observed is zonal density, to be precise.
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[C.H. Heo et al., submitted to Nucl. Fusion (2024)]
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Fast lon-Driven Electrostatic Mode

CGYRO simulations of FIRE mode have found a long-wavelength fast ion-driven electrostatic mode,
which significantly contributes to both zonal flow generation and transport.

Ongoing collaboration with NIFS on theory & simulation to identify its characteristics and fully understand
its impact. (cf. [B.J. Kang-T.S. Hahm, Phys. Plasmas 26, 042501 (2019)], [B.J. Kang et al., submitted to Phys. Lett. A

(2024)] on theory of fast ion-driven electrostatic mode)

Real frequency

24 —o— a/lpi=1.067
—e— a/Ly = 0.000

—5—% 558080

—e— alln=—1.494

0.6 0.8

KyPs

0.2 0.4

1.0

—_

©
P—
%]
g
Do

0.6

0.4

0.2

0.0

Linear growth rate

—e— a/l;=1.067
—e— a/L, =0.000

o= —1.404]

-= WEXB

0.6 0.8 1.0

KyPs

0.4

[D. Kim et al., Nucl. Fusion 64, 066013 (2024)]
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Fast lon-Driven Alfvenic Mode

In the later phase of FIRE mode, we
sometimes observe fast ion-driven AE
which degrade plasma performance.

In addition, core-localized lower-frequency
Alfvenic mode is often observed, of which
frequency ~ w.p; t = LFAM?

It has weak impact on performance for
weaker By = 1.8 T, whereas the impact is

quite significant for higher By = 2.5 T.

Ongoing global gyrokinetic simulations on
these Alfvenic modes.

[Y.-S. Na et al., submitted to Nucl. Fusion (2024)]
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Fast lon-Driven Alfvenic Mode

Heading to understand 3-animal interactions in FIRE mode
= Condition to utilized fast ion-driven modes to further Future
enhance FIRE mode performance?

=

Alphas,

Alfven Eigenmodes } \

Scattering
i Reducing
2 linear drive
S ) -
m JFaciitating — Drift Wave Shearing
Ty »T,T, fsaturation leve —— T Turbulence Scattering
5Ff
Resonant Sheari s
’ Zonal [ — s Shearing
Flow (ZF) | e——— Drive
5 Ff Stress drive 1 $ Shearing/Scattering
> | Fast-ion-driven Scatiering Zonal Modes m————
HE————. Instabilities lon Heating

[Y.-S. Na et al., submitted to Nat. Rev. Phys. (2024)]
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Outline
* Introduction: Fast lon Regulated Enhancement (FIRE) mode

* Physics of confinement enhancement in FIRE mode
- Gyrokinetic simulation of microturbulence
- Theory development on zonal flow with fast ions

* Ongoing Works on FIRE mode
- Experimental analysis of FIRE mode edge
- Fast ion-driven electrostatic and Alfvenic modes
- NBI control, Higher density
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Advanced NBI Control for FIRE mode

Main features of the

“Advanced NBI Control System”

1. Decoupling beam

power and energy control

2. In-shot continuous

control

Application to
“FIRE mode”

Avoid n=1 mode while

sustain ion temperature
(Operation window expansion)

MHD-free state access
(sustaining high Ti level)

Courtesy: S.C. Hong
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Extension toward Higher Density

* In 2024 KSTAR campaign, we attempt to extend FIRE mode to higher electron density n, by increasing I, +
actively using gas puffing, SMBI and pellet injection.
» In addition, ITB broadening will be investigated by controlling NBI (Pxg1, VngI)-

30242, FIRE mode, gas puffing 26381, L-mode, SMBI Courtesy: S.J. Park
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Comparative Physics Study with ST40

Recent collaboration with ST40 toward establishment of
novel operation strategy to burning plasma.

« As ST40 fast ion mode has higher n, & lower T; , than
KSTAR FIRE mode, comparative physics study and mutual

T (keV)

benchmarking are ongoing.

10 ™~ —— ST40
\ = = KSTAR
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R/a (m) ~1.8/0.45m ~0.4/0.25 m
K ~1.7 ~1.5
5 0.6 (up) 04 - 0.5
0.25 (lower) (symmetric)
I, ~ 600 kA ~ 600 kA
B (T) 18T 19T
qos 4.2 9
E,; (kV) 90 /70 /90 kV 24 / 55kV
P (MW) 14/1.6 /0.7MW  ~0.7/ ~0.9 MW
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Graphite Graphite

00 02 04 06 08 1.0

ptor

Courtesy: J.H. Lee
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Conclusion

 Electromagnetic (finite-f) effect, dilution and ExB flow shear work together
leading to core confinement enhancement in KSTAR FIRE mode.

* In FIRE mode, dilution of thermal ion due to fast ion population appears to be the
representative fast ion effect on confinement.
- Linear stabilization of ITG turbulence
- Enhancement of zonal flow self-generation & suppression of transport fluxes

« Ongoing works on physics study of [-mode-like feature of FIRE mode edge and
fast ion-driven electrostatic/Alfvenic modes.

« Attempts to maximize performance and extend to higher density by advanced
NBI control, together with gas puffing, SMBI, and pellet injection.
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