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[Xiao PoP15]

Two categories of low frequency fluctuations  

p  Shear Alfvén wave (SAW) instabilities: crucial in energetic particle dynamics

p  Drift wave turbulence (DW): crucial in bulk plasma transport 

Ø typically meso-scale (~�ℎ) electromagnetic oscillation
Ø excite as various Alfven eigenmodes due to equilibrium 

magnetic geometry
Ø driven unstable by energetic particles
Ø lead to energetic particle transport loss

Ø micro-scale (~��) turbulence excited by bulk plasma nonuniformity
Ø cause negligible direct transport of energetic particles
Ø can be regulated by EPs due to, e.g., dilution

p Direct/indirect interaction between AE and DWs used to interpret improved bulk 
plasma confinement in the existence of EPs
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[Wei PoP24]



We show in previous works 
p direct scattering of ambient DWs significantly regulate even suppress TAE [Chen NF2022]
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p direct scattering of TAE have small effects on DW stability: scattering to Ω+ and Ω− leads to 
stimulated absorption (damping) and spontaneous emission (growth) of DW [Chen NF2023]

⇒ Importance of in-direct coupling mediated by zonal structure? 
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In-direct modulation of ITG by TAE mediated by zonal structures

p  Zonal structures: toroidally/poloidally symmetric radial corrugations
Ø Linearly stable to expansion free energy
Ø Nonlinear excitation by DWs/DAWs ⇒ stabilize DW/DAW  
Ø zonal electromagnetic fields (zonal flow + zonal current), phase space zonal structures 
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p Effects of TAE driven zonal structure on ITG stability? Local theory + beat-driven ZS for now
p  ZS generation due to thermal plasma contribution
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phase space zonal structure
[Lauber 22]



Gyrokinetic theoretical model

p  Gyrokinetic theory: systematic removal of fast gyro motion ⇒ powerful in 
studying low frequency dynamics
p ��� =−  �/� ���� ��� +exp  −� ⋅ ∇ ���, �� from NL gyrokinetic equation 

[Frieman&Chen PoF82]

p Filed variables �� and ��∥ (⇒ ��⊥) used: � ≪ 1

p Field equations derived from quasineutrality condition
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p Nonlinear gyrokinetic vorticity equation

-  derived from GKE + Q.N. + parallel Ampére’s law

- LHS: field line bending, inertia, ballooning-interchange

- RHS: gyrokinetic Reynolds stress (RS,�� ⋅ ∇��), Maxwell stress (MX, �� × ��/�).

p  RS and MX dominate NL W-W coupling in the kinetic regime with �⊥�� ∼ � 1 
⇒  powerful and mandatory in studying NL W-W couplings [Qiu RMPP23]
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Indirect interaction: work flow

p beta-drive ZS by TAE [Chen WLIS2023, NF2024 accepted]

p finite amplitude ZFS+PSZS on ITG stability [Chen PoP2021]

p in-direct interaction [Fang NF2024 submitted]



Zonal structure beat-driven by TAE

p ZS  ���,  ��∥�,  ���
��  beat driven by TAE Ω0
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����: operator for drift/banana orbit transformation



ZS beat-driven by toroidal Alfven eigenmode

p Zonal flow  ���  derived from quasi-neutrality condition [Chen NF2024]
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p Zonal current  ��∥�  from parallel Ampere’s law [Chen NF2024]
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p  ���,  ��∥�,  ���
��  will be used in deriving NL particle response to ITG



Effects of beat-driven ZS on ITG stability
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p Linear particle response to ITG ⇒ linear ITG D.R. (adiabatic electron)

p Nonlinear particle response to ITG 
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p ITG D.R. in the WKB limit
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ITG dispersion function in ballooning space

p Solved in various limits for effects of ZS on ITG stability
l Short-wavelength limit: uniform/nonuniform “ZS” [Guzdar PoF83]
l long-wavelength limit [Chen PoFB91]



Short-wavelength limit: weakly destabilizing
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p Short-wavelength limit (strong coupling): mode localized round � ≪ 1
p “Uniform”-ZS: TAE scale being much larger than ITG: relevant to reactor

p Contrary to usual expectations

Ø good agreement between analytical and 
numerical results

Ø ITG growth rate increase with TAE (ZS) 
amplitude

Ø Small correction within relevant 
parameter regime

Ø artificially change the sign/amplitude of 
the NL term

Ø  ����
�

≤ ��−� for typical TAE



Short-wavelength “nonuniform-ZS” limit: weakly destabilizing

p “Nonuniform”-ZS: TAE mode variation not negligible for experiments with �ℎ/�� ∼ � 10 
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l inclusion of “nonuniform”-ZS: even weaker destabilization

l nonuniform ZS + mis-alignment  

l qualitative picture unchanged

p sign of ��0
2 could changing with x ⇒ weak stabilization of ITG by TAE beat-driven ZS



Long-wavelength limit: weakly destabilizing
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p long-wavelength limit (moderate coupling)
p reduce into Mathieu’s equation: Φ = � �� ����/2 + � �� ����/2

p weakly destabilizing effect of TAE beat-driven ZS on ITG



Summary and Discussions

p Indirect regulation of ITG by TAE formulated to understand enhanced thermal plasma 
confinement in the presence of EPs: beat-driven ZS + local theory

p Weak destabilization of ITG by TAE beat-driven ZS: contrary to usual expectations
[Fang NF2024 submitted]

p Both direct and in-direct scattering by TAE have negligible effects on DW stability

Assumptions in the indirect scattering case:
l local ITG stability
l beat-driven zonal structure

⇒Radial envelope modulation? Spontaneously excited ZS?


