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I. INTRODUCTION19

Due to its key roles in ICF [1] and astrophysics [2–4], warm dense matter (WDM), with temperature of 1 ∼ 10020

eV and density of 1021 ∼ 1028 cm−3, has attracted wide attention of researchers. However, even for the homogeneous21

electron gas (HEG), as a simplified model, there are still many issues to be investigated because of the harsh conditions.22

One of the most crucial research contents is the collective effect of electron-ion systems in WDM. The energy23

parameter H = ~ωpe/EF representing the ratio of plasmon energy and Fermi energy, as a measure of the strength of24

the collective effect, ranges from 0.3 to 3 in WDM [5]. It implies that the collective excitation energy is in the same25

order as the fermion ground-state energy, and the collective effect has an important impact in WDM. While classical26

plasma theory has provided an accurate theoretical basis for the study of collective excitation in high-temperature27

low-density systems, quantum plasma theory, as an effective theory bridging the gap between classical sparse matter28

and quantum dense matter, has also attempted to make a breakthrough within WDM [6].29

The development of quantum plasma theory originated from the work of Bohm and Pines [7–9] to study the dy-30

namic response of dense plasma. Then Lindhard analytically described the density response of free electron gas at31

low temperatures and thus added quantum corrections to the plasma theory [10]. Bonitz summarized the quantum32

effects of the kinetic theory [11] which is too complicated to solve in three-dimensional systems. Hass and Manfredi et33

al. simplified the Wigner equation by fluid approximation to create quantum hydrodynamics (QHD) [12] that is much34

easier to analyze for high-dimensional systems. However, the shortcomings of QHD have made its applicability doubt-35

ful [13] in the short-wavelength region, and QHD does not contain quantum effects other than quantum diffraction36

effects, such as exchange-correlation interactions, to which the nonlinear density response is highly sensitive [14].37

To solve the many-body problem in quantum mechanics with the complete inter-particle interactions, the system’s38

wave function is calculated from the basic Schrödinger′s equation39  N∑
i

(
−~2∇2

2m
+ vext(ri, t)

)
+
∑
i<j

U (ri, rj , t)

Ψ (r1, r2, ...rN , t) = i~∂tΨ (r1, r2, ...rN , t) (1)

where N is the number of electrons and U (ri, rj) is the electron-electron interaction. For a Coulomb system one has40

Û =
∑
i<j

U (ri, rj) =
∑
i<j

q2

|ri − rj |
(2)

and vext represents the potential that the electron system feels, including the external field and the potential provided41

by ions. However, it is impossible to solve this equation in a large system due to its complex properties.42

A one-to-one correspondence between electron density n and effective potential Veff has been established by Runge-43

Gross theorem [15], which leads to the birth of a powerful and viable alternative – time dependent density functional44

theory (TDDFT). It reduces complex multi-particle problems to relatively straightforward single-particle problems45

and allows for a comparatively complete consideration of the most intractable exchange-correlation component of46

Eq.(2). TDDFT has already made many contributions to the analysis of opacity [16] and electron transport behavior47

[17] in WDM, and its time-free simplified model, density functional theory (DFT), has played a crucial role in the48

characterization of WDM [18, 19]. The results of TDDFT can also be applied to collisionless plasmas as G. Manfredi49
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concluded [20], and the exchange-correlation analysis has been added on the basis of TDDFT-QHD for the electro-50

static waves at low temperature limit [21, 22]. Exchange kinetic theory (EKT) established by Ekman, Bordin, and51

Zamanian [23], which was obtained by simplifying the collision term of the Bogoliubov-Born-Green-Kirkwood-Yvon52

(BBGKY) hierarchy, has also shown some discrepancies in the QHD analysis of the exchange-correlation interaction53

[24]. Moreover, most of these completed works cannot be effectively extended to the high-energy density regime,54

where high temperatures significantly affect the wave-particle interactions and the exchange-correlation interactions.55

This paper is organized as follows. In Sec. II, we derive the kinetic equations on the basis of the TDDFT equations56

and summerize the interconnections. In Sec. III, we analyze the effect of the exchange-correlation interaction on57

quantum Langmuir waves and quantum ion-acoustic waves in the range of WDM parameters. In Sec. IV we compare58

and analyze the similarities and differences between the EKT, QHD and ALDA-based kinetic theory, and give the59

exchange interaction corrections for the ion-acoustic wave dispersion relation at low/high temperatures. A summary60

and discussion will be given in Sec. V.61

II. KINETIC MODEL62

We start from the time-dependent electrostatic non-interacting Kohn-Sham equation (TDKS),63

{− ~2

2mα
∇2 + Veff(r, t)}ψα(r, t) = i~

∂ψα(r, t)

∂t
, (3)

where the effective scale potential Veff contains the electron-ion interaction, external field, Hatree term and exchange-64

correlation correction,65

Veff(r, t) = Vαα′(r, t) + Vext(r, t) + VHα(r, t) + Vxcα(r, t). (4)

In fact, if we adopt the Born-Oppenheimer approximation and treat the ion behavior as static, the first two term66

can be combined into one external field. However, we split the two parts here in order to study the behavior of both67

electrons and ions.68

To derive the quantum TDDFT-based kinetic equation, we shall take the quantum analogy of distribution function,69

written in second quantization,70

fα(p,R, t) =

∫
dr

(2π~)3
exp

(
ip · r
~

)
〈ψ∗α(R + r/2, t)ψα(R− r/2, t)〉. (5)

where the brackets indicate the expectation value of the operators. To describe the time derivative of the distribution71

function, which can be calculated from the Heisenberg equation,72

i~
∂X

∂t
= [X,H], (6)
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we shall take the product ψ∗ψ from the definition of the f for the operator X:73

∂fα
∂t

=
1

i~

∫
dr

(2π~)3
exp

(
ip · r
~

)
〈[ψ∗α(R + r/2, t)ψα(R− r/2, t), H(t)]〉. (7)

Futhermore, after calculating the content in the 〈〉-brackets, we have74

(
∂

∂t
+

p · ∇R

m

)
fα(p,R, t) =

1

i~

∫ ∫
drdp′

(2π~)3
exp

(
i(p′ − p) · r

~

)
[V +

eff − V
−
eff ]fα(p′,R, t), (8)

If we suppose that potential Veff varies slowly in the space coordinate R, and the exchange-correlation interaction75

is negligible under classical condition, we may therefore expand the effective potentials as76

Veff(R± r, t) = Veff(R, t)± (r/2) · ∇RVeff(R, t), (9)

and we find precisely the classical collisionless Valsov equation in electrostatic fields as77

{ ∂
∂t

+
p · ∇R

mα
−∇RVeff(R, t) · ∇p}fα(p,R, t) = 0. (10)

Now, back to Eq.(8), and assuming the field of the scale potential is sufficiently low, we can follow the usual78

procedure to obtain the linear response of the system,79

fα(p,R, t) = f0α(p) + δfα(p,R, t), (11)

where f0α indicates the system is basically in equilibrium, satisfying the Fermi-Dirac distribution, and δf is the80

disturbance due to the absence of external fields, δVext.81

According to the famous random phase approximation (R.P.A),82

δfα(p,R, t) = δfα(p,k, ω)eik·R−iωt,

δṼeff(R, t) = δṼeff(k, ω)eik·R−iωt,
(12)

we have the linearized kinetic equation83

(ω − k · p/m) δfα = δṼeff [f−0α − f
+
0α]/~, (13)

where f±0α = f0α (p̃± ~k/2). According to the classical plasma theory, combining the linearized kinetic equation with84

the Poisson equation, we can get the classical electrostatic dielectric function. However, considering the complex85

form of effective potential Veff , we need to include the correspondences between electron density and other species of86

potential energy as additive terms.87

For an electron-ion system, we have the Poisson’s equations respectively88

Vei(r, t) = − e2

4πε0

∫
ni(r

′, t)

|r− r′|
dr′, (14)
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89

VHe(r, t) =
e2

4πε0

∫
ne(r

′, t)

|r− r′|
dr′, (15)

And more importantly, the exchange-correlation potential is defined as the functional derivative of the xc-action90

Axc, which was originally proposed by Runge and Gross,91

Vxce(r, t) =
δAxc[ne](r, t)

δne(r, t)
. (16)

The simplest concept for setting up approximations for xc-action is to turn it into locality in time and space, as the92

use of a stationary functional evolving in approximately adiabatic progress, which is usually called Adiabatic Local93

Density Approximation (ALDA),94

AALDAxc [n] =

∫ t1

t0

dt

∫
dreHEGxc (n (r, t)) , (17)

where eHEGxc (n) is the xc-energy density of the homogeneous electron gas at gas density n. And the linearized xc95

potential can be expressed as96

δVxce(r, t) =

∫
dt′
∫
dr′

δVxce(r, t)

δn (r′, t′)

∣∣∣∣
n0

δn (r′, t′) . (18)

where contains a key quantity of TDDFT in the linear response regime, called time-dependent xc kernel,97

fxc(k, ω) =

∫
dt′
∫
dr′eik·(r

′−r)−iω(t′−t) δVxce(r, t)

δn (r′, t′)

∣∣∣∣
n0(r)

. (19)

The description of electron quantum kinetic equation is sufficient for high-frequency wave. And low-frequency98

electrostatic wave can be explored including ion dynamics, which can be described by classical Vlasov equation due99

to their heavy mass,100

{ ∂
∂t

+
p · ∇R

mi
−∇RVeffi · ∇p}fi(p,R, t) = 0, (20)

where the effective potential Veffi = Vei + VHi + Vext, Vie = −VHe and VHi = −Vei.101

Linearizing Eq.(20) and including the electron dynamics Eq.(13), we have the dispersion relation of electron-ion102

system103

εl = 1− v (k)χi (k, ω)− {v (k) + [1− v (k)χi (k, ω)] fxc (k, ω)}χqe (k, ω) , (21)

where104

χα (k, ω) =

∫
dv
−k · ∇f0α

ω − k · v
, (22)
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105

χqα (k, ω) =

∫
dp

(2π~)3

1

~
f−0α − f

+
0α

ω − k · p/mα
, (23)

After that, we can also employ the ALDA for fxc,106

fALDAxc (r, r′; t, t′) =
d2eHEGxc (n)

dn2

∣∣∣∣
n=n0(r)

δ (r′ − r) δ (t′ − t)

=
δV ALDAxc [n](r, t)

δn(r′, t′)

∣∣∣∣
n=n0(r)

,

(24)

where the xc potential V ALDAxc (r, t) = V LDAxc (n(r, t)). The approximation supplies us with a method to connect107

the dispersion relation with the suitable exchange-correlation potentials at finite temperature, such as the LDA108

functional proposed by Perrot and Dharma-Wardana [25], Vxc(rs, tf ), where rs = (3/4πn)1/3/a0 is the Wigner-Seitz109

radius, tf = kBT/EF is the Fermi temperature, and a0 is the Bohr radius.110

III. LONG-WAVELENGTH APPROACH111

A. quantum electron Langmuir wave112

Let us consider first the long-wavelength limit in which the disturbance varies so slowly in space that ω � kvFe �113

~k2
2me

. And ions cannot timely response to density disturbance due to the high frequency electron waves, so χi = 0.114

Then115

1

ω − k · p/m
≈ 1

ω

(
1 +

k · p
mω

+
(k · p)

2

m2ω2
+ ...

)
, (25)

We find at long-wavelength limit116

ω2 =

(
1 +

n0efxc

meω2
pe

k2

)[
ω2

pe + 〈v2〉k2 +
~2

4m2
e

k4

]
, (26)

where 〈v2〉 represents the mean kinetic energy of electrons117

〈v2〉 =
1

n0e

∫
dp

(2π~)3

(
p

me

)2

f0e(p). (27)

The quantum electron Langmuir wave dispersion relation Eq.(26) corresponds to the main results of some quantum118

hydrodynamic papers which is offered by TDDFT [21, 26], as long as we choose the popular Hedin-Lundqvist (HL)119

potential to derive the xc kernel. It is understandable because the fluid equation can be straightly derived from the120

kinetic equation under the long-wavelength approximation. And both equations are based on the TDKS architecture.121

Especially, ignoring the high-order corrections, we have the following dispersion relation122

ω2 = ω2
pe + (〈v2〉+ n0efxc/me)k

2 ≡ ω2
pe + (1− α)〈v2〉k2, (28)
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where α = −n0efxc/me〈v2〉 represents the comdined effects of system temperature and exchange-correlation energy,123

and is also related to the group velocity of quantum Langmuir waves.124
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FIG. 1. The variation of α with the system density and temperature. The value is greater than 100 in the lower left area.
125

126

In Fig.1, the correction of exchange-correlation effects remains essentially above 1% for the entire WDM density127

parameter region at low temperature. More importantly when the density is below 1025cm−3, the correction provides128

a reduction of more than 10% compared to the thermodynamic term derived from the classical quantum theory.129

And it keeps weakening with increasing temperature, which is due to the fact that high temperature diminishes the130

quantum effect, including the exchange-correlation effects, quantum diffraction effects and so on. In the lower left area,131

Langmuir wave exhibits a negative group velocity property, which means the directions of phase and group velocity132

are opposite each other. This phenomenon is caused by the exchange-correlation effects and cannot be described in133

the classical plasma theory.134

B. quantum ion acoustic wave135

For the low-frequency ion oscillation mode, kui � ω � kvFe, we can simplified the ion susceptibility as136

χi ≈ −
n0ik

2

miω2
. (29)

For the electron susceptibility, since the phase velocity ω/k is on the order of the Fermi velocity, the approximation137

method used for Langmuir waves is not applicable. However, we can use the static response approximation (ω ≈ 0)138

to get its contribution under the expression of Fourier expansion, and real part of the corresponding density response139

is140

Re (χe (k, 0)) = −P
∫

dp

(2π~)3

1

~
f−0 − f

+
0

k · p/me
≈ −n0eΘ1 (µ) τ (µ, k) , (30)
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where141

Θ1 (µ) =
∂

∂µ
ñ0e (µ) , (31)

142

Θ2 (µ) =
1

2

∂2

∂µ2
ñ0e (µ) +

1

9

∂3

∂µ3
w̃0e (µ) , (32)

143

τ (µ, k) = 1− ~2k2

4me

Θ2 (µ)

Θ1 (µ)
. (33)

Here, Similar to the quantum diffraction term in the linear dispersion relation of Langmuir waves, the second term144

in τ is proportional to k2, which means that it is a high-order correction term, and can be indeed ignored in the linear145

discussion. The imaginary part can be found by the theoretical approach146

Im (χe (k, ω)) =
2m2

e

4πβ~4k
ln

∣∣∣∣∣1 + exp[βµ− β
Ek

(~ω + Ek)
2
]

1 + exp[βµ− β
Ek

(~ω − Ek)
2
]

∣∣∣∣∣ , (34)

where Ek = ~2k2/2m represents the electron kinetic energy, and the parameter µ and β represent, respectively, the147

chemical potential and temperature of the system. It should be noted that the xc kernels are analytical functions in148

the upper half of the complex ω-plane. Due to the Im (χe) � Re (χe) and Im (fxc) � Re (fxc) at long-wavelength149

limt, we can reduce the real part of dispersion relation Eq. (21) as150

ω2 =
C2
sk

2 (1/τ − n0eRe (fxc) Θ1)

1 +
C2

sk
2

ω2
pi

(1/τ − n0eRe (fxc) Θ1)
≡ C2

sk
2ν

1 + λ2
qek

2ν
, (35)

where the ion-acoustic velocity Cs = 1/
√
− (miΘ1), and λ2

qe = Cs
2/ω2

pi. At zero temperature, the velocity of ion-151

acoustic is given by152

C2
s =

me

3mi
v2

F, (36)

which is known as the Bohm-Staver relation [27]. And if we consider the influence of the exchange-correlation153

correction, the quantum ion-acoustic velocity should be as Cqs =
√
νCs, where ν contains both the quantum diffraction154

(τ , and τ ≈ 1 in the linear analyze) and exchange-correlation effects.155

In Fig.2, we have evaluated the exchange-correlation effects on the ion-acoustic velocity with the help of the156

temperature-dependent LDA functional, and found two interesting effects. First of all,similar to the effect on quantum157

Langmuir waves, since the xc kernel fxc is inversely proportional to the density n (which should actually be n4/3) and158

temperature T (in the high-temperature limit, the functional is much more complicated at low temperatures [25]),159

the influence of the exchange-correlation effect diminishes with increasing density and temperature of the system.160

Secondly, there exits a density and temperature limited region satisfied |fxc| < 1/(n0|Θ1|) in which the ion-acoustic161

velocity appears as a pure imaginary number. It also means that the ion-acoustic waves cannot propagate in the162
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FIG. 2. The variation of exchange-correlation correction parameter 1 − ν. The value is greater than 100 in the lower left area
of density and temperature.

system that take values in this region.163

IV. EXCHANGE-KINETIC THEORY COMPARISON164

It is necessary for us to compare the kinetic model based on TDDFT with the equation obtained in other ways, such165

as the simplification of BBGKY chain equations, to verify its reliability. Ekman, Zamanian, and Brodin [23, 24] has166

derived a kinetic model, where exchange correction were included considering the beginning the antisymmetrization167

of the N-particle density matrix. They wrote the dispersion relation as168

1 +Di +De +Dx = 0, (37)

where the terms are respectively the classical ion term, the classical electron term and exchange correction term.169

They are given by170

Di = −ω2
pi/ω

2, (38)

171

De =
3ω2

pe

2k2v2
F

∫ 1

−1

z dz

z − ω/kvF
, (39)

172

Dx =
(
9~2ω4

pe/16m2k2v6
F

)
I (w) , (40)
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173

I (w) =

∫ 1

−1

dx

∫ 1

−1

dy
xy

w − y
sgn (x− y)

(w − (x+ y)/2)
2 , (41)

where w = ω/kvF is the normalized phase velocity. And they compared the exchange correction term I (w) with the174

electron exchange contribution of the hydrodynamic version, Ih (w), where175

Ih (w) =
0.445

(w2 − 3/5)
2 . (42)

A. High-frequency comparison176

Exchange-kinetic theory (EKT) concluded that when w . 1.4, the sign of the exchange correction would change177

and manifested as a strong enhancement for Langmuir waves, which cannot be reflected in the hydrodynamic model.178

However, is this due to the error caused by the fluid approximation, or the inapplicability of the ALDA spirit at179

short-wavelength region, or even the both? To find the answer, we can also distinguish the quantum effect including180

the exchange(-correlation) effect from the classical term in the ALDA-based quantum kinetic theory,181

D′x = [v (k) + fxc]χqe (k, ω)− v (k)χe (k, ω) , (43)

182

IA (w) =
16m2k2v6

F

9~2ω4
pe

D′x (w) . (44)

It should be noted that the zero temperature assumption was made during the derivation of exchange-kinetic183

theory and neglected the two-particle correlations. Thus, we choose also the Dirac exchange correction VX for the184

homogeneous electron gas,185

V 0
X = −gD

(
n

n0

)1/3

, fx = − gD

3n0
, gD = 0.985

(
3π2
)2/3

4π

~2ω2
pe

mv2
F

≈ 0.375H2εF. (45)

And we have186

IA (w) =

(
0.667

w2
γ2 − 10.667

H2

)∫ 1

0

dy

∫ 1

−1

dx
y2

(w − xy)
2 −H2γ2/16w2

+
10.667

H2

∫ 1

0

dy

∫ 1

−1

dx
y2

(w − xy)
2 . (46)

where the parameter γ = ω/ωpe represents the ratio of wave frequency and electron oscillation frequency. Substituting187

Eq.(45) into Eq.(28), we have188

ω2 ≈ ω2
pe +

(
0.6− 0.0625H2

)
v2

Fk
2. (47)

Compared with the quantum Langmuir wave dispersion relation obtained by EKT in the long-wavelength approx-189
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imation190

ω2 = ω2
pe +

(
3

5
− 3

80
H2

)
v2

Fk
2, (48)

the ALDA-based kinetic theory would be a somewhat overestimate for the exchange correction. And we have191

γ2 ≈ w2

w2 − (0.6− 0.0625H2)
. (49)

1 1.5 2 2.5 3
w= /kv

F

-0.05

0

0.05

IA(H=0.3)

IA(H=1)

IA(H=3)

Ih

I

(a)

3 3.5 4 4.5 5
w= /kv

F

0

2

4

6

8
10-3

IA(H=0.3)

IA(H=1)

IA(H=3)

Ih

I

(b)

FIG. 3.

Fig.3 illustrates that in the long-wavelength range, the three approximation methods have the same trend, although192

EKT describes a slightly lower exchange effect than the other two methods. In contrast, in the short-wavelength range,193

when w ≈ 1.5, the exchange correction obtained by the ALDA-based kinetic theory shows the same sign change as194

EKT, which deviates significantly from QHD. The deviation implies that the mutual coupling effect between the195

exchange correction and the kinetic higher-order corrections leads to a modification of the dispersion relation when196

w . 2. This effect is neglected in the fluid approach, leading to the inaccuracies in the short-wavelength range.197

However, it is worth to be noted that the ALDA-based kinetic theory exhibits two properties that are distinguished198

from the exchange kinetic theory. Firstly, the exchange correction given by the ALDA-based kinetic theory is associ-199

ated with H, and the effect of the exchange correction deviates more from EKT when H takes a larger value. Secondly,200

when w . 1.5, the exchange correction given by the ALDA-based kinetic theory characterizes a different variational201

trend from that of EKT.202

In fact, both differences arise because the exchange kinetic theory does not reflect the quantum diffraction effect well.203

From Eq.(41) we know that the exchange correction integral has singularities when w < 1, i.e., which characterizes204

the entry into the resonant absorption region. However, based on the solution of the Wigner approach [5], we have205
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the kinetic resonance relation with resonance frequency ωr and wave number kr206

wr =
ωr
krvF

= 1 +
kr

2kF
,≈ 1 +

γH

4wr
(50)

207

wr ≈
(

1 +
√

1 +H
)
/2, (51)

It actually implies the resonance effect occurring between the waves with phase velocity up to the Fermi velocity208

and Fermi-surface particles, and the total energy/ momentum conservation of the absorption or emission processes209

between the radiative quantum waves and fermions [28]. Differing from EKT, it is reflected in the existence condition210

of the singularity of the Eq.(46).211

It is the quantum fluctuation effect that leads to a significant deviation between the two theories in the short212

wavelength region. In Fig.2, IA curves show two exchange interaction ’zeros’, meaning that the exchange interaction213

can be neglected under certain phase velocity conditions, one in the non-resonance absorption region and the other in214

the resonance absorption region. It is different from the previous EKT conclusion that there is only one zero point in215

the non-resonant absorption region. Moreover, comparing the two zero-point values in the non-resonance absorption216

region, the results of ALDA-based kinetic theory are also significantly larger than those of EKT.217

B. low-frequency comparison218

Here, we compare the low-frequency ion-acoustic waves dispersion relation obtained by ALDA-based kinetic theory,219

exchange-kinetic theory and classical plasma theory.220

1. low-temperature221

Considering the Fermi-Dirac distribution, we have the real part of density response function222

Re
(
χFe (k, 0)

)
=

3

2

n0e

EF

(
1− 1

12

k2

k2
F

)
, (52)

and according to the Lindhard dispersion relation [10], we have the imaginary part223

Im
(
χFe
)

= − m2
eω

2π~3k
. (53)

And we have the imaginary part of quantum ion-acoustic wave dispersion relation224

Im
(
εFe
)

=

(
ω2

peme

k2
+

(
1−

ω2
pi

ω2

)
Re (fxc)

)
Im
(
χFe
)

+

(
1−

ω2
pi

ω2

)
Im (fxc)Re (χe)

= −
ω2

pem
3
eω

2n0~3k3

(
1 +

(
1−

ω2
pi

ω2

)
n0ek

2

meω2
pe

Re (fxc)

)
+

3

2

n0e

EF

(
1− 1

12

k2

k2
F

)(
1−

ω2
pi

ω2

)
Im (fxc) .

(54)
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The damping rate of ion-acoustic waves is225

γFe = −
Im
(
εFe
)

∂Re (ε) /∂ω
=− π2

4

νCsk(
1 + k2λFqe

2
)2

√
me

3mi

(
1 + 3

(
1−

ω2
pi

ω2

)
n0ek

2λFqe
2

mev2
F

Re (fxc)

)

+ 3
√
νCsk

3n0eIm (fxc)

miω2
pi

(
1− 1

12

k2

k2
F

)(
1−

ω2
pi

ω2

)
.

(55)

where λFqe
2

= v2
F/3ω

2
pe represents the quantum shield length. And due to the relation that ω � ωpe, we have kλFqe → 0.226

Thus the damping rate approaches227

γFe ≈ −
π2

4
νCsk

√
me

3mi
. (56)

The dispersion relation for ion-acoustic waves with exchange-correction is then228

ω2 ≈ C2
sk

2ν

(
1− iπ

2

2

√
ν
me

3mi

)
, (57)

where229

ν ≈
(

1− 0.187H2 + 0.0833
k2

k2
F

)
. (58)

Compared to the dispersion relation derived by EKT,230

ω2 = C2
sk

2
[
1−H2 (1.24 + 0.59i)

]
, (59)

we find that the value of the frequency shift deviates significantly from our result. If we make the adjustment231

0.985 → 6.52 of the numerical prefactor in (45), the real part is conformable as mentioned by the authors. But232

even if we apply such an adjustment, the imaginary part is still not compatible. In our result, the damping rate is233

proportional to the electron-ion mass ratio, and decreases in the change scale as H2, which also differs from the result234

of EKT.235

2. high temperature236

In contrast to EKT which breaks down in the high temperature limit, the ALDA-based kinetic theory is suitable237

for solving the ion-acoustic dispersion relation at high temperature conditions, as long as we replace the distribution238

function with a Maxwellian type.239

The density response function is240

χMe (k, 0) = βn0e

(
1− 7

36

k2

k2
T

)
, (60)

where k2
T = 2me/~2β is the wave number corresponding to the thermal velocity. Coupling with the exchange potential241
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at high-temperature limit [25],242

V TX =
2

3tf
V 0

X, (61)

where the imaginary part can be negligible due to the weakness of exchange correction at high temperature limit.243

Thus, we have244

ω2 ≈ C2
sk

2

(
1− 0.0833

t2f
H2 + 0.1944

k2

k2
T

)(
1− i

√
πme

2mi

)
. (62)

Since the exchange correction is inversely proportional to the Fermi-temperature, Eq.(62) can degenerate into the245

classical ion-acoustic wave dispersion relation at high temperature limit.246

V. CONCLUSION247

In the present paper, we have derived the quantum dispersion relation of electron-ion system using the ALDA-based248

kinetic theory, which is based on the time-dependent density functional theory. With the help of the temperature-249

dependent functional, we have given a kinetic treatment of exchange-correlation effects covering the full electrostatic250

waves region. We found that the exchange-correlation effect on the electrostatic wave phase velocity exceeds 10% at251

low density conditions (n < 1025cm−3), and under relatively low temperature (tf < 1) and sparse density conditions252

(n < 1022cm−3), the high-frequency Langmuir waves could exhibit the negative group velocity due to the exchange-253

correlation effect. Moreover, the low-frequency ion-acoustic waves could also exhibit imaginary frequencies in the254

similar region.255

Another important goal of this study is to compare the ALDA-based kinetic theory with the exchange kinetic256

theory (EKT) as well as quantum hydrodynamics (QHD). It is concluded that the ALDA-based kinetic theory with257

the addition of wave-particle interactions to QHD can be consistent with EKT in a certain short wavelength range,258

and can also show the sign change of the exchange component of Langmuir waves. However, in addition to certain259

numerical deviations, there are also differences between the ALDA-based kinetic theory and EKT for the description of260

quantum diffraction effects under the condition that the phase velocity is close to the Fermi velocity. EKT ignores the261

quantum diffraction effects due to the model simplification, and thus cannot point out the exact resonance absorption262

boundary. Although the model deficiency of ALDA may lead to an inaccurate description in the resonance absorption263

region, it actually provides us with a way to improve the resonance boundary by using better functional forms such264

as GGA with the addition of density gradient correction [29], time-dependent functions considering non-adiabatic265

processes [30], etc., to study the kinetic processes of the electron-ion system more precisely.266
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