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d Freguency-chirping fluctuations are ubiquitous and are
one of the most studied problems in plasma physics:

d What was done: self consistent solution of chirped
wave packet with narrow spectrum

d What is novel: solution of the nonlinear phase space
structure evolution, consistent with chirped wave
packet

d Why is this universal: consistent description of
nonlinear chirped wave packet dynamics within one
single unifying framework
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Ubiquitous chirping in plasmas = -

J Freqguency-chirping fluctuations are ubiquitous In
magnetized plasmas and are routinely observed in space
and laboratory environments:

d Space plasmas: whistler mode chorus and
electromagnetic ion cyclotron (EMIC) waves In the
Earth’'s magnetosphere

d Laboratory fusion plasmas: fishbone oscillations and
energetic particle modes (EPM)

1 Quasi coherent spectrum: not turbulence, with
Important role of wave-particle resonances
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Chorus chirping L)

- Earth’'s magnetosphere can, in certain circumstances,
amplify e.m. wave frequency bursts, which are known as

chorus for their characteristic chirping |Angelopoulos V. 2008.
Space Sci Rev, 141: 5-34

Magnetic field from Themis-A
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Importance of frequency chirping '

d Whistler mode chorus excitation and nonlinear
dynamics Is one of the long-studied physics problems of
the Earth’s magnetosphere due to its implications for
particle acceleration and distribution in the radiation
belts

4 In fusion plasmas, as fishbone/EPM mode frequency
sweeps, energetic particles (EP) are transported
outward to maximize wave-EP power transfer
(maximized mode growth and EP transport)
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Earth’s radiation belts

Diagram of Earth's magnetosphere d Significant MeV electron
i ~ population

Deflected solar wind particles

7 J Formation mechanism?
Van Allen radiation belt ’

Earth's radiation belts
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Source:https://en. wikipedia.org/wiki/Magnetosphere
Original: NASA Vector: Aaron Kaase, Medium69 - Structure of the magnetosphere numbered.svg

Figure: Latidunal repartition of the Arase, Proba V (LEO), Van Allen Probes satellites within the Earth’s inner

magnetosphere and radiation belts. Here belts are illustrated with a newly found and unusual 3 Belt structure.

Source: https://www.issibern.ch/teams/radbeltphysics/

J Whistler mode chorus Is responsible for electron
acceleration to MeV energy in Earth’'s radiation belts

(R. B. Horne, Nature 2005)
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Resonant transport in laboratory '

 Crucial role of resonant transport in collision less burning plasmas,
particularly of supra-thermal particles
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[from Pitts, Buttery & Pinches, PhysicsWorld 2006]

- Loss of MeV particles (fusion alphas, supra-thermal), naturally
resonating with || propagating Alfvén waves (v =~ a)/k”), may

impact material walls and:

Key Issues!! = Reduce fusion reactivity

= Damage plasma facing components
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Fishbone observation fows) &

d Experimental observation of fishbones in PDX [McGuire
et al. 83] with macroscopic losses of L Iinjected fast ions
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Transport enhanced by EPM ' -

[0 Toroidal Alfvén Eigenmodes (TAEs) [Cheng, Chen and Chance 1985] and
Energetic Particle Modes (EPMs) [Chen 1994| observed in toroidal devices

NSTX 6B [Courtesy of Fredrickson et al. POP 13, 056109 (2006)]
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0 On left, bursting, chirping EPM-like modes. =» Enhanced transport

[0 Evolutions to nearly coherent, TAE-like modes on right.
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d Freguency-chirping fluctuations are ubiquitous and are
one of the most studied problems in plasma physics:

d What was done: self consistent solution of chirped
wave packet with narrow spectrum
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Earth’s chorus chirping fows)

~ Adopt the general approach to construct the nonlinear growth
rate and frequency shift [FZ et al, RMPP/JGR]
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- X. Tao, F. Zonca, L. Chen, A “Trap-Release-
s : Amplify” model of Chorus Waves, JGR: Space
i I TR Physics, 126, €2021JA029585
Q.t

F. Zonca, X. Tao, L. Chen, Nonlinear dynamics
and phase space transport by chorus emission
RMPP 5, 8; A theoretical framework of chorus
wave excitation, JGR 127, e2021JA029760
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Chorus chirping at Mars fows)

d PIC simulations based on the same theoretical framework predict
chorus chirping at MARS [Teng et al, Nat. Comm. 2023]
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EPM chirping rate &

4 PIC simulations of EPM In tokamaks show linear scaling of chirping
rate with amplitude [X. Wang et al, EPS-DPP Iinvited 2023]

@ Chirping rate vs. Saturation amplitude
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d Freguency-chirping fluctuations are ubiquitous and are
one of the most studied problems in plasma physics:

d What is novel: solution of the nonlinear phase space
structure evolution, consistent with chirped wave
packet
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Solution of the Dyson-like equation ' -

 The whistler chorus DSE (as illustration) reads
_ _1 —
Or fo = wiw/(2k*)De0r [(w — wres)? + 2] Og(whw/k?) fo

Q Here, 9, = (1 — v, /vy)0¢, 0c = (k/w)0,, + (1 — kvy/w)/v,0, and wy;
IS the resonance frequency. This equation has 1degree of freedom as
Bwii = QE&, with € = v?/2, and a nonlinear invariant exists.

 From existing theory, a wave packet solution of the wave equation can
be constructed, satisfying the chorus chirping expression, provided
that

E s = res,o—l—/ Rw? w/k*dr’
0

d The DSE can be solved for weakly varying wave packet amplitude,
changing variables from (&, t)to (x, T) (moving In the wave packet
moving frame)
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Solution of the Dyson-like equation '

L2 9 1/2 R (2 _ 4R2)1/4
o e ey o [

1 The solution Is expressed as series of orthonormal Hermite functions

Yn(x) |
o(@,T) = fo+ Z {6 [on(z,T) — @n(z0,0)] + c.c.
Z (Crmnkn + c.c.)
n=0
Cm,n :/ _
— o0 by, =i(n+1/2)/2(2 — 4R?)1/2

 Phase space structure rotation is slowed down by chirping
= PHASE LOCKING

L Wave particle power exchange is maximized for R = 1/2, consistent
with previous analysis of wave packet propagation.
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d Freguency-chirping fluctuations are ubiquitous and are
one of the most studied problems in plasma physics:

d Why is this universal: consistent description of
nonlinear chirped wave packet dynamics within one
single unifying framework
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Universal behavior of frequency chirping ‘o' -

1 Use action angle coordinates for general tokamak geometry: q. and ¢,
such that w, = 6.and @, = (. are, respectively, the bounce/transit and
the magnetic drift precession frequency; =, parameterizing the
equilibrium particle motion as ¢ = ¢, + =, at constant actions ({4, J, Py)

 Use the notion of nonlinear equilibrium in the presence of flows to self-
consistently compute wave-particle resonant interaction with
EPM/fishbone

: , & .~ Wdn :
Py = en |e=ind—imPcHiQ=E () | sin (O + B)

E — ew e—in(—im90+iéwﬂ <5¢ng> sin ((—) + /8)

W
- RBy v d =~ d — wy [, .dO
z{::} — - - ” - | ':'lf".:_ : {_”} — t g {...}_-
dy /dr £ Or d¢ o i
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Universal behavior of frequency chirping ‘o' -

 Near resonance of (m,n) poloidal harmonics € phase locking

1 t
© =nl. —mb, + — A1d9’ / wdt’
Wh
@=wres—w=n@d—|—ncjawb—méc—l—A1 — W
8wres 8wres . :
= —Ww P, E ~ € phase lock
O = "o, »t 5F 0 phase locking

d Predicted frequency chirping for EPM/fishbones scales linearly with
fluctuation amplitude. Effect of zonal flows Is embedded In A;.

Ay = —i [ei*i' (5:&:; .V 4+ agd)] |

—ing—imBeHQ =T (g1
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Concluding remarks and discussion == -

 Explicit expression of frequency chirping Is derived, showing it Is a
conseguence of maximized wave-particle power transfer and phase
locking.

 Explicit expression of frequency chirping illuminates the important role of
zonal field structures.

 Explicit expression of chirping rate also shows linear scaling with
fluctuation amplitude, demonstrating the universal behavior of
frequency chirping in space and laboratory plasmas, consistent with
the Vomvoridis expression.

 Detailed quantitative numerical verifications of these predictions are In
progress.
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