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Abstract: It is demonstrated using a compressible Hall MHDdelahat whistler
waves are generated in the downstream region @ slwocks, which result from
magnetic reconnection with sub-Alfvenic shear fldlue whistler waves propagating
toward the reconnection region drive a large bumbhhancement in magnetic
reconnection during its decaying phase.
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Magnetic reconnection is an important process atsemnd laboratory plasmas.
It plays a dominant role in the conversion of mdignenergy to kinetic and thermal
energies. Magnetic reconnection is often cited ragféicient mechanism for many
eruptive physical phenomena such as flares in ti& £orona, substorms in the
Earth's magnetosphere, and sawtooth oscillatiotekeimaks [1-4].

From the Geospace Environmental Modeling (GEM) lengle, it was suggested
that fast magnetic reconnection can be realizedincijuding the Hall effect in
magnetohydrodynamic  (MHD) simulations [8-15]. The iewpoint that
Alfven-whistler waves are generated in the inteniegion during fast magnetic
reconnection has been widely accepted [8,16,17la8he framework of Hall MHD,
the whistler wave plays an important role in fasagmetic reconnection [18].
However, Wanget al. [17] found that in the reconnection region the dwant waves
are kinetic/inertial Alfven waves when there isiaitial guide field, and obliquely
propagating Alfven/whistler waves when there isguide field. In the ideal region,
the dominant wave is the shear Alfven wave.

The decoupling of electron and ion motions assediatith the Hall effect can
generate a characteristic quadrupole out-of-plangneatic field that can be a main
characteristic of whistler-mediated reconnectiod][Both the out-of-plane magnetic
field and whistler waves have been in situ obsef2dd. It has been proposed that
whistler waves originated from the reconnectionigegcan accelerate electrons
[16,18], and hence lead to fast magnetic reconmecti

Shear flows are very commonly observed, such #simagnetopause boundary,
the solar wind, and tokamaks, and are believeduolve the tearing mode. The shear
flow can affect both shock formation and magne&connection [22-26]. The
influence of sub-Alfvenic shear and super-Alfvefdtavs on magnetic reconnection is
rather different. The tearing mode instability isndnant when shear flow is
sub-Alfvenic. The Kelvin-Helmholtz instability becws dominant when shear flow is
super-Alfvenic. With a symmetric sub-Alfvenic shdbow, intermediate as well as
weak slow shock emerge along the separatriceseimtagnetic reconnection [22].
With a super-Alfvenic shear flow, the fast shockildobe formed in the inflow region
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outside the reconnection layer [26]. Based on tigeisMHD simulation of the
magnetic reconnection in the presence of the siNeAic shear flowLi et al. [25]
found that the slow shocks are observed in theownflegion or outside the
reconnection separatrices. Zha@l. [24] studied the shear flow effects on magnetic
reconnection with compressible Hall MHD, and fouhdt the influence of shear flow
on stabilizing or destabilizing the magnetic reaeetion depends on the plasma beta
and the shear flow thickness.

As mentioned, the Hall effect on magnetic reconpacivithout shear flow has
been widely reported. The influence of shear flemsmagnetic reconnection in Hall
plasmas has not been sufficiently studied. In gaper, we found for the first time
that the whistler waves observed in the inflow oegor outside the reconnection
separatrices can drive fast magnetic reconnection.

The compressible Hall MHD model is employed to irtiggede the reconnection
dynamics with a sub-Alfvénic shear flow. Both résity and viscosity are assumed

to be uniform. Our simulations are conducted in@agtesian coordinate system. The

variation of all variables in the y-direction issamed to be ignored, that &/dy =0

for all times. The magnetic field is representedBesy x ¢ . The compressible Hall

MHD equations used in our simulations are as fadlow
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where v ,B ,J ¢ 0 p | are the plasma velocity, the magnetic field, therent

density, the flux function, the plasma density, tiermal pressure, and the unit tensor,



respectively. y(= 5/3) is the ratio of specific heats of the plasma. and J, are

the initial values of the velocity and the currdensity, respectively. All variables are

normalized as follows:B/B, - B , x/a-x, t/lr, -t, v/v, -V,
wiBa) -y, plp, ~ p, pl(BZl4m) - p, where 7, =alv, is the Alfvénic
time, v, =B,/ (4mp)"? is the Alfvénic speeda=54, and A, is the half width of
the initial current sheetS=r,/7, is the Lundquist number an&, =r,/7,is the
Reynolds number, where, =47’ Inc, 1,=pa’v, c is the speed of the lighty

is the resistivity, andv is the viscosity.d, is the ion inertial length. The value of

d, can be used to represent the intensity of the éffatt.

Equations above are solved with fourth-order RuKgtta method in time and

fourth-order finite difference method in space. t8ys size is chosen bgs=[-2,2],
L, =[-44], with 501x 1001 grid points that are uniform in both thelirection and
the z direction. The period boundary condition is impbs¢ x=+L, and the free

boundary condition, i.e.9/dz= @or all variables, is used az=+L,. The initial

equilibrium is force-balanced. The thermal pressuse obtained by solving

equilibrium equation as follow
p=Q1+p)B;/12-B*/2 (6)
where £ is the asymptotic plasma beta. The initial magniéld and plasma shear

flow are given as follows:

B, = B, tanh@ /4, X (7)
v, =V, tanh(z /A, X (8)
where the widths of the current sheet and the @ashear flow ared;, =0.2 and

d, =0.4, respectively. The initial asymptotic magnetiddistrength and shear flow



velocity are chosen to bg, =0.8 and B, =1.0. The initial density o is assumed

to be uniform and set to b@ =1. The Lundquist number and the Reynolds number

are S=10000 andS,=10000, respectively. The tearing mode is trigddrg a small

magnetic perturbation,
oY =y, cosgx/L,)cosgz/2L,) (9)

where oy, = 0001
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Figure 1. Perturbed distribution of the flow voityowith magnetic field lines (solid

black curves) for different ion inertial lengthg (d, =0.0, (b) d, =0.1, and (c)

d =0.2 at t=70.

Figure 1 shows the perturbed vorticity field tdgatwith the magnetic field lines

for the different ion inertial lengthsl =0.0, 0.1, and 0. at t=70. For the case

without the Hall effect ¢, =0.0), it is clearly shown that there are two pairs of

discontinuity structures that have been identiisdslow shocks by Li et al. [25]. The
shock (in red color) near the reconnection regienai weak slow shock. For
convenience, we name the shock (in blue color) Ipeperpendicular to the

background magnetic field as Shock | and the wéwalcls as Shock Il. We see that
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with inclusion of the Hall effect, the sharp stuwets for both slow shocks become
nearly invisible. Instead, multiple bands of vattigerturbations in the downstream
region of the slow shocks appear. As the ion iakltingth increases, the spatial scale

of the perturbation increases but its amplitude ekses.
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Figure 2. The spatial profiles of the flow vorticalong thez=2 line att=70.

In order to examine the detailed perturbationctnes in the downstream region

of Shock I, the spatial profiles of the vorticitjoag the line at z=2 are shown in

Figure 2. The sharp spiky structures in Figureedill clearly visible at x~-0.9 and

x~-0.35 for d, =0.1 and d, =0.2, respectively. They can correspond to the Shock |
found in the d, =0.0 case. The oscillation structures of the flow \atyi in the

downstream region are generated by the slow shbokkS in the Hall MHD.

We analyze the dispersion relation associated tlvéke perturbation structures to

identify the detailed properties. After performitite Fourier transformation of the

spatial variations of the flow vorticity in the dogtream region of the slow shock for

d =0.1 and d, =0.2 at t=70 as shown in Figure 2, the spatial power spectrums
of the flow vorticity are presented in Figures 3e Ban identify that the mode wave

numbers with the highest power ade =5.0 and k,=3.7 for d =0.1 and

d =0.2, respectively.
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Figure 3. Spatial power spectrums of the flow @ig{Q2) along the line at z=2

at the time t=70.

Similarly, we record the time variation of thevilovorticity at (x,z)=(0,2) in

the downstream region of Shock | fat =0.1 and d, =0.2. After performing the

Fourier transform in time of the flow vorticity, éitime power spectrums are shown

in Figures 4. It is easily seen that the mode feegies with the strongest power are

w=0.26); and w=0.54; for d =0.1 and d, =0.2, respectively.
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Figure 4. Time power spectrums of the flow vortif@) at (x,z) =(0,2) at the time

t=70.



In the Hall MHD model of magnetic reconnection witih external shear flow, it
is well known that the dominant wave in the infloggion is the shear Alfvenic wave.

The wave in the outflow region is the whistler wawvéh the dispersion relation

w=k kdQ, [17]. With an external sub-Alfvenic shear flow, i@und that in the

inflow region, there are multi-bands of the perairn vorticity. Based on the
obtained frequencies and wavelengths for the maxirwave powers of the vorticity

in the downstream region of Shock I, it can be amhed that the dispersion relation

of the whistler wavew=Kk, kd Q is well satisfied for our two different simulation

runs, wherek, =0 is assumed. Therefore, the multi-band structufethe flow

vorticity in the downstream region of Shock | aneedto the perturbation of the
whistler waves.

For the perturbations of the flow vorticity in tdewnstream region of Shock I,
we are unable to give an accurate analysis of tpedperties because these
perturbations are located in the region with fasetspace variations of the magnetic
field and plasma. But, we believe that these phedtions also correspond to the

whistler waves, since they are also generateddglthw shock Shock Il.
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Figure 5. Evolution of the reconnection rates fijr=0.0, 0.1, and O..



Figure 5 shows the evolution of the reconnectates for different ion inertial

lengths d,. For d =0.0, or without Hall effect, it can be seen that teeannection

rate is relatively smooth and has only one peak.f&uthe cases with Hall effects,
the reconnection rates have extra peaks after tbagh the first peak. The latter
depends solely on the initial conditions of the metge field and the shear flow
because the perturbations in the inflow region sti# rather weak. After the

reconnection rates reach the first peak, the vemistaves in the downstream region

of the slow shocks can greatly affect reconnectigmamics. Ford, =0.1, multiple

small patchy structures of the flow vorticity n¢lae reconnection region as shown in
Figure 1b result from the interaction of the whastivaves associated with both slow
shocks. The small patchy perturbation leads to akwkictuation in the decaying

phase of the magnetic reconnection. It is intemghtito note that the reconnection

rate for d. =0.2 exhibits multiple bursty enhancements during teeaging phase.

In particular, the reconnection rate associatedh whe second bursty enhancement
reaches more than four times of the first peakevaliuis evident from Figure 1c that
the second bursty reconnection results from pil@fughe whistler waves from Shock
Il in the reconnection region. This piling-up ofethvhistler waves is affected only
weakly by the whistler waves from Shock I. The @éfhcy of the piling-up of the
whistler waves to drive fast reconnection can beewstood as follows. In our
simulation, ion and electron motions are decoupleé to the Hall effect. Only
electrons respond to whistler perturbations, whimcbans that the energy of the
whistler perturbations are fully used to drive #tectrons together with the magnetic
fields into the reconnection region. As a resuie piling-up of the whistler waves

near the reconnection region leads to a burst giheta reconnection.

In summary, we have investigated the dynamics ajmetic reconnection in the
current sheet with sub-Alfvenic shear flow withionepressible Hall MHD model.
Without the Hall effect, two pairs of slow shocksthe inflow region are generated by

magnetic reconnection in the presence of sub-Altvéhear flow. With inclusion of



the Hall effect, it is found for the first time thahistler waves can be generated in the
downstream region of the slow shocks. The whistlaves propagating toward the
reconnection region lead to pile-up of the waveubations that efficiently drive the
electrons together with the magnetic field into tleeonnection diffusion region.
Consequently, during the decaying phase the magretonnection exhibits a large

bursty enhancement in the reconnection rate.
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