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Dispersion relations from the Darwin (a.k.a., magnetoinductive or magnetostatic) model are given
and compared with those of the full electromagnetic model. Analytical and numerical solutions show
that the errors from the Darwin approximation can be large even for low-frequency waves with phase
velocity close to or larger than the speed of light. Besides missing two wave branches associated
mainly with the electron dynamics, in the Darwin model the coupling branch of the electrons and
ions is modified to become a new artificial branch that incorrectly represents the coupling dynamics
of the electrons and ions.

I. INTRODUCTION

The Darwin (a.k.a., magnetoinductive or magneto-
static) model, which originated from a second order La-
grangian in terms of v/c (v is the velocity of a charged
particle and c is the speed of light) for charged particle
motion [2], is widely used for low-frequency (nonradiative
limit) plasma simulations. Application of this model to
plasma simulations was theoretically discussed by Kauf-
man and Rostler[6]. The widely used particle-in-cell
(PIC) simulation in the framework of this model for both
1D and 2D was developed in Refs.[1, 9] and can be found
in the review papers [3, 5] or textbook [13]. New analyt-
ical investigations and applications of the Darwin model
can be found in, e.g., Refs.[7, 8]. Vlasov-Darwin codes
have also been proposed more recently (see e.g.,[10]).

It is known that the high-frequency electromagnetic
radiations are neglected in Darwin approximation. This
is also why Darwin model is useful for simulating low-
frequency phenomena, because that the time step needs
not to be small to resolve the high-frequency electromag-
netic waves. However, that how this approximation af-
fects the low-frequency waves has not been understood
clearly. Most existing papers focused on the simulation
aspects. Few carefully checked the quantitative differ-
ences of the results between the Darwin approximation
and the full electromagnetic (EM) model. Busnardo-
Neto et al [1] used a simplified dispersion relation [4]
under the cold plasma assumption to benchmark. The
properties of the Darwin model dispersion relations were
discussed in Refs.[6, 13].

In this work, we give the limits of validity of the Dar-
win model by carefully comparing the dispersion relations
from the Darwin model and the full EM model.
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II. BASIC EQUATIONS

All field variables are divided into two parts in the
Darwin model [1]: the transverse (T, divergence free)
part and the longitudinal (L, curl free) part.

E = EL + ET ,∇ ·ET = 0,∇×EL = 0,
B = BT ,∇ ·BT = 0,
J = JL + JT ,∇ · JT = 0,∇× JL = 0. (1)

The Maxwellian equations are,

∇ ·EL = ρ/ε0,
∇ ·B = 0,

∇×ET = −∂B/∂t (or, ∇×E = −∂B/∂t),
∇×B = µ0J + µ0ε0∂EL/∂t + µ0ε0∂ET /∂t︸ ︷︷ ︸

dropped in Darwin model

.(2)

For the PIC simulation, the governing equations are as
follows

∇ ·EL = ρ/ε0,
∇2B = −µ0∇× J ,
∇2ET = µ0∂J/∂t + µ0ε0∂

2EL/∂t2. (3)

III. COLD PLASMA DISPERSION RELATION

For simplicity, we study the cold plasma dispersion re-
lation firstly. Without loss of generality, we assume the
external magnetic field B0 = (0, 0, B0) and the wavevec-
tor k = (k sin θ, 0, k cos θ) and obtain

D =




S − n′2 cos2 θ −iD n′2 sin θ cos θ
iD S − n′2 0

n′2 sin θ cos θ 0 P − n′2 sin2 θ


 , (4)

where [11]

S = 1−
∑

s

ω2
ps

ω2 − ω2
cs

, (5)

D =
∑

s

ωcsω
2
ps

ω(ω2 − ω2
cs)

, (6)

P = 1−
∑

s

ω2
ps

ω2
, (7)
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ωcs = esB0/ms (ee = −e), ω2
ps = ns0e

2
s/ε0ms. The

dispersion relation is then

det[D(ω, k)] = 0. (8)

The index of the refraction is n = ck/ω, with c =
1/
√

µ0ε0 the speed of light. In Eq.(4), for the traditional
EM model, n′2 = n2. For the Darwin model, it becomes
n′2 = n2 + 1. This replacement happens not only for
high-frequency waves but also for low-frequency waves.

With an assumption of a single ion species (s = e, i),
Eq.(8) for traditional EM model can be written to (see
also Ref.[12])

c10ω
10 − c8ω

8 + c6ω
6 − c4ω

4 + c2ω
2 − c0 = 0, (9)

where

c0 = c4k4ω4
ceω

4
ciω

2
pcos2θ,

c2 = c4k4[
ω2

p(ω2
ce + ω2

ci−ωciωce)cos2θ + ωciωce(ω2
p + ωciωce)

]

+c2k2ω2
pωciωce(ω2

p + ωciωce)(1 + cos2θ),
c4 = c4k4(ω2

ce + ω2
ci + ω2

p) + 2c2k2(ω2
p + ωciωce)

2

+c2k2ω2
p(ω2

ce + ω2
ci−ωciωce)(1 + cos2θ)

+ω2
p(ω2

p + ωciωce)2,
c6 = c4k4 + (2c2k2+ω2

p)(ω2
ce + ω2

ci + 2ω2
p)

+(ω2
p + ωciωce)2,

c8 =
(
2c2k2 + ω2

ce + ω2
ci + 3ω2

p

)
,

c10 = 1. (10)

Here, ωce = |ωce| and ω2
p = ω2

pe + ω2
pi. Eq.(9) is a fifth

order equation for ω2, which has five branches of solu-
tions. This equation has also been verified by a general
magnetized multi-fluid plasma dispersion relation solver
PDRF[14].

For the Darwin model, the dispersion relation is

c6ω
6 − c4ω

4 + c2ω
2 − c0 = 0, (11)

where

c0 = c4k4ω4
ceω

4
ciω

2
pcos2θ,

c2 = c4k4[ω2
ciω

2
p + ω2

ceω
2
ci + ω2

ceω
2
p

−ω2
p

(
ω2

ce + ω2
ci − ωceωci

)
sin2θ]

+c2k2ω2
pωceωci

[
ωceωcisin2θ + ω2

p(1 + cos2θ)
]
,

c4 = c4k4
(
ω2

ce + ω2
ci + ω2

p

)

+c2k2ω2
p

[
2ω2

p + 2ωceωci +
(
ω2

ce + ω2
ci − ωceωci

)
sin2θ

]

+ω4
p

[
ωceωcisin2θ + ω2

p

]
,

c6 =
(
c2k2 + ω2

p

)2
. (12)

Eq.(11) is a cubic equation for ω2, which only has three
branches of solutions. It is easily shown that the elimi-
nated two branches of waves have a higher phase veloc-
ity which is close to the speed of light when k is large
(ω2 ∼ k2c2, for a large wavevector k).

IV. ANALYTICAL INVESTIGATIONS

Eqs.(9) and (11) are used to examine the errors of the
Darwin approximation with arbitrary parameters of k, θ,
ωpe, ωce and mi/me.

For n ' 1 or n < 1, the relative difference between
n′2Darwin = n2+1 and n′2EM = n2 would be large. It should
be noted that even for some low-frequency branches, the
Darwin approximation can also be invalid because the
phase velocity of the low-frequency modes can be close
to or larger than the speed of light for some middle or
small k (See detailed numerical results in the following
sections).

For the case with a small k (k → 0) or a very long
wave length, the solution for Darwin model is

ω2 = ωceωci sin2 θ + ω2
p, (13)

which is dependent on θ, whereas the solutions for EM
model are given by

ω6 − (ω2
ce + ω2

ci + 3ω2
p)ω4+

[ω2
p(ω2

ce + ω2
ci + 2ω2

p) + (ω2
p + ωciωce)2]ω2−

ω2
p(ω2

p + ωciωce)2 = 0, (14)

which is independent on θ, and yields three branches
of solutions: ω2 = ω2

p and ω2 = {(ω2
ce + ω2

ci + 2ω2
p) ±√

[(ωce + ωci)2 + 4ω2
p](ωce − ωci)2}/2. Eq.(13) is unrea-

sonable because θ is meaningless when k = 0. This arti-
ficial solution is the same as the EM solution only when
θ = 0. These results indicate that in the Darwin model,
not only are two higher frequency branches associated
the electron dynamics missing, but also the electron-ion
coupling mode with a long wavelength is falsely repre-
sented by the new artificial branch. It is suggested that
the electron response to an external long wavelength per-
turbation is misinterpreted in the Darwin model.

For the case with k →∞, the solutions should be the
same for both models due to n′2Darwin ' n′2EM = n2 À 1
[11],

tan2 θ = −P

S
. (15)

Eq.(15) indicates that for k → ∞, the three solutions
of ω2 for both models will approach to the same three
constant-frequencies (see Fig.1).

For a system with an Alfvén wave being dominant (fol-
lowing section 2.4 in Ref.[11]), we have

ω2 = k2v2
A

= k2 c2

(
1 +

ω2
pi

ω2
ci

)
(1+cos2θ)±(1−cos2θ)

2cos2θ −1︸︷︷︸
for Darwin model

.(16)

The ‘−1’ term in Eq.(16) is resulted from the difference of
the EM model and the Darwin model. It’s easily shown
that when vA/c ¿ 1, the difference is small. Thus, the
Darwin model is a good approximation for studying the
Alfvén wave dominant process such as magnetic recon-
nection.
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Parameters
(mi/me, kc/ωce,
ωpe/ωce, θ)

EM model Darwin model

(1836, 1.0, 0.833, 0) 5.4446E-4, 0.5144, 0.8336, (1.1727, 1.6583) 5.4446E-4, 0.5903, 0.8336

(1836, 10.0, 0.833, 0) 5.4466E-4, 0.8336, 0.9930, (10.0315, 10.0385) 5.4466E-4, 0.8336, 0.9931

(1836, 0.1, 0.833, 0) 5.2549E-4, 0.0144, (0.4880,) 0.8336, (1.4735) 5.2549E-4, 0.0147, 0.8336

(1836, 1.0, 0.833, 45) 5.4421E-4, 0.3273, 0.8983, (1.2314, 1.6291) 5.4421E-4, 0.3399, 1.0240

(1836, 1.0, 0.833, 90) 1.0973E-18, 0.0132, 0.9281, (1.3019, 1.5900) 1.0973E-18, 0.0132, 1.1335

(4, 1.0, 0.833, 0) 0.2153, 0.5427, 0.9317, (1.2666, 1.6892) 0.2165, 0.6180, 0.9317

(4, 1.0, 0.833, 45) 0.1865, 0.4072, 0.9974, (1.3093, 1.6604) 0.1875, 0.4280, 1.0985

(4, 1.0, 0.833, 90) 1.9738E-17, 0.3152, 1.0343, (1.3668, 1.6215) 1.9738E-17, 0.3213, 1.2041

TABLE I: <(ω) ≥ 0 solutions of the dispersion relation for the EM and Darwin model. The results show that the Darwin
approximation can be invalid at least for some low frequencies modes.
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FIG. 1: (Color online) ω vs. k, with mi/me = 40, ωpe/ωce =
0.5 and θ = 45◦, where the green dashed line is referred to
ω = kc.

V. NUMERICAL SOLUTIONS

In this section, Eqs.(9) and (11) are numerically solved
to examine the differences between the EM and Darwin
solutions.

To quantitatively examine differences of two models,
we solve the dispersion relation under several typical pa-
rameters in Table I, where the extra two solutions in the
EM model are labeled in the brackets. It is found from
Table I that: 1. All roots are real numbers, which is
reasonable, because there is no free energy in the sys-
tem. Sturm’s theorem can be used to show all solutions
ω2 for Eqs.(9) and (11) are positive real numbers; 2.
The differences between two models are small for large k
(kc/ωce = 10) and small k (kc/ωce = 0.1); 3. However,
several roots (e.g., the solutions with bold face in the
table) exist apparently different when kc/ωce ' 1, which
suggests that the Darwin approximation may be invalid
at least for some middle k.

Fig.1 shows a typical result of ω vs. k, with mi/me =

0 1 2 3
0

0.5

1

1.5

kc/ωce

ω
/
ω
ce

ω
ce

ω
pe

ω
ci

ω
pi

EM

0 1 2 3
0

0.5

1

1.5

kc/ωce

ω
/ω

ce

ω
ce

ω
pe

ω
ci

ω
pi

Darwin

FIG. 2: (Color online) ω vs. k, with mi/me = 1836. Other
parameters are the same as in Fig.1.

40, ωpe/ωce = 0.5 and θ = 45◦. It is clearly indicated
that the solutions of the two lowest frequency branches
(around ωpi and ωci) are nearly identical between the
EM and Darwin model, whereas the third (around ωce)
branch in the Darwin model is close to the fourth branch
(around ωpe) of the EM model when kc/ωce ¿ 1 but
still the same as the third branch (around ωce) of EM
model when kc/ωce À 1. When kc/ωce < 1, the third
branch solution of Darwin model differs apparently from
the solution of the EM model, which further indicates
that the third branch in Darwin model would not truly
describe the electron dynamics as discussed in Sec.IV. It
should be noted that the reason to choose the low mass
ratio of mi/me is in order to increase the visibility of
the ion branches of the waves fitting in one figure and
the qualitative results will not change with a large mass
ratio (Fig.2).

For the case with a middle wave vector k (kc/ωce = 1),
the dependence between ω and θ is shown in Fig. 3. The
third branch (around ωce and ωpe) of the Darwin model
does not represent anyone of the modes in the EM model.
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FIG. 3: (Color online) ω vs. θ, with mi/me = 40, ωpe/ωce =
0.5 and k = 1.0ωce/c.
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FIG. 4: (Color online) ω vs. k, with ωpe/ωce = 0.25. Other
parameters are the same as in Fig.1.

The third branch in the Darwin mode depends on the
parameters (mi/me, kc/ωce, ωpe/ωce, θ). The deviation
of the results from the Darwin and EM models for a
small ωpe/ωce becomes much larger as shown in Fig.4. By
examining the parameter regimes with larger differences
between the Darwin and EM models in Figs.1-4, it can be
concluded that the Darwin approximation is invalid when
the phase velocity of the low frequency modes is close to
or larger than the speed of light, which is consistent with
the analytical investigations in Sec.IV.

VI. KINETIC DISPERSION RELATIONS FOR
HOT PLASMAS

The kinetic approach will bring Landau damping and
modify the dispersion relation. As done in the cold
plasma, we need to make a similar modification of the
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FIG. 5: (Color online) Kinetic solutions with parallel prop-
agation for the Darwin and EM models, with mi/me = 4,
ωce/ωpe = 1.2, c/vthe = 5 and Ti/Te = 1. The green dashed
line is referred to ω = kc.
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FIG. 6: (Color online) Kinetic solutions with parallel propa-
gation for the Darwin and EM models, with mi/me = 1836.
Other parameters are the same as in Fig.5. Only the electron
branch is shown.
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well-known hot plasma dispersion relation matrix [11],
∣∣∣∣∣∣∣

εxx − n′2 cos2 θ εxy εxz + n′2 sin θ cos θ

εyx εyy − n′2 εyz

εzx + n′2 sin θ cos θ εzy εzz − n′2 sin2 θ

∣∣∣∣∣∣∣
= 0,

(17)
i.e., n′2 explicitly included in the five terms must be re-
placed by n′2 = n2 in the EM model and n′2 = n2 + 1
in the Darwin model as in Eq.(4) while all other terms
implicitly including n′ remain unchanged.

Because it is impossible to solve the general kinetic dis-
persion relation analytically, we consider a parallel prop-
agation case only. With a Mawellian equilibrium distri-
bution, the dispersion relation becomes (note: ωce < 0)

D(k, ω) = 1− n′2 +
∑

s

ω2
ps

ω
√

2kvths

Z

(
ω ± ωcs√

2kvths

)
= 0,

(18)
where n′2 = n2 for the full EM model and n′2 = n2 + 1
for the Darwin model. Eq.(18) are also used in Ref. [1]
for the benchmark.

Fig.5 shows a typical solution where a large difference
between the EM model and Darwin approximation model
is around kc/ωce = 0.5. To show ω ' ωci branch clearly,
we have artificially chosen a small mi/me. Actually, with
the real mass ratio mi/me = 1836, the differences of the
two models are quite the same as shown in Fig.6. It
seems that the Darwin model affects little to the Landau
damping rates as shown in Figs.5 and 6.

VII. SUMMARY

Based on the analytical and numerical analysis of the
cold and hot plasma dispersion relations from the Darwin
and EM models, we conclude that: (1) The electron and
ion coupling modes in the Darwin mode falsely describe
the electron responses of a long wave perturbation be-
cause this branch of the dispersion relations has a rather
different property as that in the EM model in the regime
with a long wavelength. (2) The high-frequency elec-
tromagnetic waves mainly associated with the electron
dynamic at small k are eliminated totally. (3) The low-
frequency modes related with the ion dynamics in the
Darwin model are in an excellent agreement with that in
the EM model.

Generally, the Darwin approximation would be invalid
when the phase velocity of a low-frequency wave is close
to or larger than the speed of light.
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