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Classical plasma is typically of low density and/or high temperature, and the basic properties7

of Landau damping and two-stream instabilities are already well studied. When increasing the8

plasma density, quantum effect appears and the beam-plasma interactions will show quite different9

behaviour when compared with classical cases. In this work, the quantum Landau damping and10

two-steam instabilities are revisited by using quantum hydrodynamic and quantum kinetic theories,11

with the latter taking into account wave-particle interactions. The similarity and discrepancy of the12

damping rate of Langmuir Wave between high energy density and classical plasmas are significantly13

compared and explained. Especially, we found the plasma growth rate behaves as pure two-stream14

instability without landau damping when countering velocity exceeds a certain threshold, which is15

different from classical case. Our work might find great applications in inertial confinement fusion16

researches and also might be of great value in astrophysics studies.17
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I. INTRODUCTION18

High Energy Density Physics (HEDP), especially the warm dense matter (WDM) or hot dense matter (HDM)19

regime [1–5], has draw much attention in recent years. WDM or HDM widely exists in inertial confinement fusion,20

and (laboratory) astrophysics studies, with temperatures of 1 ∼ 100 eV and density of 0.1 ∼ 10 solid densities.21

However, due to the significant high temperatures when compared with condensed matter state and high densities22

when compared with pure plasma state, experimental and theoretical studies are of great challenges. This is because23

knowledge of both condensed matter physics and plasma physics needs to be organized together. Therefore many of24

the foundational properties of WDM or HDM are still open and not well studied.25

Among the most fundamental properties of plasmas, Landau damping and two-stream instability are two funda-26

mental properties of plasmas that widely exist in various kinds of physical phenomenon. Landau damping [6] is what27

defines ’kinetic’ efforts which essentially represents wave-particle interaction, while two-stream instability simply rep-28

resents the excitation of intrinsic oscillation of charged particle in plasma by another group of charged particle flow.29

In most of cases, two-stream instability can not be treated as a pure fluid instability, since the plasmas in reality30

always have velocity distributions departing from thermal equilibrium, which means the kinetic effects exist. Although31

extensively investigated in ideal plasmas [7], under WDM or HDM regime, such properties are seldom studied. In32

this extreme situation, instabilities behaviour shall differ from classical plasmas in two respects: 1) the equilibrium33

distribution function becomes Fermi-Dirac function instead of Maxwellian, 2) the quantum mechanical feature, i.e.,34

the wave-like behaviour, of single particle becomes relevant.35

The investigation of the properties of dense plasma started from the pioneering works of Bohm and Pines [8, 9] who36

first utilized the random phase approximation (RPA) approaches to calculate the dynamic response of degenerate37

plasmas. Under classical plasmas, the RPA approaches reproduce the famous Bohm-Gross wave (BG) with Landau38

damping, and for degenerate plasmas, one obtains their quantum counterparts. Since then, there are many theoretical39

attempts to study the influence of quantum effects on two-stream instability. M. Bonitz described the quasi-one-40

dimensional degenerate plasma in detail and summarized the quantum effects in three-dimensional systems [10–41

13]; Vladimirov gave an analytical description of collisonless quantum plasma [14]; Manfredi and Haas established42

the Quantum Hydrodynamics (QHD) theory [15]; Haas gave the fluid expression form of two-stream instability,43

summarized the differences between various models, and revised QHD under consideration of exchange-correlation44

effects [16, 17]; M. Akbari-Moghanjoughi compared the difference between fluid approximation and dynamic limit45

of Wigner-Poisson equation [18–20]; Seunghyeon Son discussed the difference between classical and quantum cases46

through Lindhard description and given a conclusion that kinetic approach is more accurate than QHD in studying47

two-stream instability [21].48

In this paper, we revisit the Landau damping and two-stream instability by using both QHD and QKT theories.49

The quantum Landau damping and two-steam instabilities are here revisited by using quantum hydrodynamic and50

quantum kinetic theories, with the latter taking into account wave-particle interactions. The similarity and discrepancy51

of the damping rate of Langmuir Wave between high energy density and classical plasmas are significantly compared52

and explained. Especially, we found the plasma growth rate behaves as pure two-stream instability without landau53

damping when countering velocity exceeds a certain threshold, which is different from classical case.Especially, we54

found the plasma growth rate behaves as classical two-stream instability when countering velocity exceeds a certain55
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threshold.56

The article is organized as follows. In Section II, we give a brief introduction to QKT and QHD, and summarize the57

previous results of two-stream instability under QHD model. In Section III, we take the Lindhard function [22] and58

give the influence of quantum Landau damping on dispersion relation, and then we study the property of quantum59

plasma depending on the system density and temperature. In Section IV, we consider the two-stream instability by60

using QKT theory, and give an explanation for the theoretical difference with QHD model. Finally we compare the61

effects of quantum dissipative instability under different system parameters. A summary and discussion are given in62

Section IV.63

II. AN INTRODUCTION TO QKT AND QHD64

We here give a brief introduction of QKT and QHD. Following the introduction, the existing work on two-stream65

instabilities based on QHD is also introduced.66

A. Quantum Kinetic Theory67

Quantum Kinetic Theory (QKT)[23] starts from Wigner function [24]68

(
∂

∂t
+

p · ∇R

m

)
f(p,R, t) =

1

i~

∫ ∫
drdp′

(2π~)3
exp

(
i(p− p′) · r

~

)
[Ueff (R + r/2, t)−Ueff (R− r/2, t)]f(p′,R, t)(1)

where quantum distribution f(p,R, t) is expressed in terms of Schroedinger wave function, ψα(R, t), which is char-69

acterized by a probability pα satisfying
∑N
α=1 pα = 1:70

f(p,R, t) =

N∑
α=1

∫
dp

(2π~)3
exp

(
ip · r
~

)
× ψ∗α(R + r/2, t)ψα(R− r/2, t). (2)

Here Ueff is the potential field, and it is different from the kinetic theory under classical case. When combined with71

Poisson’s equation in integral form72

Ueff (R, t) = U(R, t) +

∫
dR′V (R−R′)×

∫
dp′

(2π~)3
f(p′,R, t), (3)

one can obtain the linearized longitudinal dielectric function. For electrostatic plasmas, we have73

ε(k, ω) = 1 + uk
∑
s

χs(k, ω) (4)

where uk = 4πe2/k2 is the Fourier component of coulomb interaction of particles with each other, and χs is the74

corresponding density response. According to the work of Bohm and Pines [8, 9], the latter part can be written as75
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χcs(ω,k) =

∫
d3v

k · ∂fs/∂v
ω − k · v

(5)

and76

χqs(ω,k) =

∫
d3q

(2π)3

fs,q− 1
2k
− fs,q+ 1

2k

ω − ~k · q/m
(6)

in classical and quantum conditions, respectively. Here one need to note, when comparing the Eqs. (5) and (6), the77

quantum density response can be reduced to the classical ones by taking the long-wavelength approximations.78

The expression of χqs is actually the vacuum polarization bubble resulting from RPA theory. The waves in high79

damping region can rapidly decay and cannot effectively transport. Therefore, it is appropriate to apply small damping80

approximation to analyse the property of transport.81

At low-temperature limit, where the Fermi distribution reduces to a step function, the real part of density response82

is83

Re (χqs) =
mkF
2π2~

1− 1

2k̃
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ω̃

k̃
− k̃

2

)2
 ln

∣∣∣∣∣∣
1 +

(
ω̃
k̃
− k̃

2

)
1−

(
ω̃
k̃
− k̃

2

)
∣∣∣∣∣∣+

1

2k̃

1−

(
ω̃

k̃
+
k̃

2

)2
 ln

∣∣∣∣∣∣
1 +

(
ω̃
k̃

+ k̃
2

)
1−

(
ω̃
k̃

+ k̃
2

)
∣∣∣∣∣∣
 (7)

and the imaginary part is84

Im (χqs) =



− mkF
~2

1

4πk̃
2ω̃, with (ω̃/k̃ + k̃/2) < 1

− mkF
~2

1

4πk̃

1 +

(
ω̃

k̃
− k̃

2

)2
 , with

∣∣∣ω̃/k̃ − k̃/2∣∣∣ < 1 < (ω̃/k̃ + k̃/2)

0, with
∣∣∣ω̃/k̃ − k̃/2∣∣∣ > 1

Here ω̃ = ω/(~k2F/m) is the normalized frequency, and k̃ = k/kF is the normalized wave vector. This result is derived85

by Lindhard [22] under small damping approximation. Considering the limit of ω̃ � k̃, which is the same way to86

analyse the electron Langmuir waves in classical plasmas, we get the dispersion relation87

ωLW(k) =

(
ω2
p + 〈v2〉k2 +

~2k4

4m2
e

)1/2

(8)

which is derived by Klimontovich and Silin [25]. For zero temperature fermions, we have88

〈v2〉 =
3

5

(pF
m

)2
(9)

where pF = ~kF = ~(3π2n)1/3 is the Fermi momentum.89
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B. Quantum Hydrodynamics90

Haas and Manfredi [15] derived the Quantum Hydrodynamics equations from the Wigner-Poisson equantions91

∂n

∂t
+∇ · (nu) = 0 (10)

∂u

∂t
+ u · ∇u =

e

m
∇Φ− 1

mn
∇P (11)

where the density, velocity and pressure are respectively given by92

n =

∫
dp

(2π~)3
f(p,R, t) (12)

u =
1

nm

∫
dp

(2π~)3
pf(p,R, t) (13)

P = m

∫
dp

(2π~)3
(v2 − u2)f(p,R, t) (14)

The pressure can be separated into classical part and quantum part. The quantum part can be written as93

PQ = − ~2

2m

∇2
√
n√
n

(15)

whose gradient, −∇PQ, is also called Madelung term [26] or Bohm Potential [8, 9].94

Linearizing the above formula, we can also get the dispersion relation of Langmuir wave, Eqs. (8), which means95

that QHD and QKT are mutually unified in the case of long-wavelength approach.96

C. Two-stream Instability Analysis via QHD97

Two-stream instability is a basic and crucial research content in classical plasma. In the study of collective effects98

at quantum regime such as fast ignition and white dwarfs, two-stream instabilities also significantly influence the99

transport of charged particles in plasmas.100

When ignoring the kinetic effect and adopting the QHD approach [16], we have101

1−
ω2
pe

(ω + k · u0)2 − ω2
u

− ω2
be

(ω − k · u0)2 − ω2
u

= 0 (16)
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where ωpe = ωbe = ωp for two-stream case. The different considerations lead to different values of ωu: 1) Classical zero102

temperature case, ω2
u = 0; 2) Classical Fermi distribution case, ω2

u = 〈v2〉k2 with 〈v2〉 = (3/5)v2F; and 3) Quantum103

condition, ω2
u = 〈v2〉k2 + ~2k4/4m2

e . As expected, the expression of dispersion relation is also naturally consistent104

with the QKT Langmuir wave under the long-wavelength approximation. Now we can expand the expression into105

polynomial form (ω2 + k2u20 − ω2
u)2 − 4k2u20ω

2 − 2(ω2 + k2u20 − ω2
u)ω2

p = 0. Then we obtain the solution of dispersion106

relation107

ω2 = ω2
p + ω2

u + k2u20 ± [ω4
p + 4k2u20(ω2

p + ω2
u)]1/2. (17)

The solution has two branches, one is a stable solution with ω2 > 0, and the other is an unstable solution with ω2 < 0,108

which represents the region that leads to the two-stream instability. The unstable solution satisfies109

(k2u20 − ω2
u)(2ω2

p + ω2
u − k2u20) < 0 (18)

1) For classical zero temperature case, ω2
u = 0, instability region always exists. The interval of instability region is110

k <
√

2ωp/u0.111

2) For classical Fermi distribution case, we have ω2
u = 〈v2〉k2. In this case, there is a certain threshold for the112

appearance of the instability region: u20 > 〈v2〉, which means two-stream instability begins to emerge when the113

countering drift velocity is greater than the respective thermal velocity [27, 28]. The instability region satisfies114

k <
√

2ωp/(u
2
0 − 〈v2〉)1/2.115

3) For quantum condition, we have ω2
u = 〈v2〉k2 +~2k4/4m2

e . The threshold that instability region begins to emerge116

is the same as in the second case, u20 > 〈v2〉. When 〈v2〉 < u20 < 〈v2〉 +
√

2~ωp/m, the instability region satisfies117

k < 2mU1/2/~ where U = u20 − 〈v2〉. When u20 > 〈v2〉+
√

2~ωp/m, a new stable region [ka, kb] begins to appear:118

k2a = (2m2/~2)[U − (U2 − 2~2ω2
p/m

2)1/2] (19)

and119

k2b = (2m2/~2)[U + (U2 − 2~2ω2
p/m

2)1/2] (20)

For Fermi distribution at zero temperature, U = v20 − 3/5v2F .120

From Fig. 1, we can intuitively understand that the influence of temperature or Fermi distribution will increase the121

area of two-stream instability, while the maximum growth rate will decrease. Comparing the second and third case,122

we find that quantum correction will further expand the instability interval and simultaneously form a new stable123

region in it, thereby splitting it into two growth intervals.124
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FIG. 1. Growth rates of different conditions at countering drift u0 = 1.15vF, with parameters: Te = 0, and np = nb = 1024cm−3.

III. REVISITING LANDAU DAMPING125

In this section, we compare the quantum Landau damping with both QKT and QHD theories. QHD is a fluid theory126

which ignoring the wave-particle interactions. In comparison, QKT is relatively a more complete theory, although the127

analytical solution of QKT is not easy to follow.128

According to Eqs. (8), when compared with the dispersion relation of classical Langmiur waves, ω(k) = (ω2
p +129

〈v2th〉k2)1/2, the Fermi distribution, physically corresponding to the Pauli principle, promotes particles to fill the130

lowest energy levels and provides the system a minimum average kinetic energy. For this reason, there is no absolute131

“cold” plasma at low-temperature limits. There is another wave structure called electron acoustic wave (EAW) which132

is certainly nonlinear and strongly damped, but can still exist in a plasma. It was previously described by Hollway133

and Dorning [29] in classical plasma, and they gave the acoustic-form dispersion relation, ω = 1.31kvth for small k,134

which is related to thermal pressure. Therefore, EAWs will not disappear at low-temperature conditions, which is an135

important difference from the classical plasmas.136

Let us consider the limit that k̃ (k̃ > 0) approach zero and ω̃/k̃ has a finite value. According to the approximation137

ln
∣∣∣1− ( ω̃

k̃
± k̃

2 )
∣∣∣ ≈ ln

∣∣∣1− ω̃
k̃

∣∣∣ ± k̃

2|1− ω̃
k̃
| + O(k̃2), we can expand the real part of quantum dielectric function, and the138

ω̃/k̃ relation of quantum electron acoustic waves satisfies139

− ω̃
k̃

ln

∣∣∣∣∣1 + ω̃
k̃

1− ω̃
k̃

∣∣∣∣∣+ 2 = 0 (21)

Then we have the linearized dispersion relation of EAWs at quantum condition, ωEAW ≈ 0.834kvF.140

Using Eqs. (7) and (8), we can get the real solution of dispersion relation and obtain the damping rates by small141

damping approximation,142

γ = −εI(k, ωR)/ (∂εR/∂ω)ωR
. (22)

As shown in Fig. 2, the resonance curve ω+(k) cut the ω−k plane into undamping region and damping region. For143

the waves whose phase velocity is greater than Fermi velocity, there are no particles satisfied the velocity condition144
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FIG. 2. Real dispersion relation of longitudinal oscillations of a degenerate electron gas by QKT with Te = 0, and ne =
1024cm−3. Here a is the optical mode and b is the acoustic mode. kc and kd respectively represent damping turning points of
two modes. ω± = ~k/2m(2kF ± k) is the kinetic resonance frequency for particles on Fermi sphere.

and hence no particle can resonance with waves and contribute to Landau damping. The intersection of optical mode145

and resonance curve ω+(k) indicates a turning point kc which shows Landau damping occurs for the part k > kc146

of optical mode. Another turning point kd exists at the intersection of acoustic mode and resonance curve ω−(k).147

However, unlike optical mode, the acoustic mode is always damped.148

Let us consider the influence of electron density on dispersion relation of the degenerate system. As shown in the149

Fig. 3, it is obvious that the optical mode approaches to the classical electron Langmuir waves as density decreases.150

Another important point is that the acoustic mode approaches the k-axis simultaneously and deviates from the kinetic151

resonance frequency (ω−), which is consistence with the classical condition at low density limit.152
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FIG. 3. The real part of longitudinal dispersion relation as the density changes shown by the solid lines (blue). The dashed
lines represent the theoretical approach of optical mode, ωLW(k) (red).

The dissipative undamping region limit kc of optical mode is a parameter which shows the difference between153

quantum condition and classical condition. The formation of undamping region is due to the steep edge of Fermi-154

Dirac distribution, which is different from the undamping region based on Debye Shielding at classical condition. The155

normalized kinetic resonance frequency is156

ω±

ωp
=

~k2F
2mωp

(
2
k

kF
± k2

k2F

)
=

εF
~ωp

(
2
k

kF
± k2

k2F

)
(23)

According to Eqs.(8) and (23), the undamping limit kc satisfies157
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k3c
k3F

+
2

5

k2c
k2F
−

~2ω2
pe

ε2F
= 0 (24)

As shown in Fig.4(b), the first order slope of resonance curve εF/~ωp increases with density, which means the area158

of undamping region in ω − k plane decreases simultaneously. The tendency of curve kc(n) also represents the same159

conclusion. It should be noted that the absolute value of kc increases with density in the contrary, because the Fermi160

wave vector kF is proportional to n1/3, shown by the solid line in Fig. 4(a).161
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QKT
QHD
QKT
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FIG. 4. (a) Various values of quantum undamping region limit kc of optical mode with Te = 0 as the density changes using QKT
and QHD. Here, aB = 52.9pm is the hydrogen Bohr radius. (b) The ratio of plasmon energy and Fermi energy of degenerate
system decreases as the density increases.

The low-temperature limit theory has pointed out some difference between classical and quantum condition, how-162

ever, cannot obtain an accurate result at finite temperature. Hence we can directly solve Eqs. (6) by using small163

damping approximation from the beginning. The real part of dispersion relation can only be given analytically at164

some limit cases [30, 31]. And the imaginary part can be found by theoretical approach165

Im (χqs(ω, k)) =
2e2m2

βk3~4
ln

(
f̃−(ω, k)

f̃+(ω, k)

)
(25)

where166

f̃±(ω, k) = 1 + exp

[
µβ −

(
ω

k
± k

2

)2
β

2m

]
(26)

Hence we can use Eqs. (22) and the real part solutions to get the damping rates.167
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FIG. 5. The solid lines (blue) represent the real part of dispersion relation as the temperature θ = kBT/εF changes. The dashed

line (grey) is classical Langmuir waves ω = (ω2
p + 〈v2th〉k2)1/2. The dotted line (red) is classical EAWs, ω = 1.31kvth [29].

We plot the real part of dispersion relation in Fig. 5. High temperature breaks the steep edge of Fermi distribution168

to be smooth and narrow the difference between quantum theory and classical limit. For this reason, the undamping169

region will disappear. However, at relatively low temperature, there is very few particles with large momentum which170

can resonance with waves. Hence, just like what we have implemented at low-temperature limit case, here we have171

2/(eβ(~
2k2t /2m−µ) + 1) > 1/n where the factor 2 stands for spin of electron. Then we get k2t = 2m/~2[µ+ 1

β ln(2n)].172

Replacing kF at quantum low temperature with kt, and simultaneously considering the energy conservation, we173

have the approximate resonance frequency for particles at finite temperature:174

ω± = k

√
2

m

(
µ+

1

β
ln(2n)

)
± ~k2

2m
(27)

Then we can determine the undamping region limit kc according to the intersection of resonance frequency curve175

and Langmuir wave curve Eqs.(8), shown by the dashed line in the FIG.6.176
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0.5

0.6

QHD Approach
QKT Approach

FIG. 6. The undamping region limit of optical mode (n = 1024cm−3) at finite temperature according to the approximate
resonance condition is shown by the dashed line. The solid line represents the theoretical approach of imaginary part of
dielectric function.

The tendency of two curves in Fig. 6 is basically the same. Therefore, the reason for the formation of dissipative177

undamping region is indeed the particularity of Fermi distribution. As shown in the figure, the value of kc/kF tends178

to zero as temperature increases. It means at high temperature limit, since the Fermi distribution is equivalent to the179
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Maxwellian, the undamping region disappears, which is consistent with the classical situation.180

IV. REVISIT OF TWO-STREAM INSTABILITY181

In this section, we compare the two-stream instability results of QKT and QHD studies. Here, in order to maintain182

symmetry and facilitate research, we study non-relativistic countering-stream case, which can also be obtained from183

two-stream case by coordinate transformation.184

ε(k, ω) = 1 + ukχpe (k, ω + k · u0) + ukχbe (k, ω − k · u0) (28)

where χpe and χbe respectively represent the density response of background plasma and plasma beam.185

Now we can add the previously omitted kinetic Landau damping to the theoretical results of QHD. Due to the186

existence of two parts of countering electrons, their respective undamping regions will overlap. When the countering187

speed exceeds a certain threshold, the overlapping part will form a new exact dissipative undamping region.188

FIG. 7. The same as Figure 2, but for countering-stream case (Te = 0, np = nb = 1024cm−3). Solid lines (blue) represent
the numerical solution of QKT, and dotted lines represent the real (red) and imaginary (grey) solution of QHD. The enclosed
dashed curves (light blue) form a new dissipative undamping region.

In Fig.7, the increase in countering velocity causes the new undamping region to expand, so as to completely cover189
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the first growth interval of two-stream instability. According to the intersection of two kinetic resonance frequency190

curves, we have the vertex of new dissipative undamping region:191

k = 2 (mu0/~− kF) (29)

And this stable region also coincides with part or all of two-stream instability growth region. Combing the Eqs.(19)192

and (29), we can get the countering velocity required when the dissipative undamping region and growth region is193

completely covered194

u2c
v2F

+
13

5
− 4

uc
vF

+

√
(
u2c
v2F
− 3

5
)2 − 1

2

~2ω2
p

ε2F
= 0 (30)
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FIG. 8. the value of countering velocity threshold with the change of electron density.

According to Equ.(30), we plot the tendency of velocity threshold with electron density in Fig.8. As density195

increases, the ratio of threshold velocity to Fermi velocity decreases, while the absolute value increases, which is196

consistent with the change trend of kc in Section II.197

When the countering velocity is greater than the threshold, the instability of this region appears as pure two-stream198

growth rate without the influence of Landau damping. From the perspective of distribution function, when phase199

velocity of waves is located at the ’gap’ between two parts of electron distribution, waves can be directly excited by200

two-stream growth rate without Landau damping.201

As the countering velocity increases, the results of QHD and QKT gradually conincide. When the stable mode just202

appeared in QKT (u0 ≈ uc), the difference between two theories are relatively large, mainly because the approximation203

of QHD has a certain error in short-wavelength region.204

Quantum correction is the reason for the formation of this new dissipative stable region. Considering the dispersion205

relation of Fermi system in classical case, we find that the similar stable region is an open interval composed of206

two rays, which is different from the closed interval in quantum case. Thus, when u0/vF > 1, the entire range of207

two-stream instability is completely within this region in classical case.208

Therefore, in quantum case, within a certain countering velocity range, wave growth rate is the result of combined209
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effect of two-stream instability and wave-particle resonance, which cannot be considered separately.210

In Section II, we mentioned that the increase in temperature will lead to the reduction of undamping region,211

which is consistent with classical case at high temperature limit. Therefore, temperature is one of factors that affect212

two-stream instability. According to Equ.(27) and Equ.(19), we can get the vertex of undamping region213

k =
2m

~

(
u0 −

√
2

m

(
µ+

1

β
ln(2n)

))
=

2m

~
(u0 − vµ) (31)

Similarly, we can get the countering velocity threshold where dissipative undamping coincides with the first growth214

region of two-stream instability215

u2c − 4vµuc + 2v2µ + 〈v2〉+

√
(u2c − 〈v2〉)2 −

2~2ω2
p

m2
= 0 (32)

We plot the solution of Equ.(32) in Fig.9, we can see that as temperature increases, the equivalent thermal velocity is216

also increasing, which means that a higher velocity is required to cause the appearance of two-stream instability. And217

the threshold velocity rises faster, which means that the higher system temperature, the higher countering velocity is218

needed to make two-stream instability completely free of Landau damping. However, a high countering velocity will219

cause two-stream instability to be insignificant, and simultaneously the theory of relativity needs to be considered,220

which also requires the basic model to be revised. Therefore, in high temperautre region, two-stream instability is221

bound to be accompanied by a certain Landau damping.222

FIG. 9. the value of countering velocity threshold with the change of temperature (n = 1024cm−3).

V. CONCLUSION223

In this paper, we discussed the quantum effect of two-stream instability in high density plasmas by means of224

quantum kinetic theory and quantum hydrodynamics. The discrepancies of these two theoretical framework are225



14

caused by wave-particle interaction, i.e., kinetic effects, which is ignored by QHD. We conclude that, firstly, the Fermi226

statistic effect yields a stable region without Landau damping, which is further deformed by single-particle quantum227

effect, namely, the Bohm potential. This stable region shrinks as the temperature rises, which means the quantum228

effect being concealed by thermal effect. And secondly, the unstable region of two-stream instability is split into two229

parts by Bohm effect, and one of which is located at the dissipative undamping region thus yielding a pure two-stream230

instability growth region. Last but not least, there exists a threshold drift velocity beyond which the two-stream231

instability decouples with Landau damping and become a pure fluid instability. This threshold also increases as232

temperature rises.233
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