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ØMotivations 

ØGlobal simulations in DIII-D shot  #159243------ New physics 
of cross-scale interaction underling EP transport & Validation 
of GTC nonlinear EM model 

ØGlobal simulations in ITER steady state scenario #131041-----
--Prediction of � particle confinement in burning plasmas
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Confinement of EP determines the performance of future burning plasmas

• EP produced by heating source and fusion reaction can excite AE 

• The performance of future fusion reactors is crucially dependent on the good confinement 
of EP

• Anomalous EP loss cause by AE reduces the heating efficiency and threatens ‘ignition’ 
condition 

• Understanding the AE & EP on existing machines is needed for extrapolating EP 
confinement properties to burning plasma 

• L. Chen and F. Zonca, Reviews of Modern Physics 88, 015088 (2016)

• P. Lauber, Physics Reports 533, 33 (2013)

• W. W. Heidbrink, Physics of Plasmas 27, 055501 (2008)
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Prediction of EP transport requires integrated simulations
• Strong coupling of EP with thermal plasmas leads to uncertainties on the explanation of 

AE nonlinear dynamics and EP confinement 

• Simulations of EP coupling with thermal plasmas must incorporate microturbulence 
and MHD instabilities with kinetic effects of both EP and thermal plasmas on an equal 
footing.

• EP transport prediction is based on the progression from linear dispersion to nonlinear 
dynamics and eventually to EP transport 

• Selected well diagnosed DIII-D discharge #159243, linear V&V studies have been 
achieved

• Nonlinear validation studies in DIII-D and extrapolating to ITER are reported here

• C. Collins et al., Physics Review Letters 116, 095001 (2016)

• S. Taimourzadeh et al., Nuclear Fusion 59, 066006 (2019)
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ØGlobal simulations in DIII-D shot  #159243------- New 
physics of cross-scale interaction underling EP transport & 
Validation of GTC nonlinear EM model 
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ØHigh-n ITG have smaller � and �; 
broader mode structure overlapping 
with RSAE

• RSAE       � = 4,5 dominate

• ITG          � = 14,16 dominate 

ØLow-n RSAE have larger � and �; mode 
localizes near ����

Co-existence of RSAE & ITG in DIII-D shot # 159243 

• H. Wang et al., Plasma Sci. Technol. 23, 015101 (2021)

ØAE in DIII-D #159243



No steady state AE turbulence and EP transport in single scale simulation

ØMultiple-n simulation n=0-10 & dominant nonlinear mode n=4,5.

ØHuge initial burst & quenched nonlinear phase also observed, no steady state, 
contradicting experiment.

7
• P. Liu et al., Reviews of Modern Plasma Physics 7, 15(2023)

ØCoulomb collisional effects of EP negligible due to high temperature. 
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Cross scale coupling between microturbulence and AE
• EP scattering by microturbulence affect EP phase space dynamics
§ M3D-K shows that added diffusivity plays similar role as collision in TAE saturation

§ GYRO shows that saturation of TAE/EPM needs zonal flow from stronger ITG/TEM

§ RBQ shows that large pitch angle scattering due to microturbulence can lead to steady state AE 
amplitude evolution

• N. N. Gorelenkov et al., Physics Letters A 386, 126944 (2021)

• J. Lang et al., Physics of Plasmas 18, 055902 (2011)

• E. M. Bass et al., Physics of Plasmas 17, 112319 (2010) • L. Chen et al., Nuclear Fusion 62, 094001 (2022)

• Nonlinear generation of KAW due to scattering of TAE by DW can improve the �  
particle confinement 

• Zonal fields generated by and self-regulation of both AE and microturbulence



Nonlinear dynamics of electromagnetic ITG
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ØEM ITG simulation (n=[0,25]) without EP

ØLinearly stable ITG force driven by strong 
unstable ITG

• P. Liu et al., Nuclear Fusion 64, 076007 (2024)

ØThermal ion heat conductivity �� ∼ 1 �2 �

Ø�� exhibit a lower value at � = 3 resonant 
surfaces 



ITG microturbulence regulates RSAE
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ØCoupling ITG & RSAE (n=[0,25] with EP) 

• P. Liu et al., Physical Review Letters 128, 185001(2022)

ØQuasi steady state 
RSAE

Ø ITG suppress the initial saturation of RSAE

ØRegular 2D mode 
structure in the 
nonlinear phase

Ø ITG decrease the linear growth of RSAE



Quasi-steady state EP transport observed
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• P. Liu et al., Physical Review Letters 128, 185001(2022)

Ø ITG reduces �� by a factor of 5 at initial 
saturation of RSAE 

Ø ITG enhances �� to experimental level 
in nonlinear phase

• P. Liu et al., Nuclear Fusion 64, 076007 (2024)



Simulation results agree with DIII-D measurement 
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ØDensity fluctuations ��� �0∼0.6%, close to BES 
measurement 0.3 − 0.4%

ØRadius structures and amplitudes of  � � �  
from GTC gyrokinetic simulation, for the first 
time, agree with ECE measurement in DIII-D 

Ø�� ~ 0.8 �2 � has the right order of magnitude to TRANSP 
modeling value of 2�2 �

• P. Liu et al., Physical Review Letters 128, 185001(2022)

• W. W. Heidbrink, Physics of Plasmas 27, 055501 (2017)



Mechanism 1: ITG scatters nonlinearly trapped EP
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ØEP scattering by ITG restores EP profile, resulting in quasi-steady state AE turbulence

• P. Liu et al., Nuclear Fusion 64, 076007 (2024)



Mechanism 2: Reduction of zonal flows in the presence of ITG
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ØZonal flows generated by RSAE 
carried by thermal plasma

ØLonger wavelength zonal flows are 
more effective to suppress RSAE

Ø ITG reduces amplitude of ���00 and 
���00, especially for low �� 
component 

• P. Liu et al., Nuclear Fusion 64, 076007 (2024)



Dependence of RSAE turbulence on ITG turbulence intensity 
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ØWeaker ITG microturbulence leads 
to smaller EP transport

ØStronger ITG microturbulence 
leads to larger EP transport

• P. Liu et al., Physical Review Letters 128, 185001(2022)

ØChange ∇�� to provide weaker or 
stronger background ITG



RSAE reduces thermal ion heat transport driven by ITG
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ØRSAE drive little thermal ion heat flux

Ø In simulation coupling 
ITG & RSAE

v S t r o n g e r  z o n a l  f l o w s 
generated by RSAE near but 
inside ����  greatly reduce 
the thermal ion heat flux

v T h e r m a l  i o n  h e a t  f l u x 
decreases and oscillates 
with RSAE frequency

• P. Liu et al., Nuclear Fusion 64, 076007 (2024)



Effects of RSAE on stronger ITG are weaker
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ØSuppression of �� becomes weaker 

Ø�� close to experimental measures 

• P. Liu et al., Nuclear Fusion 64, 076007 (2024)
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ØGlobal simulations in ITER steady state scenario #131041--
-----Prediction of � particle confinement in burning 
plasmas
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Equilibrium and linear dispersion

ØStrong unstable BAE/RSAE with � = [15,30] near ���� flux surface.

ØGlobal GTC  simulations include Beam ion (anisotropic slowing down) & � particle 
(isotropic slowing down).

���� = 59���
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Quasi steady state AE turbulence in multiple AE (� = [��, ��] & ZF)
ØWithin 0.1 − 0.15��, linearly stable n=10,11 BAE nonlinearly generated with �10 ∼ ��� ∼

2�30, and saturate at higher level. 

ØQuasi steady state AE turbulence after nonlinear saturation.
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Huge EP transport driven by multiple � AE

ØAE turbulence and EP 
transport modulated by 
GAM/BAE after nonlinear 
saturation.

ØHuge EP transport after 
0.18�� in whole radial 
domain.

ØProfile relaxation of beam ion & � particle within 0.14��. 
(Much smaller than the EP slowing down time)



Summary
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v  For a stronger background ITG, the regulation of the RSAE by the ITG is stronger, while the 
RSAE effects on the ITG are weaker 

v Regulation of ITG microturbulence leads to quasi-steady state RSAE

Ø GK simulation in DIII-D.

Ø GK simulation in ITER steady state scenario.

v Simulations focusing on AE only could not explain experimental observations.

v RSAE modulates thermal ion heat flux driven by ITG 

v Qualitative agreement between GTC simulation and experimental measurements validates 
nonlinear physical model of GTC

v Multiple strong unstable modes.

v Quasi steady state AE turbulence & large EP transport in multiple AE.

v Unrealistic � particle and NBI profiles in ITER SS? 


