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Abstract

An optimization study of Quasi-Axisymmetric (QA) stellarators with varied elongation has been

carried out using the optimization code STELLOPT. The starting point of our optimization is

a previously obtained QA stellarator with 3 field periods and aspect ratio of 6. A series of QA

stellarators are obtained at zero plasma beta with varied elongation value ranging from 2.5 to 3.7.

Good quasi-symmetry is kept when the elongation value is reduced from the original value of 3.7.

The rotational transform profile and aspect ratio are kept fixed. The plasma volume is ether kept

fixed or varied linearly with elongation. Furthermore, finite beta QA stellarators are considered.

The corresponding bootstrap currents are calculated using the kinetic code SFINCS. A series of

kink-stable QA stellarators are obtained via optimization with varied plasma beta up to 5% and

self-consistent bootstrap current. This work demonstrates that good QA stellarators with finite

beta and varied elongation exist that are stable to external kink modes.
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I. INTRODUCTION

Quasi symmetry has been proven to be a powerful concept for improving neoclassical

transport in stellarators. The idea came from the original work of Boozer[1] who showed

that the particle orbits in 3D stellarator geometry only depend on the magnitude of mag-

netic field in Boozer coordinates. Thus the particle orbits in stellarators are equivalent to

those of tokamaks if the magnetic field strength is symmetric in Boozer coordinates even

though the vector magnetic field and geometry of magnetic surfaces are 3D. Using this idea

Nührenberg and Zille[2] demonstrated numerically the existence of quasi-helically symmetric

(QH) stellarators. QH means that in the Fourier expansion of the magnitude of magnetic

field on a magnetic flux, B =
∑

m,nBm,n cos(mθ − nϕ), the dominant Fourier components

Bm,n are of only one m/n ratio, where θ and ϕ are poloidal and toroidal Boozer coordinates

respectively. This led to the Helical Symmetric eXperiment (HSX) which validated the the-

ory of QH experimentally[3]. Furthermore the existence of Quasi Axi-Symmetric. (QA)

stellarators was also shown[4, 5], where QA means that the dominant Fourier components

Bm,n are only of n = 0. Since then a number of QA stellarators have been designed including

NCSX[6], CHS-qa[7], ESTELL[8], and more recently, CFQS[9] and the new QA stellarator

by Henneberg et al.[10]. In particular, CFQS is currently being built in China. A reactor

concept based on an optimized QA configuration has also been designed[11]. Compared to

tokamak reactors, QA stellarators have advantages of steady state operation without exter-

nal current drive and potentially disruption free operation. The freedom of 3D geometry also

allows more external control over important properties such as MHD stability and plasma

transport while maintaining quasisymmetry[12].

In this work we have carried out an optimization study of QA stellarators with varied

elongation. It is known that, for tokamaks, the elongation has strong effects on MHD

stability[13] and plasma transport[14]. Thus it is important to investigate the dependence

of QA stellarators on elongation. The present work starts from a 3 field period aspect ratio

= 6 QA configuration obtained by Ku[15] who made a systematic study of the dependence of

modular coil geometry on aspect ratio, number of field periods, external rotational transform

and plasma-coil spacing. Our work here, on the other hand, is focused on the effects of

elongation. This work extends the previous work to a range of elongation at both zero

beta and finite beta with self-consistent bootstrap current. The elongation scan will be

carried out both at a fixed plasma volume and with volume proportional to elongation. The

latter scan is motivated by the fact that for axisymmetric tokamaks the plasma volume is

proportional to elongation at fixed major radius and minor radius. Our results demonstrate

that good QA stellarators exist with a range of elongation that are stable to external kink

2



modes.

The paper is organized as follows. Sec II and III present results of an elongation scan at

fixed volume and at volume proportional to elongation. Sec IV describes the calculation of

self-consistent bootstrap current. Sec V presents the results of MHD stability optimization.

Finally conclusions are given in Sec. VI.

II. ELONGATION SCAN TARGETING CONSTANT VOLUME

Here, we carry out an elongation scan starting from the 3 field period aspect ratio =

6 QA configuration obtained in the work by Ku and Boozer[15]. Elongation was not a

target function in the original work, but rather an output quantity with plasma volume

a constraint. We use the STELLOPT code[16] to do the optimization using the genetic

algorithm with differential evolution (GADE)[17, 18] at each value of elongation in the zero

beta case. In the optimization the sum of χ2
i = (f target

i −fi)2/σ2
i is minimized, where fi is the

ith variable chosen to be targeted, f target
i is its targeted value, and σi is a weight parameter.

We consider several critical physical properties listed in the following table.

TABLE I: The targets set in optimization varying elongation at zero beta

Target Position Targeted value inverse weight σ

Elongation κ ϕ = 0 plane 3.84–2.50 0.01

ϵ
3/2
eff s=(2,16,32,64,127)/128 0 0.001

Helicity s=(2,16,32,64,127)/128 0 0.05

Rotational transform ι s=(2,64,127)/128 (0.257,0.277,0.313) 0.001

Volume entire volume 444 m3 4

Aspect ratio toroidally averaged 6 0.1

Here, the elongation κ is defined by the shape of plasma boundary at the ϕ = 0 plane.

Specifically κ is the total height divided by the width at the mid-plane of the last closed flux

surface; ϵ
3/2
eff is the effective helical ripple calculated by the NEO code[19]; s is the normalized

toroidal flux; helicity is defined by the non-axisymmetric components of the magnetic field

strength in the Boozer Coordinate, including n=1-16 and m=0-32 Bm,n components. We

target each of non-axisymmetric component to zero with the same given weight in STEL-

LOPT code, which means targeting QA. The weights are chosen by trial and error to give

desirable results.
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The following figures show the evolution of one optimization calculation targeting elon-

gation to be κ = 3.64 (κ = 3.84 is the initial configuration, from [15]).

Fig.1(a) shows the evolution of the total χ2 and its components. We observe that the

total χ2 decreases to a constant value after approximately 100 iterations with χ2
i of the

neoclassical transport being the dominant component. Fig.1 (b), (c) and (d) show the

evolution of effective ripple (ϵ
3/2
eff ) profile, the iota profile and the flux surface shape. We

observe that the effective ripple decreases by a factor of two after optimization. The ι

profile is almost identical to the initial one. The plasma boundary shape at ϕ = 0 shows

a reduction of elongation to its target value of 3.64. Fig.1(e) plots the dominant Boozer

|Bnm| components as a function of normalized toroidal flux. It indicates that the optimized

configuration is indeed a QA stellarator since the axi-symmetric components are much larger

than the non-symmetric components. Fig.1(f) and 1(g) show the |B| patterns on the last

closed flux surface for the initial and final cases. The results indicate that the magnetic field

strength of the final case is nearly axi-symmetric and its symmetry is a little improved over

that of the initial case.

The above optimization process is repeated for each target elongation value. This is

done by decreasing the target value of elongation in each run by small increments. The

results of this elongation scan are shown in Fig.2 which plots the flux surfaces for several

representative values of elongation. Fig.3 shows the corresponding effective ripple (ϵ
3/2
eff )

profile for the different elongation cases. The results suggest that the neoclassical transport

can be kept at low levels when the elongation is reduced to lower values. It should be noted

that the effective ripple level of the original configuration is significantly higher because it

was optimized at finite plasma beta whereas here the zero beta case is considered. Table II

shows the data of major physical quantities for different elongation cases after optimization,

where Rmajor is the averaged major radius calculated from volume and cross section, aminor

is the averaged minor radius calculated from cross section area, ⟨B⟩ is the volume averaged

magnetic field strength, and B0 is the averaged magnetic field strength on axis. These

quantities are kept almost the same for different elongation cases. This is achieved by

targeting the aspect ratio, volume and the rotational transform to be the same as in the

original case. The edge toroidal flux is held fixed during the optimization, leading to a slight

variation in the magnetic field strength.

III. ELONGATION SCAN TARGETING VOLUME PROPORTIONAL TO κ

Here we carry out a different elongation scan at zero beta by targeting plasma volume

proportional to κ while other targets are kept the same as before. This is motivated by the
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FIG. 1: Progress of STELLOPT optimization using genetic algorithm with differential evolution

targeting κ = 3.64
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fact that for axisymmetric tokamak geometry the volume is proportional to κ.

Fig.4 and Fig.5 show the optimized outer boundary flux surfaces and the corresponding

effective ripple (ϵ
3/2
eff ) profiles for several values of elongation. We see that the neoclassical

transport levels are still kept at low levels.

There is a question on how to define κ values for 3D stellarators. In this work we use

κ at ϕ = 0 plane as a measure of elongation. On the other hand, we can also use the

averaged elongation, i.e., the elongation of the corresponding tokamak geometry defined by
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FIG. 3: Effective ripple variation when decreasing elongation

the n=0 components of the 3D stellarator geometry. Fig.6 plots the volume versus R0a
2
0⟨κ⟩

for stellarator and its corresponding tokamak.

R0, a0, ⟨κ⟩ is major radius, minor radius and elongation of the corresponding tokamak

respectively. We observe that the volume of the corresponding tokamak is proportional

to the product of R0a
2
0⟨κ⟩. The volume of stellarator is a little smaller than that of the

corresponding tokamak, but it is indeed proportional to R0a
2
0⟨κ⟩ approximately.
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TABLE II: Data of major physical quantities for different elongation cases after optimization

κ Aspect ratio Rmajor (m) aminor (m) volume (m3) ⟨B⟩ (T) B0 (T)

3.64 5.952 9.270 1.557 443.8 6.059 5.819

3.50 5.942 9.258 1.558 443.6 6.055 5.815

3.33 5.960 9.277 1.557 443.8 6.052 5.805

3.16 5.977 9.295 1.555 443.7 6.052 5.800

3.00 5.948 9.271 1.559 443.5 6.028 5.775

2.94 5.971 9.287 1.555 443.5 6.048 5.793

2.86 5.955 9.284 1.559 445.4 6.032 5.770

2.79 5.953 9.266 1.557 443.2 6.052 5.819

2.64 5.956 9.268 1.556 443.1 6.050 5.825

2.57 5.941 9.257 1.558 443.7 6.034 5.829

IV. BOOTSTRAP CURRENT AT FINITE PLASMA BETA

In quasisymmetric stellarators, bootstrap current[20] is important to consider, as in ax-

isymmetric tokamaks, since the physics of bootstrap current is the same in the Boozer

coordinates. It can significantly modify equilibrium properties through change in rotational

transform. Here we use the drift-kinetic code SFINCS[21] to calculate bootstrap current.

The SFINCS code solves the steady-state drift-kinetic equation for multiple species, allow-

ing arbitrary collisionality and magnetic geometry (subject to the assumption that magnetic

surfaces exist), and using the full linearized Fokker-Planck-Landau collision operator. For

calculations shown here, variation of the electrostatic potential on magnetic surfaces is ne-

glected. The SFINCS code is state of art for calculation of bootstrap current, however

it is relatively expensive computationally and cannot be used directly in the optimization

process. Thus here we use it iteratively in our optimization. Specifically we first calculate

the bootstrap current at the start of the optimization and then keep it fixed during the

optimization process using STELLOPT. After each optimization, we calculate bootstrap

again using the optimized configuration and then repeat the optimization process using the

new bootstrap current profile. This iterative process is repeated until the final configuration

converges. We will show that this iterative method works for the cases considered in this

work.

In our bootstrap current calculation, the pressure profile is given by P0(1 − s2)3, where
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FIG. 4: Boundary flux surface variation when decreasing elongation targeting volume proportional

to κ

P0 is a constant adjusted by STELLOPT to achieve the target total beta value (the volume

averaged), and s is the normalized toroidal flux. The ion and electron density profiles are

uniform at 4×1020m−3, and the temperature profiles of the two species have the same shape

as the pressure profile. Fig.7 plots the current profile and total bootstrap current calculated

by SFINCS for different β values for the lowest elongation κ = 2.57 case in Fig.2. We

observe that the dependence of the bootstrap current profile on the β value and pressure

profile are consistent with theoretical expectation [22]). It should be noted that the central

iota decreases as beta increases. This is due to the effect of beta on equilibrium.

J

Fig.8 shows the total bootstrap current as a function of κ, holding the plasma β = 0.05.

The curve for the constant volume series indicates that the total bootstrap current increases

a little when the elongation decreases. The other curve shows that the bootstrap current

is approximately proportional to elongation or volume. In tokamaks, the bootstrap current

density is given by ⟨J · B⟩ = −cRBϕdP/dψ or ⟨J · B⟩ = −c(Bϕ/Bp)dP/dr where c is a

constant coefficient, ψ is poloidal flux, Bp is poloidal magnetic field[22]. Thus the elongation

affects total bootstrap current through the area of cross section and the poloidal field. The

poloidal B field in stellarator is mainly given by external coils when bootstrap current is
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FIG. 5: Effective ripple variation when decreasing elongation targeting volume proportional to κ

small. In this limit, the bootstrap current is proportional to elongation since cross section

area or plasma volume is proportional to elongation. This explains why in FIG.8, the total

bootstrap current is roughly independent of kappa for the constant volume case, while for the

varying volume case, the total bootstrap current is almost proportional to kappa (volume).

V. MHD STABILITY OPTIMIZATION

MHD stability is an important property for all magnetic confinement devices. Strong

global MHD instabilities can seriously degrade the confinement of plasmas. Therefore it is

important to consider MHD stability in designing optimized stellarators.

We first consider the stability of MHD modes for the κ = 2.57 case with plasma beta

value of β = 0.05. The equilibrium profiles of pressure, current, and rotational transform

are shown in Fig.9.

We see that the rotational transform profile is very different from the zero beta case (see

Fig. 1(c)). Iota increases radially from about 0.1 at the magnetic axis to 0.75 at s = 0.75

and then decreases to 0.6 at the edge. Fig.10 shows the 5 dominant Fourier harmonics for

the n = 0 and n = 1 families calculated by the TERPSICHORE code[23, 24]. We note that,

for the n = 0 mode family, the largest component ((m,n)=(4,3)) peaks near the ι = 0.75

rational surface as expected. On the other hand, for the n = 1 mode family, the mode is

clearly external with the dominant (2, 1) component peaks at the edge. This is consistent
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FIG. 7: Bootstrap current for different β in the κ = 2.57 case plotted in Fig.2

with the fact that iota = 0.5 is the the nearest major rational surface in the vacuum. The

normalized eigenvalues for the two families (n = 0 and n = 1) are ω2 = −2.269× 10−2 and

−4.988 × 10−2 respectively. The magnitudes of the eigenvalue indicate that the modes are

strongly unstable. Thus these modes need to be stabilized via optimization.

As done above we keep the bootstrap current profile fixed as given in Fig.9(b) although the

plasma boundary will be changed as the optimization progresses due to the computational
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FIG. 9: Pressure, current, and rotational transform profiles for β = 0.05 in the κ = 2.57 case

plotted in Fig.2

expense of calculating the bootstrap current by SFINCS. We use a Levenberg-Marquardt

(L-M) algorithm[25, 26] with finite differences for derivative evaluation in our optimization

when targeting MHD stability. The total number of function evaluations required to achieve

a satisfactory optimization is significantly less for L-M than for GADE, and trapping in local

minima was not found to be a significant problem.

Fig.11(a) shows the evolution of key targets including kink stability in the STELLOPT

calculation for the above case. We observe that the unstable kink growth rate squared
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(a)n = 0 family (b)n=1 family

FIG. 10: 5 dominant mode structures for n = 0 and n = 1 families calculated by TERPSICHORE,

where Xi is the normalized amplitude of plasma displacement

value is reduced over 4 orders of magnitude, but the neoclassical transport level is increased

somewhat. The later iterations are mainly optimizing the neoclassical transport. Fig.11(d)

shows clearly that the negative curvature at the inner side of the flux surface at ϕ = 0

plane is increased, i.e., higher triangularity. This is consistent with our expectation that

the negative curvature improves the MHD stability[27]. Fig.12 shows that it requires larger

negative curvature for the higher plasma β cases.

Since the flux surfaces are changed after optimization, we need to re-calculate the boot-

strap current again to make it consistent with the new configuration, and check the MHD

stability again. If it is kink unstable, we need to do the optimization again. The iterative

process needs to be repeated a few times until the results are converged. Fig.13 shows evo-

lution of key targets during the iteration. Using the final case of Fig.11, we calculate its

self-consistent bootstrap current jbs1 (β = 0.05) and find that it is kink unstable. After the

2nd optimization, the final case with its self-consistent bootstrap current jbs2 is much more

stable (ω2 = 1.29× 10−5 and 1.64× 10−5 for n = 0 and n = 1 family respectively), and the

neoclassical transport level is also relatively low (Fig.13(b)).

VI. CONCLUSION

In this work a systematic optimization study has been carried out starting from a 3

field periods quasi-symmetric stellarator with aspect ratio of 6. A series of zero beta QA

configurations with varied elongation are generated using the stellarator optimization code

STELLOPT. For finite beta stellarator plasmas the bootstrap current is calculated self-

consistently using SFINCS code. The bootstrap current increases approximately linearly
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FIG. 11: Progress of kink optimization using STELLOPT with Levenberg-Marquardt algorithm

with finite difference derivative evaluation

with elongation for QA stellarators, if the volume is proportional to elongation. Good QA

stellarators are obtained with varied plasma beta, self-consistent bootstrap current, low

neoclassical transport and good kink stability. This study demonstrates that good QA

stellarators with varied elongation and plasma beta exist. Future work will explore larger

parameter space of quality QA stellarator configurations.

Acknowledgments

This work is supported by Zhejiang Universitys startup funding for one of the authors

(Guoyong Fu) and by the US Department of Energy under Contract Number DE-AC02-

14



8 9 10 11
R (m)

-3

-2

-1

0

1

2

3

Z
 (

m
)

=0, without opt

=0.05
=0.02

FIG. 12: Boundary flux surfaces after kink optimization for different plasma β

09CH11466.

[1] Boozer A.H., 1981 Plasma equilibrium with rational magnetic surfaces, Phys. Fluids 24 1999-

2003

[2] J. Nührenberg, and R.Zille, 1988 Quasi-helically symmetric toroidal stellarators, Physics Let-

ters A 129, Issue 2, 113-117

[3] Canik J.M., Anderson D.T., Anderson F.S.B., Likin K.M., Talmadge J.N. and Zhai K., 2007

Experimental demonstration of improved neoclassical transport with quasihelical symmetry,

Phys. Rev. Lett. 98 085002

[4] Nührenberg J., Lotz W. and Gori S., 1994 Quasi-axisymmetric tokamaks Theory of Fusion

Plasmas, Varenna, 1994(Bologna: Editrice Compositori) p 3;

[5] Garabedian P.R., 1996 Stellarators with the magnetic symmetry of a tokamak, Phys. Plasmas

3 2483

[6] B.E. Nelson, L.A. Berry, A.B. Brooks, M.J. Cole, J.C. Chrzanowski, H.-M. Fan, P.J. Fogarty,

15



0.2 0.4 0.6 0.8 1
Normalized Toroidal Flux

-10

-8

-6

-4

-2

0

d 
I bo

ot
s / 

d 
s 

(A
)

105

j
bs2

 of the 2nd optimized final case

j
bs1

 of the 1st optimized final case

j
bs0

 of the original case

(a)Bootstrap current profile

0 0.2 0.4 0.6 0.8 1
Normalized Toroidal Flux

0

2

4

6

8

ef
f

3/
2

10-3

the 2nd final optimized case with j
bs2

the 1st final optimized case with j
bs1

original case with jbs0

(b)Effective ripple variation

7 8 9 10 11 12
R (m)

-2

-1

0

1

2

Z
 (

m
)

original case
the 1st final
optimized case
the 2nd final
optimized case

(c)Boundary flux surfaces

variation

0 0.2 0.4 0.6 0.8 1
Normalized Toroidal Flux

0.1

0.2

0.3

0.4

0.5

0.6

0.7

original case with j
bs

0

1st optimized case with j
bs

1

2nd optimized case with j
bs

2

(d)Rotational transform variation

FIG. 13: Self consistent bootstrap current profiles of the optimized results, the effective ripple, the

corresponding boundary flux surfaces, and the rotational transform profiles

P.L. Goranson, P.J. Heitzenroeder, S.P. Hirshman et al, 2003 Design of the national compact

stellarator experiment (NCSX), Fusion Eng. Des. 66 169-174

[7] S. Okamura, K. Matsuoka, S. Nishimura, M. Isobe, I. Nomura, C. Suzuki, A. Shimizu, S.

Murakami, N. Nakajima, M. Yokoyama et al, 2001 Physics and engineering design of the low

aspect ratio quasi-axisymmetric stellarator CHS-qa, Nucl. Fusion 41 1865

[8] Drevlak M., Brochard F., Helander P., Kisslinger J., Mikhailov M., Nührenberg C.,

Nührenberg J. and Turkin Y., 2013 ESTELL: a quasi-toroidally symmetric stellarator Contrib,

Plasma Phys. 53 459-468

[9] Y. H. Xu, private communication, 2019

[10] S.A. Henneberg, M. Drevlak, C. Nhrenberg, C.D. Beidler, Y. Turkin, J. Loizu and P. Helander,

2019 Properties of a new quasi-axisymmetric configuration, Nucl. Fusion 59 026014

[11] L. P. Ku,P. R. Garabedian,J. Lyon,A. Turnbull,A. Grossman,T. K. Mau,M. Zarnstorff and

16



ARIES Team, 2008 Physics Design for ARIES-CS, FUSION SCIENCE AND TECHNOLOGY

54, 673

[12] D.A. Gates, A.H. Boozer, T. Brown, J. Breslau, D. Curreli, M. Landreman, S.A. Lazerson, J.

Lore, H. Mynick, G.H. Neilson et al, 2017 Recent advances in stellarator optimization, Nucl.

Fusion 57 126064

[13] A. M. M. Todd, J. Manickam, M. Okabayashi, M.S. Chance, R.C. Grimm, J.M. Greene, J.L.

Johnson, 1979 Dependence of ideal-MHD kink and ballooning modes on plasma shape and

profiles in tokamaks, Nucl. Fusion 19, 743

[14] J. E. Kinsey, R. E. Waltz, and J. Candy, 2007 The effect of plasma shaping on turbulent

transport and E×B shear quenching in nonlinear gyrokinetic simulations, Phys. Plasmas 14,

102306

[15] L.P. Ku and A.H. Boozer, 2010 Modular coils and plasma configurations for quasi-

axisymmetric stellarators, Nucl. Fusion 50 125005

[16] S.A. Lazerson STELLOPT https://www.osti.gov/doecode/biblio/12551-stellopt

[17] Melanie Mitchell, 1996 An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

[18] Storn R. Price K., 1997 Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization. 11: 341C359.

[19] V.V. Nemov and S.V. Kasilov, 1999 Evaluation of 1/n neoclassical transport in stellarators,

PHYSICS OF PLASMAS, 6, 4622

[20] R.J. Bickerton J. W. Connor and J.B. Taylor, 1971 Diffusion Driven Plasma Currents and

Bootstrap Tokamak, Nature Phys. Sci. 229 110

[21] M. Landreman, H. M. Smith, A. Molln, and P. Helander, 2014 Comparison of particle tra-

jectories and collision operators for collisional transport in nonaxisymmetric plasmas, Phys.

Plasmas 21 042503

[22] O. Sauter, C. Angioni, and Y. R. Lin-Liu, 1999 Neoclassical conductivity and bootstrap current

formulas for general axisymmetric equilibria and arbitrary collisionality regime, Physics of

Plasmas 6, 2834

[23] D.V Anderson, W.A. Cooper, R. Gruber, S. Merazzi and U. Schwenn, 1990 Methods for the

Efficient Calculation of the (MHD) Magnetohydrodynamic Stability Properties of Magneti-

cally Confined Fusion Plasmas, The International Journal of Supercomputing Applications,

17



4(3), 34C47.

[24] G.Y. Fu, W.A. Cooper, R. Gruber, U. Schwenn, and D.V. Anderson, 1992 Fully three-

dimensional ideal magnetohydrodynamic stability analysis of low-n modes and Mercier modes

in stellarators, Physics of Fluids B: Plasma Physics 4, 1401

[25] Kenneth Levenberg, 1944 A Method for the Solution of Certain Non-Linear Problems in Least

Squares, Quarterly of Applied Mathematics. 2: 164C168.

[26] Donald W. Marquardt, 1963 An Algorithm for Least-Squares Estimation of Nonlinear Param-

eters, SIAM Journal on Applied Mathematics. 11 (2): 431C441.

[27] Okabayashi M., Asakura N., and Bell R., 1989 Initial results of the PBX-M experiment.

International Atomic Energy Agency (IAEA): IAEA.

18


