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1. Introduction

The future tokamak-based fusion power plants and experimental devices towards this

goal (e.g., the ITER [1]), are expected to operate at steady state with a substantial

non-inductive current fraction [2], which generally renders a reversed shear scenario

[3]. In this circumstance, the reversed shear Alfvén eigenmode (RSAE, also known as

Alfvén cascade) is frequently observed [4] as driven unstable by the energetic particles

(EPs) [5, 6, 7, 8] in present day tokamaks, and is expected to play significant roles

in future reactors [9], in transporting fusion alpha particles to tokamak edge [10],

which has a deleterious effects on plasma self-heating, and may damage the plasma

facing components [11]. RSAE is a branch of shear Alfvén wave (SAW) eigenmode

localized radially near the minimum of the safety factor q profile [12], which is denoted

as qmin. The lowest order RSAE frequency in the incompressible limit, ω ' k‖vA '
|n−m/qmin|vA/R, reflects the sensitive dependence on the instantaneous qmin value for

given toroidal/poloidal mode numbers n/m, and this feature can be used in q-profile

measurement, i.e., MHD spectroscopy [13, 6]. Here, k‖ is the wave number parallel to the

equilibrium magnetic field B, vA is the Alfvén speed, and R is the major radius. RSAEs

are typically dominated by a poloidal harmonic, with the radial width ∝
√
q/(r20q

′′) with

r0 being the radial location of qmin, and q′′ ≡ ∂2r q. Despite the fairly good understanding

of these linear physics, the nonlinear dynamics of RSAE still attracts recent research

interest, especially in view of the EP as well as thermal particle transport induced by

the associated electromagnetic field perturbations [14, 10, 15, 16]. The transport rate

is closely related with the perturbation amplitude [17, 18]; and in reactor relevant cases

with many SAWs simultaneously driven unstable by EPs, the EP orbit could become

chaotic and eventually lost in the presence of many low amplitude SAWs (threshold value

δB/B ∼ O(10−4)) [19, 20]. Thus, the assessment of the nonlinear RSAE saturation

mechanism and amplitude plays a crucial role in evaluating the operation scenario and

the EP confinement property.

In general, the channels of SAW nonlinear saturation can be classified into

two routes, namely, the wave-particle nonlinear interaction and wave-wave nonlinear

couplings [8, 21, 22, 23]. The former focuses on the perturbation to the resonant EP

phase space distribution function by finite amplitude SAWs [22, 23], and is widely

investigated by numerical simulations, as reviewed in Refs. [8, 24]. By contrast, the

latter is relatively less explored. Most of the previous analytical works consider the

toroidal Alfvén eigenmode (TAE) [25] as a paradigm case, including the saturation

via ion induced scattering [26, 27], nonlinear modification to the SAW continuum

structure [28, 29], the spontaneous generation of zero frequency zonal structures (ZFZS)

[30, 31, 32] as well as geodesic acoustic mode (GAM) [33, 34]. Since the RSAEs are

expected to be prevalent in future steady-state burning plasmas, the RSAE saturation

via wave-wave nonlinearity deserves special attention. In particular, the toroidally

symmetric zonal field structures [18], including the ZFZS, are well known to play

important roles in regulating drift wave turbulences [35, 36, 37, 38] including drift



3

Alfvén waves, and thus, leading to cross-scale couplings [39] and nonlinear saturation

via scattering to short radial wavelength regime (or shearing in some literatures). In

this work, spontaneous ZFZS excitation by RSAE modulational instability is analyzed

using nonlinear gyrokinetic theory.

As noted above, the spontaneous excitation of ZFZS by TAE is first discussed in

[30]. It is shown that under certain conditions, the zonal current (ZC) is preferentially

excited over the electrostatic zonal flow (ZF), with the branch ratio of ZF/ZC excitation

determined by various geometry effects, including the breaking of pure Alfvénic state

by toroidicity and neoclassical shielding of ZF [40]. In contrast to the TAE case, it

is shown in Ref. [41] that for beta-induced Alfvén eigenmode (BAE), the excitation

of ZF generally dominates, due to the |k‖vA/ω| � 1 ordering. For the case of RSAE

analyzed herein, its frequency is sensitively determined by the value of qmin and the

underlying values of toroidal/poloidal mode numbers n/m, and generally sweeps in-

between the typical BAE to TAE frequency ranges. It is shown that depending on the

specific plasma parameters including k‖, both ZC and ZF generation may dominate, and

the previous conclusions on TAE [30] and BAE [41] can be recovered as limiting cases

of the general nonlinear dispersion relation derived without assuming specific plasma

parameters.

We note that, several nonlinear processes, with comparable cross-sections, may be

comparably important in saturating AEs, as addressed in Ref. [42]. In particular, a

channel unique for RSAE saturation is proposed in this work. Due to the ZC and

the associated perturbed poloidal magnetic field generation, the q-profile is modulated,

which leads to the modification of the local SAW continuum in the vicinity of qmin,

and consequently RSAE saturation. The relevance of this channel on RSAE nonlinear

saturation is analyzed and evaluated.

This paper is arranged as follows. In Sec. 2, the theoretical model is given. In Sec.

3, the generally nonlinear equations describing RSAE evolution and ZFZS excitation

are derived. Sec. 4 is devoted to study the linear growth stage of the modulational

instability; and the nonlinear saturation of RSAE via ZFZS scattering is investigated in

Sec. 5. Finally, a brief conclusion and discussion is given in Sec. 6.

2. Theoretical model

The nonlinear evolution of this system is studied using the standard nonlinear

perturbation theory, considering a shifted circular tokamak equilibrium described by

a set of field-aligned flux coordinates (r, θ, ϕ). The perturbed fields are represented by

two field variables, namely, the electrostatic potential δφ and the parallel component

of vector potential δA‖, while the parallel magnetic field fluctuation δB‖ is suppressed,

consistent with β � 1 ordering of typical laboratory plasmas. Here, β is the ratio of

thermal to magnetic pressures. For convenience, δA‖ is replaced by δψ ≡ ωδA‖/(ck‖),

such that the ideal MHD limit, i.e., vanishing parallel electric field fluctuation δE‖ = 0

corresponds to simply δφ = δψ. In this work, it is assumed that the RSAE is
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excited by a source outside this nonlinear system, such as EPs, and the nonlinear

coupling is dominated by bulk plasma contribution. For the cases with EPs contributing

significantly to the nonlinear ZFZS generation [43, 44], interested readers may refer to

Refs. [31, 32] for more systematic discussion. To start with, we consider the two-field

coupled system which consists of a RSAE (subscript ‘R’) and ZFZS (subscript ‘Z’), i.e.,

δφ = δφR + δφZ with δφR = δφ0 + δφ0∗ . Here, δφ0 represents RSAE with positive real

frequency and δφ0∗ represents the counterpart with negative real frequency, of which

there may be a rich spectrum of different radial eigen-states.

Considering the reactor relevant parameter regime with nq � 1, the ballooning

mode representation [45] for RSAE is adopted,

δφ0 = A0e
i(nφ−m̂θ−ω0t)ei

∫
k̂r,0dr

∑
j

e−ijθΦ0 (x− j) + c.c..

Here, m = m̂+j with m̂ being the reference poloidal mode number, x ≡ nq−m̂, Φ0 is the

parallel mode structure with the typical radial extension comparable to distance between

neighboring mode rational surfaces, A0 is the mode envelope amplitude and k̂r,0 is the

radial envelope wavenumber accounting for the slowly varying radial structures. Note

that, RSAE is typically characterized by one dominant poloidal harmonic, while multiple

sub-dominant poloidal harmonics exist due to toroidicity. Furthermore,
∫
|Φ0|2dx = 1

is used as normalization condition.

Consequently, the ZFZS is expected to have a fine radial structure in addition to the

well-known meso-scale structure [38], as a result of the RSAE fine radial mode structure

highly localized around qmin. For ZFZS dominated by n = 0,m = 0 scalar potential

perturbation [37], we take

δφZ = AZe
i
∫
k̂Zdr−iωZt

∑
j

ΦZ (x− j) + c.c.,

with ΦZ accounting for the fine radial structure [41] due to nonlinear mode coupling and

AZ exp i
∫
k̂Zdr being the well-known meso-scale structure. This general representation

adopted here can be applied to recover the results obtained from linear growth stage of

the modulational instability, by separating RSAE into pump and upper/lower sidebands,

as often used in previous papers [37]; and is also recovered in Sec. 4, from the derived

general nonlinear equations.

The governing equations describing the nonlinear processes can be derived from

quasi-neutrality condition

n0e
2

Ti

(
1 +

Ti
Te

)
δφk =

∑
s

〈qJkδHk〉s , (1)

and nonlinear gyrokinetic vorticity equation derived from parallel Ampère’s law [8]

c2

4πω2
k

B
∂

∂l

k2⊥
B

∂

∂l
δψk +

e2

Ti

〈(
1− J2

k

)
F0

〉
δφk −

∑
s

〈
q

ωk
JkωdδHk

〉
= −i c

B0ωk

∑
k=k′+k′′

b̂ · k′′ × k′
[
c2

4π
k′′2⊥

∂lδψk′∂lδψk′′

ωk′ωk′′

+ 〈e (JkJk′ − Jk′′) δLk′δHk′′〉] . (2)
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Here, Jk ≡ J0(k⊥ρ) with J0 being the Bessel function of zero index accounting

for finite Larmor radius effects, ρ = v⊥/Ωc is the Larmor radius with Ωc being

the cyclotron frequency, F0 is the equilibrium particle distribution function, ωd =

(v2⊥ + 2v2‖)(kr sin θ + kθ cos θ)/(2ΩcR) is the magnetic drift frequency, l is the length

along the equilibrium magnetic field line, 〈· · ·〉 means velocity space integration,
∑

s is

the summation of different particle species with s = i, e representing ion and electron,

and δLk ≡ δφk − k‖v‖δψk/ωk. The three terms on the left hand side of Eq. (2) are,

respectively, the field line bending, inertial and curvature coupling terms, dominating

the linear SAW physics. The two terms on the right hand side of Eq. (2) correspond

to Maxwell (MX) and Reynolds stresses (RS) [46] that contribute to nonlinear mode

couplings as MX and RS do not cancel each other, with their contribution dominating

in the radially fast varying inertial layer [37], and
∑

k=k′+k′′ indicates the wavenumber

and frequency matching condition required for nonlinear mode coupling. δHk is

the nonadiabatic particle response, which can be derived from nonlinear gyrokinetic

equation [47]: (
−iωk + v‖∂l + iωd

)
δHk = −iωk

q

T
F0JkδLk

− c

B0

∑
k=k′+k′′

b̂ · k′′ × k′Jk′δLk′δHk′′ . (3)

For RSAE with |k‖ve| � |ωk| � |k‖vi|, |ωd|, the linear ion/electron responses can

be derived to the leading order as δHL
k,i = eF0Jkδφk/Ti and δHL

k,e = −eF0δψk/Te.

Furthermore, one can have, to the leading order, ideal MHD constraint is satisfied, i.e.,

δφR = δψR, by substituting the ion/electron responses of RSAE into quasi-neutrality

condition.

On the other hand, considering such a nonlinear system dominated by SAW

instabilities, we can also use the parallel component of the nonlinear ideal Ohm’s law

as an alternative to Eq. (1),

δE‖,k = −
∑

k=k′+k′′

b̂ · δuk′ × δBk′′/c, (4)

with δu being the E×B drift velocity. We note that Eq. (4) is equivalent to Eq. (1),

ignoring the high order O(k2⊥ρ
2
i ) corrections.

3. General nonlinear equations

In this section, the general nonlinear equations describing the self-consistent RSAE

evolution are derived, including the generation of ZFZS and the feedback modulation

of RSAE by ZFZS. Generally speaking, the nonlinear process can be divided into two

stages, i.e., linear growth stage and strongly nonlinear stage, by whether the modulation

to the pump wave is small. The governing equations derived in this section,without

separating RSAE into pump wave and its sidebands, are general, and can be used for

describing both stages as shown in later sections [48, 49].
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Considering the nonlinear coupling dominated by the radially fast varying inertial

region, one can obtain the equation describing the electrostatic ZF excitation from

surface averaged vorticity equation as

ωZχ̂ZδφZ = − i c
B
kθ

(
1−

k2‖,0v
2
A

ω2
0

)
(kr,0 − kr,0∗) |δφ0|2 . (5)

Here, χ̂Z = χZ/(k
2
Zρ

2
i ) ' 1.6q2ε−1/2 with χZ being the well-known neoclassical shielding

of ZFZS [40] and ε ≡ r/R being the inverse aspect ratio of the torus. One can note that,

(kr,0− kr,0∗)|δΦ0|2 ≡ [(k̂r,0− k̂r,0∗)− i(∂rlnΦ0− ∂rlnΦ0∗)]|δΦ0|2 being radial modulation

with (k̂r,0 − k̂r,0∗) denoting envelope modulation [30] and (∂rlnΦ0 − ∂rlnΦ0∗) denoting

parallel mode structure evolution [41], which gives the fine radial structure of ZFZS.

For RSAE typically dominated by one or two poloidal harmonics, (∂rlnΦ0 − ∂rlnΦ0∗)

is the dominant term, and determines the zonal structure radial wavenumber kZ =

−i(∂r ln Φ0 − ∂r ln Φ0∗), as addressed in Ref. [32].

The equation describing the electromagnetic ZC excitation can be derived from

Eq. (4), considering k‖,Z = 0 and noting δψZ ≡ ω0δA‖,Z/(ck‖,0) is defined using the

frequency and parallel wavenumber of RSAE, as

δψZ = − i c
B
kθ,0kZ

1

ω0

|δφ0|2 . (6)

In deriving Eq.(6), ideal MHD condition for RSAE (δφ0 = δψ0) is used, and ∂r ln δψZ =

∂r ln |δφ0|2 is noted.

One can also derive the corresponding equations describing RSAE from Eq. (4) as

δφ0 − δψ0 = − i c
B

kZkθ,0
ω0

δφ0 (δφZ − δψZ) , (7)

which describes the deviation from ideal MHD constraint due to nonlinear ZFZS

modulation. The other equation for RSAE can be derived from nonlinear vorticity

equation as

k2⊥,0

(
−
k2‖,0v

2
A

ω2
0

δψ0 + δφ0 −
ω2
G

ω2
0

δφ0

)

= −i c

Bω0

kZkθ,0
(
k2Z − k2θ,0

)
δφ0

(
δφZ −

k2‖,0v
2
A

ω2
0

δψZ

)
, (8)

with the term proportional to δφZ on the right hand side corresponding to RS

contribution and δψZ term corresponding to MX contribution. The third term on the

left hand side of Eq. (8) is the SAW continuum upshift due to geodesic curvature

induced compression, and ωG is the frequency of GAM [50].

Substituting Eq. (7) into Eq. (8), one then obtains the equation describing the

modulation of RSAE by ZFZS,

k2⊥,0E0δφ0 = − i c

Bω0

(
k2Z − k2θ,0 −

k2‖,0v
2
A

ω2
0

k2⊥,0

)
kZkθ,0δφ0 (δφZ − αδψZ) ,(9)
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with E0 being the RSAE dispersion relation, and α ≡ (k2‖,0v
2
A/ω

2
0)(−2k2θ,0)/(k

2
Z − k2θ,0 −

k2‖,0v
2
Ak

2
⊥,0/ω

2
0). Eq. (9) is general, and can be reduced to various limits depending on

different plasma parameters, through the value of α dependence on k‖,0, e.g., the mode

dynamics described by Eq. (9) is similar to the TAE case as (k2‖,0v
2
A/ω

2
0) ∼ O(1), and

|k‖,0| ' 1/(2qR), and thus α ' 1. On the other hand, the mode behavior gets close to

a BAE with k‖,0 ' 0, and thus α ' 0. For simplicity of investigation, the RSAE WKB

dispersion relation can be adopt here as E0 ' (1− k2‖,0v2A/ω2
0 − ω2

G/ω
2
0), while the radial

global dispersion relation [5] can be applied for more quantitative analysis.

Furthermore, subtracting Eq. (5) by α×Eq. (6), one can obtain,

δφZ − αδψZ = − i c
B
kZkθ,0

[
1− k2‖,0v2A/ω2

0

ωZχ̂ZkZ
(kr,0 − kr,0∗) +

α

ω0

]
|δφ0|2 ,(10)

which can be substituted into Eq. (9), and obtain the general equation describing the

self-modulation of RSAE, as

k2⊥,0E0δφ0 = −
( c
B
kZkθ,0

)2 1

ω0

(
k2Z − k2θ,0 −

k2‖0v
2
A

ω2
0

k2⊥0

)

×

[
1− k2‖,0v2A/ω2

0

ωZχ̂ZkZ
(kr,0 − kr,0∗) +

α

ω0

]
δφ0 |δφ0|2 . (11)

Both ZF and ZC generation by RSAE are systematically accounted for in Eq. (11)

on the same footing, with the first term in square brackets corresponds to the ZF

generation while the second term corresponds to the ZC. On the one hand, which one

is preferentially excited is shown in the Sec. 4. On the other hand, ZFZS generation

can lead to RSAE saturation by scattering to linearly stable radial eigen-states. The

nonlinear saturation level, can be determined by self-consistently solving Eq. (11) as a

nonlinear Schrodinger equation [49], while a rough estimation is given in, e.g., Ref. [33],

by separating the AE into a pump and its sidebands, and deriving the fixed point solution

of the coupled nonlinear equations. Since RSAE linear properties is very sensitive to

q-profile, the modulation of q-profile caused by the nonlinearly generated ZC may have

a great impact on RSAE nonlinear saturation. This is discussed in the Sec. 5.

4. ZFZS spontaneous excitation by RSAE

To investigate the linear growth stage of the modulational instability, we follow the

analysis of Ref. [30], and consider the fluctuation consists of a constant-amplitude

pump wave ΩP ≡ ΩP (ωP ,kP) and its upper and lower sidebands Ω± ≡ Ω±(ω±,k±) due

to the modulation of the ZFZS ΩZ ≡ ΩZ(ωZ ,kZ) [37]. Here, subscripts ‘P ’, ‘+’ and ‘−’

denote RSAE pump, upper and lower sidebands respectively, with δφ0 = δφP + δφ+,

δφ0∗ = δφP ∗ + δφ−, and

δφP = AP e
i(nφ−m̂θ−ωP t)

∑
j

e−ijθΦP (x− j) + c.c.,
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δφ± = A±e
±i(nφ−m̂θ−ωP t)ei(

∫
k̂Zdr−ωZt)

∑
j

e∓ijθ

{
ΦP (x− j)
ΦP ∗ (x− j)

}
+ c.c..

Then the general nonlinear Eqs. (5)-(8) can be reduced to equations describing δφZ ,

δφ+ and δφ− generation by the fixed amplitude pump RSAE, while the feedback of

ZFZS and RSAE sidebands to the pump wave is neglected, focusing on the initial stage

of the nonlinear process. Considering the frequency/wave number matching condition

(ω± = ±ωP + ωZ , k± = ±kP + kZ) imbedded in the above expressions, Eq. (5) can be

reduced to

ωZχ̂ZδφZ = − i c
B
kZkθ,P

(
1−

k2‖,Pv
2
A

ω2
P

)
(δφ+δφP ∗ − δφ−δφP ) , (12)

with (1 − k2‖,Pv
2
A/ω

2
P ) representing the competition of Reynolds and Maxwell stresses

to break the pure Alfvénic state [21, 30]. On the other hand, Eq. (6) describing ZC

excitation can be reduced to

δψZ = − i c
B
kθ,PkZ

1

ωP
(δφ+δφP ∗ + δφ−δφP ) . (13)

The nonlinear equation describing RSAE sidebands generation through the ZFZS

modulation to pump RSAE can be derived from Eq. (9) as

k2⊥,±E±δφ± = − i c

Bω±

(
k2Z − k2θ,P −

k2‖,Pv
2
A

ω2
P

k2⊥,±

)

× kZkθ,P

{
δφP
δφP ∗

}
(δφZ − αδψZ) . (14)

Eqs. (12)-(14), are equivalent to Eqs. (34)-(36) for TAE cases as derived in Ref. [32],

with the coefficient α generalized to include a broader parameter regime (α ' 1 for TAE

as discussed in Ref. [32]). Note that k2⊥,± = k2⊥,P +k2Z and k2⊥,+ is used in the derivation

later. Similarly, subtracting Eq. (12) by α×Eq. (13), one can obtain

δφZ − αδψZ = i
c

B
kZkθ,P

[(
1− k2‖,Pv2A/ω2

P

ωZχ̂Z
+

α

ωP

)
δφ+δφP ∗

−

(
1− k2‖,Pv2A/ω2

P

ωZχ̂Z
− α

ωP

)
δφ−δφP

]
. (15)

The modulational instability dispersion relation can then be derived by substituting

δφ± obtained from Eq. (14) into (15), as

1 = − F̂ |δφP |2
[(

1− k2‖,Pv2A/ω2
P

ωZχ̂Z
+

α

ωP

)
1

E+

−

(
1− k2‖,Pv2A/ω2

P

ωZχ̂Z
− α

ωP

)
1

E−

]
, (16)

with F̂ = (ckZkθ,P/B)2(−k2Z + k2θ,P + k2‖,Pv
2
Ak

2
⊥,+/ω

2
P )/(ωPk

2
⊥,+) being a nonlinear

coupling coefficient. Furthermore, considering RSAE sidebands still obey the dispersion
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relation of RSAE by E± = E0(ωZ ± ωP , kZ), one can expand E± along the RSAE

characteristics, as E± ' (∂E0/∂ω0)(±ωZ − ∆) with ∆ ≡ −k2Z(∂2E0/∂k
2
r)/(2∂E0/∂ω0)

being the frequency mismatch, describing the frequency shift of RSAE sidebands from

the pump RSAE dispersion relation due to the ZFZS modulation. Denoting γ ≡ −iωZ
and noting ω± ' ±ωP , the modulational instability dispersion relation can be shown as

γ2 = −∆2 +
2F̂ |δφP |2

∂E0/∂ω0

(
1− k2‖,Pv2A/ω2

0

χ̂Z
+

α

ωP
∆

)
. (17)

Here, the first term on the right side of Eq. (17) is the threshold condition due to

frequency mismatch and the second term represents the nonlinear drive. Thus, the

ZFZS can be spontaneously excited when the nonlinear drive overcomes the threshold

condition due to frequency mismatch, as the RSAE amplitude is large enough, or

the nonlinear coupling is strong enough, as we address in the following discussion.

Furthermore, the first term in brackets corresponds to ZF contribution to the nonlinear

coupling, and the second term corresponds to ZC. For ZF contribution, there are two

restrictions due to, first, the partial cancelation of RS and MX with the ‘residual’ drive

due to deviation from ideal MHD limit due to plasma nonuniformity (reversed q-profile

here) that breaks the pure Alfvénic state [21, 5], and second, the neoclassical shielding

of ZF as shown by the χ̂Z in the denominator, with χ̂Z ∼ q2/ε, which is typically much

larger than unity [40, 8].

For ZC contribution, there are also two important factors that crucially determine

the nonlinear process, with the first being the sign of ∆, which is typically determined by

specific plasma parameters. The ZC term is a driving term for ∆ > 0; while for ∆ < 0,

the ZC term becomes a damping term for this nonlinear process; and then the condition

for modulational instability becomes very stringent, with additional requirement for the

ZF term being dominant over the ZC term, which is not easy to satisfy due to the

two restrictions as addressed in the paragraph above. The other important factor is

the value of α. As noted before, if RSAE localizes near the rational surface, α ' 0

because of k‖ ' 0, meaning ZC generation is very weak and is similar to BAE case

investigated in Ref. [41]; on the other hand, if RSAE localizes in the middle of two

neighboring rational surfaces, α ' 1, and this case is similar to the TAE case [30] with

ZC generation preferred. So for RSAE, with k‖ and its frequency determined by qmin

and the corresponding mode numbers, both ZF and ZC generation could be dominant,

depending on the specific plasma parameters, and should be investigated case by case.

5. Nonlinear RSAE saturation

In strongly nonlinear stage, the feedback of ZFZS and RSAE sidebands to the pump

wave can not be neglected anymore, as the sideband amplitudes become comparable to

that of the pump wave. It is indicated in Eq. (11) that ZFZS can play self-regulatory

roles on RSAE nonlinear evolution by scattering RSAE into short radial wavelength

stable domains, which may lead to RSAE saturation. The saturation level, can be
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derived from the coupled pump wave and sidebands equations, as is shown in, e.g., Ref.

[51]. In addition, another related channel unique for RSAE nonlinear saturation may

exist, due to the modulation to SAW continuum [28, 29] by the nonlinearly generated

ZFZS (among which ZC playing a dominant role), considering the sensitive dependence

of RSAE on SAW continuum accumulational point (for a visualization of RSAE physics

dependence on qmin, interested readers may refer to Ref. [14] and Fig. 3 therein). The

nonlinear generated ZC is a toroidal current sharply localized around qmin, which can

generate a perturbed poloidal magnetic field and further modulate q-profile and thus

the SAW continuum near qmin. Thus, one can reasonable speculate that ZC plays an

important role in RSAE saturation by modifying the equilibrium continuum, similar to

the mechanism investigated in Ref. [28] and Ref. [29] for TAE.

Here, in consistency with the above speculation on the crucial role played by ZC, we

consider a simplified case that ZC generation is dominant. This assumption is natural for

scenarios with (k2‖,0v
2
A/ω

2
0) ∼ O(1), however, may also be important for other parameter

regimes for the reasons addressed above. Thus, Eq. (11) can be simplified as

E0δφ0 = 2

(
c

Bω0

kZkθ,0

)2

δφ0 |δφ0|2 . (18)

Taking a two scale analysis by assuming ωR = ω0 + i∂τ , and expanding E0 '
(∂E0/∂ω0)(i∂τ − iγLR−∆) with ∆ being the nonlinearity induced frequency shift and γLR
is the linear RSAE growth rate §, Eq. (18) becomes[

i∂τ − iγLR −∆− 2

(
c

Bω0

kZkθ,0

)2 |δφ0|2

∂E0/∂ω0

]
δφ0 = 0. (19)

Eq. (19) describes the RSAE nonlinear evolution due to, scattering to different

radial eigen-state (denoted by ∆) with different linear growth/damping rates (γLR), and

nonlinear self-modulation by ZC generation, and the saturation level can be estimated

by balancing the frequency shift (Max (|γLR|, |∆|)) and the nonlinear RSAE modulation

by ZC, and one has

|δφ0|2 =
∂2E0

∂k2r

(
Bω0

2ckθ,0

)2

. (20)

Eq. (20) describes the RSAE saturation level due to scattering by self-generated ZC

to neighboring (linearly more stable) radial eigen-states, assuming ∆ � γLR. Cases

for ∆ � γLR can be evaluated similarly. The RSAE saturation level can be estimated

by substituting typical parameters into the expression. Furthermore, Eq. (20) can be

substituted into Eq. (6), and the saturation level of the perturbed poloidal magnetic

field δBθ can be estimated as

δBθ ∼
B0k‖,0k

2
Z

4kθ,0

∂2E0

∂k2r

∣∣∣∣
kr=0

, (21)

§ Note the linear RSAE growth/damping rate here, which is not included in Eq. (17) assuming RSAE

sidebands damping rates are typically smaller than frequency mismatch.
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resulting in a modulation of local qmin by

δq ∼ − qmin

B0k‖,0k
2
Z

4Bθkθ,0

∂2E0

∂k2r

∣∣∣∣
kr=0

. (22)

In deriving Eqs. (21) and (22), we have noted δψ = ωδA‖/(ck‖) and δB = ∇× δA‖b.

Typical parameters can be adopted, i.e., qmin ∼ O(1), B0/Bθ ∼ qR/a, k‖ ∼ 1/(qR),

kθ,0ρd ∼ O(1) with ρd being the drift orbit radius and

k2Z
∂2E0

∂k2r

∣∣∣∣
kr=0

∼ 4∆

ω
, (23)

which can be reasonably assumed as ∼ O(0.1). Thus, one can roughly estimate that

δq/q ∼ O(10−3). Noting that the modification to local RSAE continuum frequency is

∼ O(nδqvA/(qR)), and that for reactor burning plasma with ρd/a ∼ O(10−2), most

unstable RSAEs are characterized by n & O(10) [9], the modification to local SAW

continuum is comparable to the RSAE linear growth rate γLR or frequency differences

between different radial eigen-states (∼ ∆). Thus, one expects that the ZC induced

SAW continuum modification in the vicinity of qmin, plays an important role in RSAE

nonlinear saturation, though the self-consistent study analogous to Refs. [28, 29] is

not presented. The systematic investigation of RSAE saturation due to nonlinear

modification of SAW continuum and the resulting enhanced continuum damping, will

be presented in a separate publication.

6. Conclusion and Discussion

The general equations describing RSAE self-modulation via nonlinear excitation of ZFZS

are derived using gyrokinetic theory, which is then applied to study the spontaneous

ZFZS excitation via modulational instability as well as RSAE nonlinear saturation due

to scattering to more stable radial eigen-states. It is found that, both ZF and ZC

can be dominant in the spontaneous excitation by RSAE, depending on the specific

plasma parameters, especially qmin that determines the RSAE parallel wavenumber and

frequency. The obtained general modulational instability dispersion relation for ZFZS

excitation by RSAE, Eq. (17), can recover the results of TAE [30] and BAE [41] in the

proper limits, i.e., by taking k‖vA/ω → 1 and 0, respectively. The properties of ZFZS

generation by RSAE, noting that the typical RSAE parallel wavenumber and frequency

are in between those of TAE and BAE, can be understood based on the knowledge

obtained from TAE [30] and BAE [41].

An interesting step forward is, the saturation level of RSAE is qualitatively

estimated by balancing the nonlinear scattering by ZFZS with the frequency differences

between different radial eigen-states (∼ ∆), assuming ZC playing a dominant role in

the RSAE scattering. The corresponding ZC saturation level as well as the modification

to local qmin, are also estimated. It is found that, the resulting modification to local

SAW continuum accumulational point frequency, can be at least, comparable to the

RSAE linear growth rate or frequency mismatch between different radial eigen-states
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for burning plasma scenarios with most unstable RSAEs characterized by n & O(10)

[9]. Thus, the modification of local SAW continuum by ZC is expected to contribute

significantly to RSAE saturation [28, 29].

The above estimation based on Eq. (18), assumes dominant ZC generation by

taking |k‖vA/ω| ∼ 1, is valid for other parameter regimes due to the weak coupling

coefficients of ZF generation, except for the cases that qmin is localized very close

to a low-order rational surface, such that the RSAE properties is close to BAE with

predominantly ZF generation [41]. The logic underlying the reasoning presented in Sec.

5 is that, the RSAE and ZFZS saturation level are estimated without accounting for

the modification to SAW continuum, which is then used to estimate the modification

to SAW continuum by the saturated ZC, and found that the modification to SAW

continuum could be comparable or even more important than the ZFZS shearing.

Thus, the obtained results indicate that, the modification to SAW continuum, will start

to influence the RSAE nonlinear evolution, before it saturates due to self-modulation

via ZFZS generation. Our work thus indicates that multiple processes may contribute

comparably to the RSAE saturation, and should be accounted for on the same footing,

based on the solid understanding of each individual process, to properly assess the

saturation and thus EP transport by RSAE. This is of particular importance since

RSAEs are expected to be strongly excited by core-localized fusion alphas in future

reactors characterized by the advanced reversed shear scenarios.

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant

No. 2017YFE0301900 and the National Science Foundation of China under grant No.

11875233. The authors acknowledge Prof. Liu Chen (ZJU&UCI) and Dr. Fulvio Zonca

(ENEA, Itally) for fruitful discussions.

Data Availability

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

References

[1] Tomabechi K, Gilleland J, Sokolov Y, Toschi R and the ITER Team 1991 Nuclear Fusion 31 1135

[2] Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M,

Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C, Vdovin V,

Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi

N, Imbeaux F, Murakami M, Polevoi A and John H S 2007 Nuclear Fusion 47 S285

[3] Huang J, Garofalo A, Qian J, Gong X, Ding S, Varela J, Chen J, Guo W, Li K, Wu M, Pan C,

Ren Q, Zhang B, Lao L, Holcomb C, McClenaghan J, Weisberg D, Chan V, Hyatt A, Hu W,

Li G, Ferron J, McKee G, Pinsker R, Rhodes T, Staebler G, Spong D and Yan Z 2020 Nuclear

Fusion 60 126007



13

[4] Sharapov S E, Testa D, Alper B, Borba D N, Fasoli A, Hawkes N C, Heeter R F, Mantsinen M J

and Hellermann M G V 2001 Physics Letters A 289 127

[5] Zonca F, Briguglio S, Chen L, Dettrick S, Fogaccia G, Testa D and Vlad G 2002 Physics of Plasmas

9 4939–4956

[6] Chen W, Yu L, Liu Y, Ding X, Xie H, Zhu J, Yu L, Ji X, Li J, Li Y, Yu D, Shi Z, Song X, Cao J,

Song S, Dong Y, Zhong W, Jiang M, Cui Z, Huang Y, Zhou Y, Dong J, Xu M, Xia F, Yan L,

Yang Q, Duan X and the HL-2A Team 2014 Nuclear Fusion 54 104002

[7] Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink

W, Jaun A, Konovalov S, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D,

Tobita K, Todo Y, Vlad G and Zonca F 2007 Nuclear Fusion 47 S264

[8] Chen L and Zonca F 2016 Review of Modern Physics 88 015008

[9] Wang T, Qiu Z, Zonca F, Briguglio S, Fogaccia G, Vlad G and Wang X 2018 Physics of Plasmas

25 062509

[10] Wang T, Wang X, Briguglio S, Qiu Z, Vlad G and Zonca F 2019 Physics of Plasmas 26 012504

[11] Ding R, Pitts R, Borodin D, Carpentier S, Ding F, Gong X, Guo H, Kirschner A, Kocan M, Li J,

Luo G N, Mao H, Qian J, Stangeby P, Wampler W, Wang H and Wang W 2015 Nuclear Fusion

55 023013

[12] Sharapov S E, Alper B, Berk H L, Borba D N, Breizman B N, Challis C D, Fasoli A, Hawkes

N C, Hender T C, Mailloux J, Pinches S D, Testa D and work programme E J 2002 Physics of

Plasmas 9 2027

[13] Fasoli A, Testa D, Sharapov S, Berk H L, Breizman B, Gondhalekar A, Heeter R F, Mantsinen

M and contributors to the EFDA-JET Workprogramme 2002 Plasma Physics and Controlled

Fusion 44 B159–B172

[14] Wang T, Qiu Z, Zonca F, Briguglio S and Vlad G 2020 Nuclear Fusion 60 126032

[15] Shi P, Qiu Z, Chen W, Wang Z, Shi Z, Yu L, Yang Z, Zhong W, Jiang M, Ji X, Yang Q, Xu M

and Duan X 2020 Nuclear Fusion 60 064001

[16] Wei S, Wang Y, Shi P, Chen W, Chen N and Qiu Z 2021 Chinese Physics Letters 38 035201

[17] Chen L 1999 Journal of Geophysical Research: Space Physics 104 2421 ISSN 2156-2202

[18] Zonca F, Chen L, Falessi M V and Qiu Z 2021 Journal of Physics: Conference Series 1785 012005

[19] White R B, Gorelenkov N, Heidbrink W W and Zeeland M A V 2010 Physics of Plasmas 17

056107

[20] White R B, Gorelenkov N, Heidbrink W W and Zeeland M A V 2010 Plasma Physics and Controlled

Fusion 52 045012

[21] Chen L and Zonca F 2013 Physics of Plasmas 20 055402

[22] Zonca F, Chen L, Briguglio S, Fogaccia G, Vlad G and Wang X 2015 New Journal of Physics 17

013052

[23] Berk H L and Breizman B N 1990 Physics of Fluids B 2 2246

[24] Lauber P 2013 Physics Reports 533 33 – 68 ISSN 0370-1573

[25] Cheng C, Chen L and Chance M 1985 Ann. Phys. 161 21

[26] Hahm T S and Chen L 1995 Phys. Rev. Lett. 74(2) 266

[27] Qiu Z, Chen L and Zonca F 2019 Nuclear Fusion 59 066024

[28] Zonca F, Romanelli F, Vlad G and Kar C 1995 Phys. Rev. Lett. 74 698

[29] Chen L, Zonca F, Santoro R and Hu G 1998 Plasma physics and controlled fusion 40 1823

[30] Chen L and Zonca F 2012 Phys. Rev. Lett. 109(14) 145002

[31] Qiu Z, Chen L and Zonca F 2016 Physics of Plasmas 23 090702

[32] Qiu Z, Chen L and Zonca F 2017 Nuclear Fusion 57 056017

[33] Qiu Z, Chen L, Zonca F and Chen W 2018 Phys. Rev. Lett. 120 135001

[34] Qiu Z, Chen L, Zonca F and Chen W 2019 Nuclear Fusion 59 066031

[35] Hahm T S, Beer M A, Lin Z, Hammett G W, Lee W W and Tang W M 1999 Physics of Plasmas

6 922

[36] Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998 Science 281 1835–1837



14

[37] Chen L, Lin Z and White R 2000 Physics of Plasmas 7 3129–3132

[38] Diamond P H, Itoh S I, Itoh K and Hahm T S 2005 Plasma Physics and Controlled Fusion 47

R35

[39] Zonca F, Chen L, Briguglio S, Fogaccia G, Milovanov A V, Qiu Z, Vlad G and Wang X 2015

Plasma Physics and Controlled Fusion 57 014024

[40] Rosenbluth M N and Hinton F L 1998 Phys. Rev. Lett. 80(4) 724–727

[41] Qiu Z, Chen L and Zonca F 2016 Nuclear Fusion 56 106013

[42] Qiu Z, Chen L, Zonca F and Chen W 2018 Nonlinear decay and plasma heating by toroidal alfvén

eigenmodes (Ahmedabad, India)

[43] Todo Y, Berk H and Breizman B 2010 Nuclear Fusion 50 084016

[44] Biancalani A, Bottino A, Lauber P, Mishchenko A and Vannini F 2020 Submitted to Journal of

Plasma Physics

[45] Connor J, Hastie R and Taylor J 1978 Phys. Rev. Lett. 40 396

[46] Chen L, Lin Z, White R B and Zonca F 2001 Nuclear fusion 41 747

[47] Frieman E A and Chen L 1982 Physics of Fluids 25 502–508

[48] Guo Z, Chen L and Zonca F 2009 Phys. Rev. Lett. 103(5) 055002

[49] Chen N, Wei S, Wei G and Qiu Z 2021 submitted to Plasma Physics and Controlled Fusion

[50] Qiu Z, Chen L and Zonca F 2009 Plasma Physics and Controlled Fusion 51 012001

[51] Zonca F and Chen L 2008 Europhys. Lett. 83 35001


	Introduction
	Theoretical model
	General nonlinear equations
	ZFZS spontaneous excitation by RSAE
	Nonlinear RSAE saturation
	Conclusion and Discussion

