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Magnetic reconnection is an important process in space and laboratory plasmas. 

It plays a dominant role in the conversion of magnetic energy to kinetic and thermal 

energies. Magnetic reconnection is often cited as an efficient mechanism for many 

eruptive physical phenomena such as flares in the solar corona, substorms in the 

Earth's magnetosphere, and sawtooth oscillations in tokamaks [1-4]. 

From the Geospace Environmental Modeling (GEM) challenge, it was suggested 

that fast magnetic reconnection can be realized by including the Hall effect in 

magnetohydrodynamic (MHD) simulations [8-15]. The viewpoint that 

Alfven-whistler waves are generated in the interior region during fast magnetic 

reconnection has been widely accepted [8,16,17,18]. In the framework of Hall MHD, 

the whistler wave plays an important role in fast magnetic reconnection [18]. 

However, Wang et al. [17] found that in the reconnection region the dominant waves 

are kinetic/inertial Alfven waves when there is an initial guide field, and obliquely 

propagating Alfven/whistler waves when there is no guide field. In the ideal region, 

the dominant wave is the shear Alfven wave.  

The decoupling of electron and ion motions associated with the Hall effect can 

generate a characteristic quadrupole out-of-plane magnetic field that can be a main 

characteristic of whistler-mediated reconnection [20]. Both the out-of-plane magnetic 

field and whistler waves have been in situ observed [21]. It has been proposed that 

whistler waves originated from the reconnection region can accelerate electrons 

[16,18], and hence lead to fast magnetic reconnection.  

Shear flows are very commonly observed, such as in the magnetopause boundary, 

the solar wind, and tokamaks, and are believed to involve the tearing mode. The shear 

flow can affect both shock formation and magnetic reconnection [22-26]. The 

influence of sub-Alfvenic shear and super-Alfvenic flows on magnetic reconnection is 

rather different. The tearing mode instability is dominant when shear flow is 

sub-Alfvenic. The Kelvin-Helmholtz instability becomes dominant when shear flow is 

super-Alfvenic. With a symmetric sub-Alfvenic shear flow, intermediate as well as 

weak slow shock emerge along the separatrices in the magnetic reconnection [22]. 

With a super-Alfvenic shear flow, the fast shock could be formed in the inflow region 
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outside the reconnection layer [26]. Based on resistive MHD simulation of the 

magnetic reconnection in the presence of the sub-Alfvenic shear flow, Li et al. [25] 

found that the slow shocks are observed in the inflow region or outside the 

reconnection separatrices. Zhang et al. [24] studied the shear flow effects on magnetic 

reconnection with compressible Hall MHD, and found that the influence of shear flow 

on stabilizing or destabilizing the magnetic reconnection depends on the plasma beta 

and the shear flow thickness.  

As mentioned, the Hall effect on magnetic reconnection without shear flow has 

been widely reported. The influence of shear flows on magnetic reconnection in Hall 

plasmas has not been sufficiently studied. In this paper, we found for the first time 

that the whistler waves observed in the inflow region or outside the reconnection 

separatrices can drive fast magnetic reconnection.  

 The compressible Hall MHD model is employed to investigate the reconnection 

dynamics with a sub-Alfvénic shear flow. Both resistivity and viscosity are assumed 

to be uniform. Our simulations are conducted in the Cartesian coordinate system. The 

variation of all variables in the y-direction is assumed to be ignored, that is 0/ =∂∂ y  

for all times. The magnetic field is represented as ˆ=y ψ×∇B . The compressible Hall 

MHD equations used in our simulations are as follows 
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where ,  ,  , ,  ,  ,  pψ ρv B J I  are the plasma velocity, the magnetic field, the current 

density, the flux function, the plasma density, the thermal pressure, and the unit tensor, 
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respectively. )3/5(=γ  is the ratio of specific heats of the plasma. iv  and 0J  are 

the initial values of the velocity and the current density, respectively. All variables are 

normalized as follows: 0/ B →B B ， / a →x x ， tt A →τ/ ， vvv A →/ ，

ψψ →)/( 0aB ， ρρρ →0/ ， pBp →)4//( 2
0 π , where /A Aa vτ =  is the Alfvénic 

time, 1/2
0 / (4 )Av B πρ=  is the Alfvénic speed, Ba λ5=  and Bλ  is the half width of 

the initial current sheet. /R AS τ τ=  is the Lundquist number and /v v AS τ τ= is the 

Reynolds number, where 24 /R a cτ π η= , 2
v aτ ρ ν= , c  is the speed of the light, η  

is the resistivity, and ν  is the viscosity. id  is the ion inertial length. The value of 

id  can be used to represent the intensity of the Hall effect. 

  Equations above are solved with fourth-order Runge-Kutta method in time and 

fourth-order finite difference method in space. System size is chosen as [ 2,2]xL = − , 

]4,4[−=zL , with 501 1001×  grid points that are uniform in both the x direction and 

the z direction. The period boundary condition is imposed at xx L= ±  and the free 

boundary condition, i.e., 0/ =∂∂ z  for all variables, is used at zLz ±= . The initial 

equilibrium is force-balanced. The thermal pressure is obtained by solving 

equilibrium equation as follow 

2/2/)1( 22
0 BBp −+= β           (6) 

where β  is the asymptotic plasma beta. The initial magnetic field and plasma shear 

flow are given as follows: 

i 0 ˆtanh( / )BB z λ=B x            (7) 

i 0 ˆtanh( / )vv z λ=v x            (8) 

where the widths of the current sheet and the plasma shear flow are 0.2Bd =  and 

0.4vd = , respectively. The initial asymptotic magnetic field strength and shear flow 
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velocity are chosen to be 0 0.8v =  and 0 1.0B = . The initial density ρ  is assumed 

to be uniform and set to be 1=ρ . The Lundquist number and the Reynolds number 

are S=10000 and Sv=10000, respectively.  The tearing mode is triggered by a small 

magnetic perturbation, 

)2/cos()/cos(0 zx LzLx ππδψδψ =        (9) 

where 001.00 =δψ . 

 

 

Figure 1. Perturbed distribution of the flow vorticity with magnetic field lines (solid 

black curves) for different ion inertial lengths (a) 0.0id = , (b) 0.1id = , and (c) 

0.2id =  at 70t = . 

 

 Figure 1 shows the perturbed vorticity field together with the magnetic field lines 

for the different ion inertial lengths 0.0,  0.1, and 0.2id =  at 70t = . For the case 

without the Hall effect ( 0.0id = ), it is clearly shown that there are two pairs of 

discontinuity structures that have been identified as slow shocks by Li et al. [25]. The 

shock (in red color) near the reconnection region is a weak slow shock. For 

convenience, we name the shock (in blue color) nearly perpendicular to the 

background magnetic field as Shock I and the weak shock as Shock II. We see that 
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with inclusion of the Hall effect, the sharp structures for both slow shocks become 

nearly invisible. Instead, multiple bands of vorticity perturbations in the downstream 

region of the slow shocks appear. As the ion inertial length increases, the spatial scale 

of the perturbation increases but its amplitude decreases. 

  

 

Figure 2. The spatial profiles of the flow vorticity along the z=2 line at t=70. 

 

 In order to examine the detailed perturbation structures in the downstream region 

of Shock I, the spatial profiles of the vorticity along the line at z=2 are shown in 

Figure 2. The sharp spiky structures in Figure 2 are still clearly visible at x~-0.9 and 

x~-0.35 for 0.1id =  and 0.2id = , respectively. They can correspond to the Shock I 

found in the 0.0id =  case. The oscillation structures of the flow vorticity in the 

downstream region are generated by the slow shock Shock I in the Hall MHD.  

We analyze the dispersion relation associated with these perturbation structures to 

identify the detailed properties. After performing the Fourier transformation of the 

spatial variations of the flow vorticity in the downstream region of the slow shock for 

0.1id =  and 0.2id =  at 70t =  as shown in Figure 2, the spatial power spectrums 

of the flow vorticity are presented in Figures 3. We can identify that the mode wave 

numbers with the highest power are 5.0xk ≈  and 3.7xk ≈  for 0.1id =  and 

0.2id = , respectively.  
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Figure 3. Spatial power spectrums of the flow vorticity(Ω) along the line at z=2 

at the time t=70. 

 

 Similarly, we record the time variation of the flow vorticity at ( , ) (0,2)x z =  in 

the downstream region of Shock I for 0.1id =  and 0.2id = .  After performing the 

Fourier transform in time of the flow vorticity, the time power spectrums are shown 

in Figures 4. It is easily seen that the mode frequencies with the strongest power are 

0.26 ciω ≈ Ω  and 0.54 ciω ≈ Ω  for 0.1id =  and 0.2id = , respectively. 

 

 

Figure 4. Time power spectrums of the flow vorticity(Ω) at ( , ) (0,2)x z =  at the time 

70t = . 
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In the Hall MHD model of magnetic reconnection without external shear flow, it 

is well known that the dominant wave in the inflow region is the shear Alfvenic wave. 

The wave in the outflow region is the whistler wave with the dispersion relation 

/ / i cik kdω = Ω  [17]. With an external sub-Alfvenic shear flow, we found that in the 

inflow region, there are multi-bands of the perturbation vorticity. Based on the 

obtained frequencies and wavelengths for the maximum wave powers of the vorticity 

in the downstream region of Shock I, it can be concluded that the dispersion relation 

of the whistler wave / / i cik kdω = Ω  is well satisfied for our two different simulation 

runs, where 0k⊥ ≈  is assumed. Therefore, the multi-band structures of the flow 

vorticity in the downstream region of Shock I are due to the perturbation of the 

whistler waves.  

For the perturbations of the flow vorticity in the downstream region of Shock II, 

we are unable to give an accurate analysis of their properties because these 

perturbations are located in the region with fast time-space variations of the magnetic 

field and plasma. But, we believe that these perturbations also correspond to the 

whistler waves, since they are also generated by the slow shock Shock II. 

 

Figure 5. Evolution of the reconnection rates for 0.0,  0.1, and 0.2id = . 
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 Figure 5 shows the evolution of the reconnection rates for different ion inertial 

lengths id . For 0.0id = , or without Hall effect, it can be seen that the reconnection 

rate is relatively smooth and has only one peak. But for the cases with Hall effects, 

the reconnection rates have extra peaks after they reach the first peak. The latter 

depends solely on the initial conditions of the magnetic field and the shear flow 

because the perturbations in the inflow region are still rather weak. After the 

reconnection rates reach the first peak, the whistler waves in the downstream region 

of the slow shocks can greatly affect reconnection dynamics. For 0.1id = , multiple 

small patchy structures of the flow vorticity near the reconnection region as shown in 

Figure 1b result from the interaction of the whistler waves associated with both slow 

shocks. The small patchy perturbation leads to a weak fluctuation in the decaying 

phase of the magnetic reconnection. It is interestingly to note that the reconnection 

rate for 0.2id =  exhibits multiple bursty enhancements during the decaying phase. 

In particular, the reconnection rate associated with the second bursty enhancement 

reaches more than four times of the first peak value. It is evident from Figure 1c that 

the second bursty reconnection results from pile-up of the whistler waves from Shock 

II in the reconnection region. This piling-up of the whistler waves is affected only 

weakly by the whistler waves from Shock I. The efficiency of the piling-up of the 

whistler waves to drive fast reconnection can be understood as follows. In our 

simulation, ion and electron motions are decoupled due to the Hall effect. Only 

electrons respond to whistler perturbations, which means that the energy of the 

whistler perturbations are fully used to drive the electrons together with the magnetic 

fields into the reconnection region. As a result, the piling-up of the whistler waves 

near the reconnection region leads to a burst of magnetic reconnection.  

 In summary, we have investigated the dynamics of magnetic reconnection in the 

current sheet with sub-Alfvenic shear flow within compressible Hall MHD model. 

Without the Hall effect, two pairs of slow shocks in the inflow region are generated by 

magnetic reconnection in the presence of sub-Alfvénic shear flow. With inclusion of 
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the Hall effect, it is found for the first time that whistler waves can be generated in the 

downstream region of the slow shocks. The whistler waves propagating toward the 

reconnection region lead to pile-up of the wave perturbations that efficiently drive the 

electrons together with the magnetic field into the reconnection diffusion region. 

Consequently, during the decaying phase the magnetic reconnection exhibits a large 

bursty enhancement in the reconnection rate. 
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