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1. Introduction

It is well-known that wave-particle resonances play crucial roles in the dynamics of

plasmas. That is, wave-particle resonances can lead to efficient exchanges of energy

and momenta between waves and particles [1, 2, 3, 4, 5, 6] (see, e.g., the recent

review [7]). As a consequence, wave-particle resonances can lead to, for example, wave

growth/damping, and heating/acceleration as well as transports of charged particles.

To quantitatively analyze these effects, one needs to employ a self-consistent kinetic

theory including terms due to wave-particle resonances. Up to now, corresponding

theoretical treatments have been limited to those associated with linear (primary) wave-

particle resonances, including possible nonlinear modifications; such as wave trapping

or resonance broadening. On the other hand, in the presence of finite-amplitude

electromagnetic fluctuations, studies on the single-particle dynamics have revealed

that nonlinear (higher-order) wave-particle resonances [8, 9] could also play important

dynamic roles in the heating/acceleration [10, 11] as well as transports of charged

particles [12, 13, 14]. To our knowledge, there is, however, no corresponding self-

consistent kinetic treatment; which constitutes the primary motivation of the present

work.

In this work, we first propose an oscillating-center transformation approach and

analyze a general theoretical model, demonstrating explicitly the presence of nonlinear

wave-particle resonances. This analysis is presented in Sec. 2. In Sec. 3, a specific

example pertinent to self-consistent resonances of magnetically trapped particles due

to low-frequency fluctuations in an axisymmetric tokamak is presented. Section 4

contains a summary and discussion of possible applications to transport and wave

growth/damping via nonlinear wave-particle resonances. Appendix A, finally, provides

a detailed analysis on nonlinear wave-particle resonances in an axisymmetric tokamak.

2. General theoretical approach

Let f(Z, t) be the distribution function in a general phase space denoted by Z, and f

obeys the following collisionless kinetic equation

d

dt
f =

(
∂

∂t
+ Ż ·∇Z

)
f = 0 , (1)

where

Ż = J(Z, t) , (2)

and ∇Z = ∂/∂Z. Let f = f0+δf with f0 and δf being, respectively, the equilibrium and

perturbed distribution function. Meanwhile, J = J0+δJ with J0 and δJ corresponding,

respectively, to the unperturbed and perturbed phase space orbits. Equation (1) then

becomes

d

dt
f =

(
d

dt

∣∣∣∣
0

+ δJ ·∇Z

)
(f0 + δf) = 0 , (3)
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where

d

dt

∣∣∣∣
0

=
∂

∂t
+ J0 ·∇Z . (4)

Noting that d/dt|0f0 = 0, Eq. (3) reduces to

d

dt
δf = −δJ ·∇Zf0 ≡ δS(Z, t) . (5)

δf in Eq. (5) can be formally solved via the following oscillating-center transformation

defined as

δf = exp (−δZ ·∇Z) δfOSC , (6)

where

d

dt
δZ = δJ . (7)

Substituting Eqs. (6) and (7) into Eq. (5), one readily obtains

d

dt

∣∣∣∣
0

δfOSC = exp (δZ ·∇Z) δS(Z, t) . (8)

δfOSC can then be symbolically solved via integration along the unperturbed phase space

orbit; i.e.,

δfOSC =

(
d

dt

∣∣∣∣
0

)−1

exp (δZ ·∇Z) δS(Z, t) . (9)

Equation (9) simply states that the solution corresponds to integration along the exact

(unperturbed plus the perturbed) phase space orbits. In the |δZ ·∇Z | → 0+ limit, one,

as expected, recovers the linear limit.

Equation (9) remains a formal solution, since δZ needs to be solved from the

nonlinear equation, Eq. (7). For particles, which do not satisfy the linear wave-particle

resonance condition, however, δZ may be solved via two-time-scale expansions. That

is, letting δZ = δZ + δZ̃ where [...] denotes averaging over an appropriate oscillation

period, Eq. (7) than yields

d

dt

∣∣∣∣
0

δZ̃ = δJ̃ − δJ̃ ·∇ZδZ −
[
δJ̃ ·∇ZδZ̃ − δJ̃ ·∇ZδZ̃

]
' δJ̃ ; (10)

and

d

dt

∣∣∣∣
0

δZ = −δJ̃ ·∇ZδZ̃ . (11)

Here, we have considered δJ = 0 in the absence of linear (primary) resonances, and

explicitly showed the approximation involved in the small amplitude perturbation

expansion underlying the adopted two-time-scale expansion. For our present

considerations as well as practical applications, δZ̃ given by the leading order Eq. (10)

is sufficient.
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With δZ̃ being the oscillating excursion in the phase space, Eq. (10) can in general

be solved via integration along the unperturbed orbits and yields the following expression

δZ̃ =
∑
p∈Z

δZp sin [Θp(Z, t)] . (12)

δfOSC of Eq. (9) is then given by

δfOSC =

(
d

dt

∣∣∣∣
0

)−1∏
p∈Z

∑
`∈Z

J`(λp)e
i`Θp(Z,t)δS(Z, t) , (13)

where J`(λp) are Bessel functions and

λp = −iδZp ·∇Z . (14)

Equation (13) clearly indicates that, with finite-amplitude fluctuations, λp is finite and

` 6= 0 terms will contribute to the `Θp(Z, t) nonlinear modification to the wave-particle

interaction phase, and, consequently, nonlinear (higher-order) wave-particle resonances.

With δfOSC derived via Eq. (13), we can then perform the inverse oscillating-center

transformation, Eq. (6), and obtain δf as

δf =
∏
p′∈Z

∑
`′∈Z

J`(λp′)e
−i`′Θp′ (Z,t)δfOSC . (15)

Focusing on the single-wave response (i.e., neglecting off-diagonal terms in the expansion

series), we have, letting p′ = p and `′ = `,

δf =
∏
p∈Z

∑
`∈Z

J`(λp)e
−i`Θp(Z,t)

(
d

dt

∣∣∣∣
0

)−1

J`(λp)e
i`Θp(Z,t)δS(Z, t) . (16)

Equation (16) is the desired formal solution of δf , which explicitly contains nonlinear

wave-particle resonances via the ` 6= 0 terms due to the finite-|λp| contributions. In the

following section, we will calculate δf explicitly for magnetically trapped particles in an

axisymmetric tokamak plasma.

3. Low-frequency response of trapped particles in tokamaks

In order to illustrate the general approach considered in the preceding section, we will

focus the analysis here to the specific case of low-frequency responses of magnetically

trapped particles in an axisymmetric tokamak. The relevant governing equation is then

the following nonlinear gyrokinetic equations [15] for the non-adiabatic component of

the perturbed distribution function, δg,

Lgδg = − e

M
QF0δH , (17)

where e and M represent electric charge and mass of the particles, respectively, while

Lg = ∂t + v‖b0 ·∇ + vd ·∇ + δẊ ·∇ (18)

≡ Lg0 + δẊ ·∇ , (19)
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v‖ denotes the particle velocity along the equilibrium B0 field, identified by the unit

vector b0 = B0/B0, vd is the magnetic gradient and curvature drift,

QF0 =

(
∂F0

∂E
∂

∂t
+

1

Ω
∇F0 × b0 ·∇

)
, (20)

E = v2/2 is the energy per unit mass, Ω = eB0/(Mc) is the cyclotron frequency,

δH =
〈
δφ− v

c
· δA

〉
α
, (21)

and

δẊ =
c

B0

b0 ×∇δH. (22)

In Eq. (21), 〈. . .〉α denotes gyro-averaging; that is, integration along the particle

cyclotron motion in the equilibrium magnetic field B0. Lg of Eq. (18) is, thus, the exact

“propagator”‡ in the guiding-center phase space; while Lg0 is that along the unperturbed

orbit. Equations (18) and (22) define the necessary oscillating-center transformation.

Thus, in the lowest order, we have, recalling the notation introduced in Sec. 2 for Eq.

(10),

δX̃ ' δX̃0 , (23)

and

Lg0δX̃0 '
c

B0

b0 ×∇δH̃ . (24)

Let us further assume that the fluctuations be of a single toroidal mode number n,

and a single poloidal mode number m. That is

δH̃ =
1

2

[
einζ−imθ−iωtδHm(r) + c.c.

]
, (25)

where c.c. stands for complex conjugate. Letting B0 = ∇ξ ×∇ψ and ξ = ζ − qθ, with

(r, θ, ζ) being straight magnetic field line toroidal flux coordinates (cf. Appendix A),

and defining

δX̃0 =
1

2

[
δX̃0m + c.c.

]
, (26)

Eq. (24) then leads to(
−iω + v‖∇‖ + vd ·∇

)
δX̃0m =

= i
c

B0

(b0 × km) einξ−iωt+i(nq−m)θδHm . (27)

Here, ikm = in∇ξ + ∇r∂r. δX̃0m of Eq. (27) can be readily solved as in the case of

linear theory [6, 7], summarized in Appendix A. Thus, letting vd = v̄d + ṽd, with ṽd
being periodic in the magnetic trapping time τb = 2π/ωb and v‖∇‖ρ̃b = ṽd, Eq. (27)

becomes (
−iω + ∂τ(θ) + inω̄d

)
δX̃bm =

= i
c

B0

eρ̃b·∇ (b0 × km) einξ−iωt+i(nq−m)θδHm , (28)

‡ Incidentally, we note that, in the standard terminology, propagator is the inverse (integral) operator

L−1
g .
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where δX̃0m ≡ e−ρ̃b·∇δX̃bm and τ(θ) =
∫ θ

0
d`′/v‖(`

′) is the time it takes for the particle

to move along the unperturbed trajectory, following theB0 magnetic field along the arc-

length element d`. Neglecting the finite-banana-width term, ρ̃b ·∇, for now to simplify

the presentation and expanding the Fourier series in τ , we have, after straightforward

algebra,

δX̃0 '
1

2

[∑
p∈Z

δX̃0pe
iΘp + c.c.

]
, (29)

where

δX̃0p =
c

B0

λpm
(b0 × km) δHm

nω̄d − ω − pωb
, (30)

λpm =
1

τb

∮
dτeipωbτ+i(nq−m)θ , (31)

and

Θp = nξ − ωt− pωbτ(θ) . (32)

Note that the integral in Eq. (31) is taken along the unperturbed particle orbits.

The effects of finite-banana-width can be readily restored in the present treatment as

illustrated in Appendix A, where interested readers can find all necessary details.

To proceed further analytically, let us assume that the perturbed orbit of the

magnetically trapped particle is dominated by the p = p0 bounce harmonic; i.e.,

δX̃0 ' δXp0 sin Θp0 . (33)

Here, for the sake of simplicity of notation, we have let δXp0 = δX̃0p0 and shifted

Θp0 → Θp0 − π/2 without loss of generality. The oscillating-center transformation,

corresponding to Eq. (6), is then given by

δg = exp
(
−δX̃0 ·∇

)
δgOSC , (34)

and δgOSC satisfies, according to Eqs. (8) and (17)

Lg0δgOSC = − e

M
exp

(
δX̃0 ·∇

)
QnF0δH̃ . (35)

Here,

QnF0 = −iω∂EF0 + in∇ξ ·∇F0 × b0/Ω .

Equation (35) can be further expressed as

Lg0δgOSC =
1

2

[∑
`∈Z

J`(−iδXp0 ·∇)ei`Θp0

×
(
− e

M

)
QnF0e

inξ−iωt+i(nq−m)θδHm + c.c.
]

=
(
− e

M

) 1

2

[∑
`∈Z

∑
p∈Z

J`(−iδXp0 ·∇)QnF0

× λpmδHme
i(`+1)(nω̄dτ−ωt)−i(p+`p0)ωbτ + c.c.

]
, (36)
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which yields

δgOSC =
1

2

[
i
( e

M

)∑
`∈Z

∑
p∈Z

QnF0

[(`+ 1)(nω̄d − ω)− (p+ `p0)ωb]

× J`(−iδXp0 ·∇)λpmδHme
iΘ`,p + c.c.

]
, (37)

and

Θ`,p = (`+ 1)(nξ − ωt)− (p+ `p0)ωbτ . (38)

We note that Eq. (37) clearly exhibits that, due to the ` 6= 0 nonlinear term (thus, ` is

the nonlinear harmonic), the following nonlinear resonance condition applies

ωb
nω̄d − ω

=
`+ 1

p+ `p0

(39)

or, setting the nonlinear bounce harmonic p = p0 + p′,

ωb
nω̄d − ω

=
`+ 1

(`+ 1)p0 + p′
. (40)

Equations (39) and (40) are the same as Eqs. (A.13) and (A.14), derived in Appendix

A within a more general theoretical framework.

Performing the inverse oscillating-center transformation, Eq. (34), and focusing

on the single-ω and single-n response, we then obtain the desired δg, which includes

nonlinear effects due to the perturbed phase space orbits for linearly non-resonant

particles;

δg ' 1

2

[
i
( e

M

)∑
`∈Z

∑
p∈Z

QnF0

[(`+ 1)(nω̄d − ω)− (p+ `p0)ωb]

× |J`(−iδXp0 ·∇)|2 λpmδHme
iΘp + c.c.

]
. (41)

Let us remark that the current theoretical analysis and results assume that the particles

are linearly non-resonant and their phase space motion is periodic, e.g. Eq. (33), with

a period much shorter than the appropriate nonlinear time scale. For a monochromatic

wave with a nearly constant amplitude, this assumption is valid if

|p0ωb + ω − nω̄d| � |ωtr| , (42)

where ωtr is the nonlinear bounce frequency of the particles trapped by the wave.

Appendix A provides a more thorough and systematic analysis on the effects

of perturbed phase space orbits on the wave-particle interaction phase and the

corresponding nonlinear wave-particle resonance conditions. For details, we refer

interested readers to that analysis. Here, we merely note that Eq. (42) can be considered

to be well satisfied for the problem of interest.

As a possible application of the present theoretical result, δg given by Eq. (41) can

be used to calculate the quasilinear particle flux induced by the nonlinear wave-particle

flux. Following Chen [3] and Chen and Zonca [16], it is then straightforward to derive

∂

∂t
[N ]s +

1

V ′ψ

∂

∂ψ

(
V ′ψΓn`ψ,t

)
= 0 , (43)



Nonlinear Wave-Particle Resonances 8

where [N ]s is the magnetic flux surface averaged density, V ′ψ =
∮
d`/B0, and

Γn`ψ,t = − π

2
ec
∑
`∈Z

∑
p∈Z

∫ [
dvδ

(
(`+ 1)(nω̄d − ω)− (p+ `p0)ωb

)
× |J`(−iδXp0 ·∇)|2 |λpm|2|δHm|2

(
−nω
M

∂F0

∂E
+
n2c

e

∂F0

∂ψ

)]
. (44)

Note that here, we have adopted the same normalizations of the fluctuation spectrum

in (ω,k) space introduced by [3]. The superscript n` denotes that the transport, in

addition to the usual quasilinear response via the ` = 0 wave-particle resonances, also

includes nonlinear wave-particle resonances via ` 6= 0. Equation (44) can, of course, be

extended to include a spectrum of toroidal (n) and poloidal (m) modes; as well as be

generalized to the transports of parallel momentum and energy [3, 7, 16].

4. Summary and Discussions

In this work, we have developed a systematic general theoretical approach for

analyzing self-consistent plasma dynamics including the effects of nonlinear wave-

particle resonances. Our theoretical approach is based on the scheme of the oscillating-

center transformation. As a specific illustration of this general approach, the kinetic

response of magnetically trapped particles to low-frequency fluctuations in axisymmetric

tokamaks is derived via the nonlinear gyrokinetic equations. The derived perturbed non-

adiabatic distribution function can, as an example, be used to derive the corresponding

quasilinear particle flux induced by the nonlinear wave-particle resonances in addition

to the usual linear wave-particle resonances. Quantitative estimates of the transport

coefficients remain, however, to be carried out.

The present theoretical analysis has, obviously, broader applications than those

analyzed here. For example, the present analysis could be easily extended to the

case of circulating particles. Furthermore, nonlinear wave-particle resonances can be

expected to play some roles in the longer time-scale evolution of instabilities as the

wave-particle exchange of energy and momentum via the linear resonances diminish

and fluctuations grow to some significant finite amplitudes. This could, in principle, be

done by applying δg of Eq. (41) to the gyrokinetic vorticity equation [7, 17, 18, 19].

All these anticipations/conjectures are worthy of further investigations by, preferably,

numerical simulations.
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Appendix A. Wave-particle resonances in tokamaks

Let us consider δS(Z, t), introduced in Eq. (5), and follow the approach outlined in

Sec. 2 based on systematic perturbation expansions, which ultimately allow us to express

physical solutions by integration along unperturbed orbits. Following Refs. [6, 7] and

using straight magnetic field line toroidal flux coordinates (r, θ, ζ), magnetically trapped

particle trajectories in tokamaks can be represented as

r = r(E, µ, Pφ) + ρ̃c (θc;E, µ, Pφ) ,

θ = Θ̃c (θc;E, µ, Pφ) ,

ζ = ζc + q(E, µ, Pφ)Θ̃c (θc;E, µ, Pφ) + Ξ̃c (θc;E, µ, Pφ) , (A.1)

where θc and ζc are canonical angles that define the (unperturbed) orbital frequencies

θ̇c = ωb(E, µ, Pφ) ,

ζ̇c = ωd(E, µ, Pφ) , (A.2)

as a function of the constants of motion E, the energy, µ, the magnetic moment, and

Pφ the canonical toroidal angular momentum. Furthermore, with the usual definition

of the safety factor

q(r) =
B0 ·∇ζ

B0 ·∇θ
, (A.3)

the orbit averaged q(E, µ, Pφ) is obtained as

q (E, µ, Pφ) =

∮
q(r)dθ∮
dθ

=

∮
q(r + ρ̃c)θ̇dθc∮

θ̇dθc
. (A.4)

Finally, ρ̃c (θc;E, µ, Pφ), Θ̃c (θc;E, µ, Pφ) and Ξ̃c (θc;E, µ, Pφ) are periodic functions of θc
that are parameterized by E, µ, Pφ. Similar to Eq. (A.1), circulating particle orbits can

also be conveniently represented [6, 7] but their explicit parameterization is not needed

here. Given this representation of magnetically trapped particles unperturbed motion

in tokamaks, δS(Z, t) along the particle orbit is readily represented as

δS(Z, t) = e−iωt+inζ
∑
m∈Z

e−imθδSm (r;E, µ, Pφ)

= e−iωt+inζc
∑
m,p∈Z

e−ipθcδSm,p (r;E, µ, Pφ) , (A.5)

where

δSm,p (r;E, µ, Pφ) =
1

2π

∮
dθce

inΞ̃c+i(nq−m)Θ̃c+ipθcδSm (r + ρ̃c;E, µ, Pφ) .

(A.6)

Here, for the sake of simplicity, we assumed an imposed perturbation with given

frequency ω and toroidal mode number n. Equation (A.5) readily shows that linear

wave-particle resonance occurs for

ω = nωd(E, µ, Pφ)− pωb(E, µ, Pφ) . (A.7)
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If the linear resonance condition, Eq. (A.7), is not satisfied (cf. Sec. 2) but particle

actions (constants of the unperturbed motion) are still in the neighborhood of the linear

resonance identified by a given p = p0, we can adopt the standard approach of secular

perturbation theory [20, 21] by transforming to the wave frame, where θ and ηp0(Z, t),

η̇p0(Z, t) = nωd(E, µ, Pφ)− p0ωb(E, µ, Pφ)− ω , (A.8)

provide the new angles of a system with two degrees of freedom. Since |η̇p0| � |θ̇|, it

is possible to average over the fast θ dependences, and the averaged Hamiltonian will

become the “standard Hamiltonian” [20, 21] providing the universal description of the

motion near an isolated resonance [22].

In general, it is possible to transform to action-angle coordinates of the particle

motion near the isolated resonance η̇p0(Z, t) = 0. More specifically,

ηp0(Z, t) = φp0 (Θp0(Z, t)) , (A.9)

where φp0 (Θp0) is a periodic function of the angle Θp0 , for which

Θ̇p0(Z, t) = ωtr(IΘp0
) (A.10)

is the wave-particle trapping frequency. In Eq. (A.10), for the sake of simplicity, we

only reported the dependence of the trapping frequency on the action IΘp0
, conjugate

to the angle Θp0 , leaving implicit the parametric dependences on the constants of the

unperturbed motion identifying the primary (linear) resonance through Eq. (A.7) for

p = p0. Secondary (nonlinear) resonances account for resonances between the perturbed

motion near the considered isolated resonance and the periodic motion in the other (θ)

degree of freedom. To see this, let us consider the particle dynamics near an elliptic

fixed point of the primary libration. Then, Eq. (A.9) can be approximated as

ηp0(Z, t) ' ∆ηp0(IΘp0
) sin (Θp0(Z, t)) . (A.11)

Similarly, we can express the periodic nonlinear distortions of phase space trajectories

and obtain the representation of Eq. (12) in Sec. 2, where, for simplicity, we have

reabsorbed any possibly needed phase shift into the definition of Θp0 (cf. also Eq. (33)

in Section 3). As in Eq. (A.11), in general, ∆ηp0 = O(1), we generally have λp0 = O(1)

in Eq. (14). Thus, Eq. (13) can be specialized to p = p0 and yields, together with Eq.

(A.5)

δfOSC =

(
d

dt

∣∣∣∣
0

)−1∑
`∈Z

J`(λp0)

× ei`Θp0e−iωt+inζc
∑
m,p∈Z

e−ipθcδSm,p (r;E, µ, Pφ) . (A.12)

The nonlinear resonance condition, generalizing Eq. (A.7), then becomes

ω = nωd(E, µ, Pφ)− pωb(E, µ, Pφ) + `ωtr(IΘp0
) . (A.13)

Noting Eqs. (A.2) and (A.10), we can generally conclude that ` = O(ω/ωtr) =

O(|B0|1/2/|δB|1/2) � 1 [20, 21]. Meanwhile, the contribution of the considered

nonlinear resonance is weighed by J`(λp0) = O((λp0/2)`/`!)� 1 [20, 21].
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Secondary (nonlinear) resonances also account for the modification of the resonance

condition due to the presence of finite amplitude fluctuations when the linear resonance,

Eq. (A.7), is not nearly satisfied. In this case, Θp0(Z, t) = ηp0(Z, t) in Eq. (A.9),

expressing the leading order unperturbed motion, while the nonlinear distortions of

phase space trajectories are expressed as periodic functions of Θp0(Z, t) = ηp0(Z, t),

e.g. as in Eqs. (12) and (33), with λp = O(|δB|/|B0|) � 1. Equation (13),

specialized to p = p0, still holds in the form of Eq. (A.12), where now Θ̇p0 =

nωd(E, µ, Pφ) − p0ωb(E, µ, Pφ) − ω due to Eq. (A.8). Thus, the nonlinear resonance

condition reads

ω(1+`) = n(1+`)ωd(E, µ, Pφ)−p0(1+`)ωb(E, µ, Pφ)−p′ωb(E, µ, Pφ) ,(A.14)

where n is the toroidal harmonic number of the considered fluctuation, p0 is the primary

(linear) bounce harmonic, p = p0 + p′ is the nonlinear bounce harmonic, and ` is the

nonlinear harmonic [10, 11, 12, 13, 14]. Clearly, Eqs. (A.13) and (A.14) are entirely

consistent when ωtr(IΘp0
) = nωd(E, µ, Pφ) − p0ωb(E, µ, Pφ) − ω, which is intuitive for

the considered resonant interaction.

The above analysis can be straightforwardly extended to the case of circulating

particles [6, 7]. The corresponding expressions for the nonlinear wave-particle resonance

conditions are then given, respectively, by

ω = nωd(E, µ, Pφ) + (nq(E, µ, Pφ)−m)ωt(E, µ, Pφ)

− pωt(E, µ, Pφ) + `ωtr(IΘp0
) , (A.15)

which is the analogue of Eq. (A.13), and

ω(1 + `) = n(1 + `)ωd(E, µ, Pφ) + (nq(E, µ, Pφ)−m) (1 + `)ωt(E, µ, Pφ)

− p0(1 + `)ωt(E, µ, Pφ)− p′ωt(E, µ, Pφ) , (A.16)

which corresponds to Eq. (A.14). In Eqs. (A.15) and (A.16), ωt(E, µ, Pφ) is

the circulating particle transit frequency, while q(E, µ, Pφ) is defined in Eq. (A.4).

Meanwhile, the interpretations of n (m) as the toroidal (poloidal) harmonic number of

the considered fluctuation, of p0 as the primary (linear) bounce harmonic, of p = p0 +p′

as the nonlinear bounce harmonic, and of ` as the nonlinear harmonic remain the same

as above [10, 11, 12, 13, 14].
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