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Backgroud
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Ø Drift-Alfvenic instabilities widely exist in burning plasmas: MHD 
(macro-scale), EP-driven Alfven eigenmode (meso-scale), drift-wave 
instability (micro-scale).

Ø Initial value simulation for nonlinear problem (e.g. GTC, M3D-K). 

Ø Eigenvalue simulation for linear stability analysis (e.g. LIGKA, NOVA-K).

Kink (n=1) RSAE (n=4) KBM (n=20)

G. Kramer & R. Nazikian



Main plasma instabilities
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Drift-wave instability

Ø ES: ITG, CTEM

Ø EM: IBM/KBM

Alfven eigenmode

Ø EM: TAE, RSAE, KBAE

Ø EM/ES hybrid: BAAE

MHD mode

Ø EM: kink, tearing

EP kinetic response 
(Wave-particle resonance )

Reactive（fluid-type）
Dissipative（kinetic-type）

Goals of MAS eigenvalue code:
- Cross-scale drift-Alfvenic instabilities
- MHD/kinetic continuous spectrum
- Resonance condition in phase space
- Capability of realistic geometry

Modify/Drive
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Landau fluid model for bulk plasmas
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Ø Vorticity 
equation

Ø Parallel Ohm's 
law

Ø Thermal ion 
pressure Eq.

Ø Parallel 
momentum Eq.

Ø Thermal ion 
density Eq.

Field equations

Bao et al, Nucl. Fusion 63 076021 (2023)



Important features of Landau-fluid model
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Ø Braginskii model using drift-ordering
Ø Kinetic effects on top of full-MHD
ü Ion/electron diamagnetic drifts
ü Ion/electron Landau damping (Hammett-Perkins closure)
ü Ion finite Larmor radius
ü Parallel electric field

Ø Reduce to full-MHD by dropping labelled kinetic terms



Algorithm: eigenvalue approach
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Ø Five-field Landau-fluid model can 
be converted to a generalized 
eigenvalue problem

• AX = ωBX

• X = 𝛿𝜙, 𝛿𝐴||, 𝛿𝑃" , 𝛿𝑢"||, 𝛿𝑛"
#

Ø Operator discretization
• Radial: finite difference
• Poloidal/toroidal: Fourier expansion
Ø Language/library 
• matlab/eigs
Ø Computational speed/cost
• Less than 1 mins for AE problems 

on Laptop

Multi-layer	block	matrices



Normal modes: Alfven wave and acoustic wave
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ü Comparison of coupled KAW-ISW dispersion relation between drift-kinetic model and Landau-

fluid model, which show good agreement for typical tokamak plasma beta 𝛽~0.01 − 0.1 .

Frequnecy

Damping rate

LF:

DK:



MHD mode: internal kink mode
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Ø Cross-code verification of kink mode (NOVA,
XTOR-K, M3D-C1, GTC, MAS)

ü Necessity of full-MHD: finite ion acoustic
compression stabilization

Brochard et al, Nucl. Fusion 62 036021 (2022) 



MHD mode: resistive-tearing/drift-tearing modes
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ü The RTM growth rate scaling is close to 𝛾! ∼ 𝜂||
#/% in the small 𝜂|| regime.

ü DTM dispersion relation in MAS agrees with local theory in the small 𝜔&∗ regime, while deviates from local 
theory when 𝜔&∗ ∼ 𝛾! due to the non-local mode structure. Bao et al, under review in Nucl. Fusion



Drift-wave instabilities: ITG/KBM
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Ø Cover ITG-KBM transition in CBC case, verify 
mode polarizations

ü Low beta regime: finite-beta stabilization on ITG
ü High beta regime: KBM onset

ITG:

KBM:



RSAE: upward frequency sweeping

Ø Comparison of RSAE mode structure 
between different level physics models

Ø RSAE frequency increases with decreasing qmin
Ø RSAE-TAE transition: qmin<qtae=(2m-1)/2n
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TAE radiative damping

Ø Tunneling interaction 
between TAE and Alfven 
continua due to kinetic 
effects (FLR, finite E|| etc) 

ü Short-wavelength KAW 
arises and couples to TAE, 
enhanced by increasing n 
number

ü Radiative damping

14



Polarizations of KBAE and BAAE

KBAE: BAAE:

ØKBAE：Alfvenic polarization for all poloidal harmonics (𝐸||&'( ≪ 𝐸||)*).
ØBAAE：Alfvenic polarization (𝐸||

&'( ≪ 𝐸||
)*) for predominant poloidal harmonics, 

electrostatic polarization (𝐸||&'( ≈ 𝐸||)*) for sidebands 𝑚 ± 1.
15
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Drift-kinetic energetic electrons
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Linearized drift-kinetic 
equation

Ø Adiabatic response
ü convective effect

Ø Non-adiabatic response
ü Precessional-drift 

resonance



EE moments integrated from kinetic responses 
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Ø Adiabatic response
ü Density
ü Pressure

Ø Non-adiabatic response of 
trapped electrons

ü Density 
ü Pressure

Ø Non-adiabatic response of 
passing electrons

ü Parallel velocity



Coupling scheme for EE and bulk plasmas
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ü 𝛿𝑛$ modifies quasi-
neutrality condition

ü 𝛿𝑢||$ modifies parallel 
Ohms law

ü 𝛿𝑃$ modifies vorticity 
equation

Ø Enable accuracy for
both EM and ES cases 
through density and 
pressure coupling



Verification of EE-driven BAE (e-BAE)
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• MAS 

ü Weakly ballooning mode structure, finite E|| in sidebands, precessional-
drift resonance of deeply-trapped EEs.

ü Good agreements between MAS eigenvalue and GTC initial value results.

• GTC 

20



Effects of different EE responses on e-BAE 

Ø EE-IC (interchange convective response): broaden radial width, decrease frequency
Ø EE-KPC (kinetic particle compression response): anti-Hermitian contribution to dielectric constant, 

induce mode structure poloidal phase variation (triangle shape), increase frequency21



Experimental application in EAST discharges

• Dependences of m/n=4/1 e-BAE 
𝜔+ and 𝛾 on EE density and 
temperature in EAST shot #82589.

• EE non-perturbative effects
ØDecrease 𝜔+
ØIncrease e-BAE sideband 

amplitudes

• Identify the 𝛽, threshold for EE 
excitation of BAE.

22Bao et al, Nucl. Fusion 64 (2024) 016004 
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Gyrokinetic energetic ions
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Solution1:
well-circulating particles

Solution2:
deeply trapped particles

Gyrokinetic equation for 
non-adiabatic response

Ø Numerically integrate EI 
moments in velocity space 
from perturbed distributions 
with Bessel function 
coefficients

ü Transit resonance
ü Precessional drift resonance
ü Finite Larmor radius
ü Finite orbit width

X. R. Xu et al 2024, 
submitted to PPCF



Verification of EI-driven RSAE

MAS simulation of EI-driven RSAE in DIII-D shot #159243 equilibrium
Ø EI non-perturbatively modifies the RSAE mode structure with radially varied poloidal phase angle 

(i.e., triangle shape mode structure).
ü FOW stabilization of RSAE in high-n regime, good argeements on RSAE dispersion relation with 

other codes.
25
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Full-MHD results of n=4 continuum in DIII-D shot #159243
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Ø Independent continuum module has been developed in MAS framework.
ü Full-MHD calculations of Alfvenic and acoustic continua, with carefully identifying polarization and 

poloidal mode numbers. 



Landau-fluid results with kinetic effects
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ü Effects of ion diamagnetic drifts
ü Landau damping and radiative damping from thermal plasmas

Upper panel: polarization indicated by Alfvenicity
Lower panel: damping rate

W. J. Sun, to submit

Ion diamagnetic drift upshifts 
continuum frequency
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Resonance condition of typical EPs in phase space
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Ø Test particle module has been developed for calculating EP characteristic frequencies in general geometry.
Ø The small dimensionless orbit width of EEs in present-day tokamak (i.e., EAST) is close to alpha particles in future

fusion reactor (i.e., ITER), which mainly interact with AEs through precessional-drift resonance.

MAS compute poloidal and 
toroidal frequencies (𝜔! and 
𝜔") by tracing the particle 
motion.
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Summary on MAS capability
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ü Five-field Landau-fluid model for bulk plasmas
§ Cover cross-scale plasma modes: low-n MHD, mediate-n AE, high-n drift wave instability
§ Diamagnetic drift, Landau damping, FLR, finite parallel electric field 𝐸||

ü Drift-kinetic EE and gyrokinetic EI
§ Precessional-drift resonance, transit resonance, FOW, FLR

ü Continuous spectra
§ Ideal full-MHD continua: SAW and ISW
§ Landau-fluid continua: KAW and ISW (ion diamagnetic drift, Landau and radiative damping)

ü Resonance condition in phase space
§ Numerical calculation of characteristic frequencies by tracing the particle orbit

§ Resonance line calculation for each harmonics

ü Wide applications for AE stability analysis in EAST, HL-2A/3 and DIII-D experiments.



MAS research activities
• Code developments and physical applications
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Thank you for your attention!


