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Abstract: Influences of shear flows on dynamic evolutions of the m/n=2/1 double 

tearing mode (DTM) are investigated using the three-dimensional, toroidal, and 

nonlinear resistive magnetohydrodynamic code CLT. It is found that weak shear flows 

can lead to the decoupling of tearing modes on the two resonant surfaces and reduce 

the linear growth rate of DTMs. When the two tearing modes grow up to a large 

amplitude at the nonlinear stage, they start to lock with each other. Consequently, 

DTMs with weak shear flows exhibit almost the same behavior as that without shear 

flows, i. e. the weak shear flow almost has no influence on the time and the amplitude 

of the pressure crash. It is also found that the linear growth rates of the modes can 

become even larger than that without shear flows when the shear flow exceeds a 

critical value due to the Kelvin-Helmholtz (KH)-like instability. The KH-like 

instability can broaden the spectrum of the modes and then form a broad region with 

stochastic magnetic fields. Therefore, strong shear flows might be even more 

destructive for the plasma confinement. 
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I. Introduction 

In tokamaks, the reversed magnetic shear in the central region is crucial for 

forming the internal transport barrier, increasing the plasma beta, and significantly 

improving the energy confinement.[1-3] Therefore, the reversed magnetic shear 

configuration is recognized as one of the advanced scenarios in tokamak 

operations.[4-6] However, such a system is subject to the double tearing modes 

(DTMs) since there exist two resonant surfaces with the same helicity. The linear 

growth rate of DTMs is 
1/3~ S −

, which is much faster than the single tearing mode 

(
3/5~ S −

), where S  is the Lundquist number. Besides, the nonlinear evolution of 

DTMs could lead to a significant reduction of the plasma pressure and degradation of 

the energy confinement during tokamak discharge.[7-9] Hence, it is necessary to 

understand the mechanism of DTMs, and develop effective methods to suppress 

DTMs.[10-27]  

The large growth rates of DTMs mainly result from the coupling between the two 

tearing modes on the neighboring resonant surfaces. One can expect that DTMs will 

develop much slower if the two tearing modes are decoupled. The methods to 

decouple DTMs are shear flows [14, 26, 28-30], diamagnetic effects [31], or 

modifications of the current profile by external current drive.[17, 32] As the neutral 

beam injection (NBI) can not only help to form a reversed shear configuration but 

also lead to strong shear flows [33-35], we should always consider influences of shear 

flows when studying dynamic evolution of DTMs.  

If the shear flow is weak, it leads to decoupling the tearing modes on the two 

resonant surfaces and then reducing the linear growth rate of DTMs from 1/3S − to 

3/5S − . When the shear flow is strong, the system can be unstable for the 

Kelvin-Helmholtz (KH)-like instability.[36, 37] However, it is still not clear whether 

shear flows could prevent the violent pressure crash. Therefore, in the present paper, 

we carry out a systematical study of DTM by using the three-dimensional, toroidal, 
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magnetohydrodynamic (MHD) code CLT. It is found that weak shear flows could 

decouple DTMs and then decrease their linear growth rates. However, due to the 

mode-locking effect, the two tearing modes can lock with each other at the nonlinear 

stage. After the modes become locked, the DTM with shear flows exhibits almost the 

same behavior as that without shear flows, i. e. the time and the amplitude of the 

pressure crash are nearly unaffected by the shear flow. It indicates that the weak shear 

flow only reduces the linear growth rate of the DTM, but it cannot prevent the violent 

pressure crash. If the shear flow exceeds a critical value, the linear growth rate of the 

DTM is even larger than that without shear flows. Although the two tearing modes 

cannot lock with each other, the strong shear flow can lead to the KH-like 

instability[36, 37] at the nonlinear stage, which drives instabilities with other 

helicities and form a vast region with the stochastic magnetic field. The spectrum of 

modes is broad, and the poloidal mode number of dominant modes is ~11m . It is 

found that the plasma viscosity becomes important when the shear flow reaches a 

critical value. With a sufficiently high viscosity, the magnetic islands can easily lock 

with each other at the nonlinear stage and vice versa.  

 

II. Numerical Model 

The compressible resistive MHD equations used in CLT[38] are given as follows: 

( ) [ ( )],D
t


 


= − + 


v   (1) 

||( ) ( ),
p

p p p p
t

 ⊥


= −  −   +  +  


v v  (2) 

( ) / ( ),p
t

 


= −  +  − +  


v
v v J B v    (3) 

,
t


= −



B
E   (4) 

,= −  +E v B J   (5) 

,= J B   (6) 



 4 / 21 

 

Where  , p, v , B , E , and J  are the plasma density, the plasma pressure, the fluid 

velocity, the magnetic field, the electric field and the current density, respectively. It 

should be noted that, instead of the classical 8-field MHD equations, we choose to use 

E as an intermediate value to solve the Faraday’s law. This method is helpful to keep 

0 =B  during the simulation.   is the ratio of specific heat of the plasma. All the 

variables are normalized as follows: / a →x x , / At t t→ , 00/  → ,

2

0 0/ ( / )p B p → , / Av →v v , 0/ B →B B , 0/ ( )Av B →E E , and 0 0/ ( / )B a →J J , 

where 0B , 00  and a  are the initial magnetic field, the plasma density at the 

magnetic axis, and the minor radius, respectively. 0 0 00/Av B  =  is the Alfvén 

speed, and /A At a v=  is the Alfvén time.  , D, ⊥ ,  , and   are the resistivity, 

the plasma diffusion coefficient, the perpendicular, and parallel thermal conductivity, 

and the viscosity, respectively. These parameters are normalized as follows: 

2

0/ ( / )Aa t  → , 2/ ( / )AD a t D→ , 2/ ( / )Aa t ⊥ ⊥→ , 
2/ ( / )Aa t → , and 

2/ ( / )Aa t → , respectively. 

 

Figure 1 Initial safety factor profile and pressure profile. The distance between the 
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two resonant surfaces with q=2 is 0.3r = . 

 

III. Simulation results 

  In the present paper, the parameters of TFTR[1, 7] are used, i. e., the major radius 

0 2.60R m= , the minor radius ( 0.94a m= ) for a circular cross-section geometry, the 

toroidal field 0 ~ 4.2B T , the electron density 
20 3~1.0 10en m . The normalized 

parameters are chosen to be 
61.0 10 −=  , 51 10 −=  , 65 10 −

⊥ =  , 2

|| 5 10 −=  and 

41 10D −=  . The grids used in the present paper are 256 32 256 ( , , )R Z  . The 

convergence of the code has been ensured by varying both the resolutions of time and 

space. The initial safety factor and pressure profiles are shown in Figure 1. The 

distance between two resonant surfaces with q=2 is 0.3r = . With these parameters, 

the DTM causes the core-crash sawtooth that significantly reduces the plasma 

pressure in the core region. The initial toroidal angular velocity  is assumed to be 

0
00.5* [1 tanh( )]

 



−
 =  −


,  (7) 

where 0 is the toroidal angular velocity at the magnetic axis,   is the normalized 

poloidal magnetic flux, 0 0.1759 =  is where the maximum flow shear is located, 

and 0.0761 =  is the width of the flow shear, respectively. The profiles of the 

shear flow with 0 0.006 =  is shown in Figure 2. The angular velocity at the inner 

and outer rational surfaces are 1 0.0056 = and 2 0.0001 = . The difference is 

1 2| | 0.0055 =  − = . Different from many previous studies, the shear flow here is 

self-consistently included in the equilibrium. As we discussed in our previous 

paper[39], the Tokamak equilibrium with toroidal flows could be solved through the 

QSOLVER code [40].  
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Figure 2 The profiles of the shear flow with 0 0.006 = . The difference of the 

rotation frequency between the two q=2 resonant surfaces is 0.0055= . 

 

 

Figure 3 Evolutions of the radial perturbed magnetic field rB with different toroidal 

angular velocities 0 0 = , 0 0.003 = , 0 0.006 = , and 0 0.009 = . 

 

A. Influence of weak shear flows  

  Since the width of the magnetic island can be estimated by 
1/2~ ( )rw B for 
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tearing modes ( 2m  ), rB  is used to reflect the development of the DTM. The 

evolutions of the radial perturbed magnetic field rB with different toroidal angular 

velocity 0 0 = , 0 0.003 = , 0 0.006 = , and 0 0.009 =  are shown in Figure 3. 

The two tearing modes always couple with each other and keep anti-phase without 

shear flows. While, with shear flows, the tearing modes are decoupled when their 

amplitudes are small. Due to the decoupling of the tearing modes, the two tearing 

modes become periodically in-phase and anti-phase during the linear growth, and the 

tearing modes experience the suppression and stimulation phases periodically, which 

leads to that the oscillation of the amplitudes of the DTMs. Therefore, the average 

growth rate decreases with increasing 0  when 0 0.009  , which is consistent 

with many previous studies.[14, 30] 

However, as shown in Figure 3, the amplitudes of the tearing modes stop 

oscillating when they enter into the nonlinear stage. The nonlinear evolutions of the 

modes are quite similar for the cases with or without the shear flow. It indicates that 

the decoupled modes gradually become coupled as they evolve into the nonlinear 

stage. The two tearing modes finally become fully coupled and locked each other 

when their amplitudes exceed the critical value. The Poincare plots for the case with 

0 0.006 =  at (a) t=2185.9, (b) t=2487.4, (c) t=2864.3, (d) t=3391.9, (e) t=6783.8, (f) 

t=7160.7, (g) t=7537.6, and (h) t=7914.5 are shown in Figure 4. With the shear flow, 

the magnetic islands on the inner resonant surface rotate much faster than the islands 

on the outer resonant surface. Figure 4a-4d present one cycle of the poloidal rotation 

of the inner islands, during which the two tearing modes evolve from anti-phase to 

in-phase (Figure 4a~4c), then to anti-phase (Figure 4d) at t=3391.9. When the 

magnetic islands are large enough, the two tearing modes strongly couple and become 

locked with each other. Then the phase difference (  ) between the two tearing 

modes remains   =  until the core pressure crash occurs. The evolutions of the 

phases of the two tearing modes ( in and out ) and the phase difference between them 

are shown in Figure 5. Figure 5 also indicates the decoupling of the tearing modes at 

the linear stage and the mode-locking at the nonlinear stage. The phase difference 

between the two tearing modes is   =  when the modes are locked with each 

other. 
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Figure 4 The Poincare plots for the case with 0 0.006 =  at (a) t=2185.9, (b) 
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t=2487.4, (c) t=2864.3, (d) t=3391.9, (e) t=6783.8, (f) t=7160.7, (g) t=7537.6, and (h) 

t=7914.5. (a)~(d) are a cycle, during which the magnetic islands on the two resonant 

surfaces are from anti-phase to in-phase and then to anti-phase. (e)-(f) clearly show 

that the ‘mode-locking’ occurs at the nonlinear stage of the DTM. 

 

 

Figure 5 The evolutions of the phases of the two tearing modes ( in  and out ) and the 

phase difference ( in out   = − ) between them. The moments in Figure 4 are also 

indicated by vertical dashed lines. 

 

 

Figure 6 Kinetic energy evolutions of different toroidal modes for the case with 
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0 0.006 = . 

 

 

Figure 7 Evolutions of the plasma pressure at the magnetic axis for (a) 0 0 =  and (b) 

0 0.006 = . 

 

 The time evolutions of the kinetic energy of different toroidal modes with 

0 0.006 =  are shown in Figure 6. It should be noted that, after the modes are locked, 

the behavior of the kinetic energy becomes almost the same as that without shear 

flows (the details could be seen from Ref. [41]), i. e. they both experience explosive 

growth before the pressure crash happens. It is because the two tearing modes 

strongly couple with each other when their amplitudes are sufficiently large and can 

overcome the decoupling effect of the shear flow. Thereafter, the dynamic evolutions 

of the DTM with or without shear flows are similar. As we know, the nonlinear 

evolution of the DTM can cause a violent pressure crash in the core region (i.e., the 

core-crash sawtooth[7]). The shear flow is supposed to be an effective method to 

suppress the DTM and control this kind of fast pressure crash. However, as shown in 
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Figure 7, the time scales of the pressure crashes are almost the same ( ~ 370c At ), and 

the on-axis plasma pressures are both reduced by 30% of their initial values. The 

profiles of the plasma pressure in the case with 0 0.006 =  (a) just before the 

pressure crash and (b) after the pressure are shown in Figure 8. Very similar to the 

case without shear flows, the hot region becomes narrow and elongated before the 

pressure crash, then a violent pressure crash occurs, and the pressure profiles become 

flattened in the core region. It indicates that the pressure crash at the magnetic axis is 

almost unaffected by the shear flow. In other words, the shear flow only affects the 

linear growth time of the tearing modes for the core crash sawtooth. When the tearing 

modes lock with each other, the nonlinear behavior of the DTM with shear flows will 

become almost the same as that without shear flows.  

 

Figure 8 The pressure profiles (a) just before the pressure crash and (b) after the 

pressure crash. 

 

B. Influence of strong shear flows 

In some experiments with unbalanced high-power NBI,[35] the shear flow can be 

as large as the sound speed ( / 2s Ac v =  , which is about 0.1 Av in the present 

paper). In the case in Section III. A, the shear flow is only 0 ~ 0.03 Av v , which is much 

lower than sc . In this section, we will show the dynamic evolution of the DTM with 

strong shear flows. 
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Figure 9 Evolutions of the radial perturbed magnetic field rB  with different 

toroidal angular velocities 0 0 = , 0 0.009 = , 0 0.012 = , 0 0.015 = , 

0 0.018 = , and 0 0.021 = . 

The evolutions of the perturbed radial magnetic perturbations with different 

toroidal angular velocities 0 0 = , 0 0.009 = , 0 0.012 = , 0 0.015 = , 

0 0.018 =  and 0 0.021 =  are shown in Figure 9. It is found that the growth rate 

increases with increasing 0  due to the K-H like instability when 0 0.009  .[30, 

36] Different from that with weak shear flows, the two tearing modes with strong 

shear flows cannot be locked with each other even the magnetic islands are large. The 

DTMs still experience accelerating development at the nonlinear stage. However, the 

acceleration here is different from that in Figure 3, which is resulted from 

mode-locking between the tearing modes on the two resonant surfaces.  

 The two tearing modes are unable to be locked with each other in these cases. 

Instead, the islands on the two resonant surfaces collide when the magnetic islands on 

two resonant surfaces grow up to sufficient large (i.e., 1 2w w r+   , where 1w , 2w , 

and r  are the width of the inner and outer islands, and the separation of two 
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resonant surfaces, respectively.), which can be seen from the Poincare plots of the 

magnetic field with 0 0.018 =  as shown in Figure 10. As we can see, the 

boundaries of the islands become unclear after the islands collide. Magnetic field lines 

begin to become stochastic due to overlap between the islands. As the mode further 

grows up, the stochastic magnetic field expands and eventually occupies the whole 

central region, except for the vicinity of the magnetic axis.  

 

Figure 10 The Poincare plots of the magnetic field with 0 0.018 = . The 

stochasticity also can also be reflected by the Fourier analysis of the mode structures. 

As shown in Figure 11, all the modes with different helicities are well developed and 

expanded into a broad region with 0 0.018 = (Figure 11a) while all the modes are 

basically located at their resonant surfaces without shear flows (Figure 11b). The 

energy spectrums at the same time with Figure 11 are shown in Figure 12. Although 

the amplitude of the mode m/n=2/1 is still the largest one, other higher helicity modes 

grow up to considerable amplitudes, which is significantly different from that without 
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shear flows. The broad energy spectrum and the dominant poloidal mode number 

around ~11m  are suggested to be associated with the KH-like instabilities. [36, 37] 

With many different helicities in the same region, the flux surfaces are destroyed, and 

the magnetic field becomes stochastic.  

 

Figure 11 The mode structures (a) 0 0.018 = and (b) 0 0 =  at 2940 At t= . 

 

 

Figure 12 Energy spectrums (a) 0 0.018 = and (b) 0 0 = at ~ 2940 At t . 
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C. Influence of viscosities 

As shown in the above subsection, the transition condition between the 

mode-locking and the stochastic magnetic field is about 0 0.009 = . Since the 

plasma viscosity could strongly influence the KH instability, we conduct systematic 

simulations to investigate the influence of the viscosity on the nonlinear evolution of 

the DTM with shear flows (Figure 13). With 0 0.009  , the two tearing modes on 

the two resonant surfaces can be locked with each other at the nonlinear stage. With 

0 0.012  , the magnetic islands on the two resonant surfaces collapses due to the 

collision, and the magnetic field in a broad region becomes stochastic. However, with 

0 0.012 = , the nonlinear evolutions of the DTM with different viscosity are 

significantly different. The modes become locked with each other for 
53 10 −=  ; for 

51 10 −  , the islands collide. The transition could also be seen from the nonlinear 

evolution of rB  (Figure 14). With 
53 10 −=  , the DTM experience an abrupt 

growth at the nonlinear stage (similar to the low shear flow cases), which is an 

evidence of the occurrence of mode-locking. With lower viscosities, no mode locking 

occurs. The energy spectrums at 6633 At t=  (a) 
63 10 −=   and (b) 

53 10 −=  are 

shown in Figure 15. For the low viscosity case, the islands collide, and the KH-like 

instability becomes dominant at the nonlinear stage. High-m modes gain much energy, 

and the energy spectrum becomes broad. Magnetic surfaces are destroyed, and the 

magnetic field becomes stochastic in that region. For the high viscosity case, the two 

tearing modes are locked with each other, and then experience explosive growth.  
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Figure 13 The nonlinear behaviors of the DTM with different 0 and  . 

 

Figure 14 Evolutions of rB  with different viscosities. 
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Figure 15 Energy spectra at =6633 At t (a) 
63 10 −=  and (b) 

53 10 −=  . 

 

IV. Discussion and conclusion 

A series of numerical studies of the influence of shear flows on the dynamic 

evolutions of the DTM is presented. It is found that weak shear flows can decouple 

the two tearing modes on the resonant surfaces. As a result, the linear growth rate of 

the DTM can be substantially reduced. However, it should be noted that the DTM is 

not fully suppressed, and the amplitude of the DTM slowly grows up. When the 

DTM's amplitude exceeds the critical value, the two tearing modes can overcome the 

weak shear flow and become locked. After that, the behavior of the DTM with weak 

shear flows becomes almost the same as that without shear flows. Although it can 

decrease the linear growth rate of the DTM, the weak shear flow has almost no 

influence on the amplitude and the time scale of the pressure crash. It indicates that 

the shear flow cannot prevent the violent pressure crash.  

It is also found that a strong shear flow can even increase the linear growth rate 

for a reversed magnetic shear system. When the shear flow is stronger than a critical 

value, the growth rate is even larger than that without shear flows. A KH-like 

instability can be excited by the strong shear flow, which can lead to a broad energy 



 18 / 21 

 

spectrum, cause the overlap of the magnetic islands, and then form a vast stochastic 

magnetic field region. The latter is also destructive for the plasma confinement. As a 

result, it should be careful to use a shear flow to suppress the DTM in Tokamaks. 

Besides, the influence of the viscosity on the nonlinear evolution of DTM is also 

investigated. It is found that the plasma viscosity becomes important when the shear 

flow is around a certain value. Around this value, the magnetic islands can be locked 

at the nonlinear stage with a sufficiently high viscosity; however, the magnetic field 

becomes stochastic in a broad region due to the islands collide with each other with a 

low viscosity.  
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