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abstract 7 

 Magnetohydrodynamic equilibrium schemes with toroidal plasma flows and 8 

the scrape-off layer are developed for the 'divertor-type' and 'limiter-type' free 9 

boundaries in the tokamak cylindrical coordinator. With a toroidal plasma flow, the flux 10 

functions are considerably different under the isentropic and isothermal assumptions. 11 

The effects of the toroidal flow on the magnetic axis shift are investigated. In a high 12 

beta plasma, the magnetic shift due to the toroidal flow are almost the same for both the 13 

isentropic and isothermal cases, and are about 0.04a0 (a0 is the minor radius) for M0=0.2 14 

(the toroidal Alfvѐn Mach number on the magnetic axis). In addition, the X-point is 15 

slightly shifted upward by 0.0125 a0. But the magnetic axis and the X-point shift due 16 

to the toroidal flow may be neglected because M0 is usually less than 0.05 in a real 17 

tokamak. The effects of the toroidal flow on the plasma parameters are also investigated. 18 

The high toroidal flow shifts the plasma outward due to the centrifugal effect. 19 

Temperature profiles are noticeable different because the plasma temperature is a flux 20 

function in the isothermal case. 21 

I. Introduction 22 

In the past decades, plasma flows have been observed in almost all tokamaks. It 23 



can be either spontaneous[1] or driven by neutral beam injection[2] or radio frequency 24 

wave heating[3]. Some advance diagnostic technologies have been developed to 25 

measure plasma flow, such as charge exchange recombination spectroscopy (CXRS)[4], 26 

imaging x-ray crystal spectrometer (XCS)[5], Doppler coherence imaging spectroscopy 27 

(Doppler CIS)[6][7] and Langmuir probe. With diagnostic developments, the effect of 28 

plasma flows has been investigated intensively. It is found that either toroidal or 29 

poloidal plasma flows could suppress macroscopic stabilities , such as (double) tearing 30 

mode (TM)[8][9] and resistive wall mode (RWM)[10], and then largely improve both 31 

energy and momentum confinement[11][12]. The penetration properties of the n = 1 32 

resonant magnetic perturbation (RMP) is also strongly correlated with toroidal 33 

flows[13][14].  34 

For static and ideal plasma, the equilibrium with the axisymmetric assumption can 35 

be obtained by solving the well-known Grad-Shafranov (GS) equation that is the 36 

nonlinear elliptic partial differential equation for poloidal magnetic flux ψ. There are 37 

two free flux functions, pressure p(ψ) and poloidal current function F(ψ), in the GS 38 

equation. Several famous static equilibrium codes, such as CHEASE[15], EFIT[16][17], 39 

HELENA[18], NOVA q-solver[19] and so on, were developed to solve the GS equation 40 

successfully. In order to consider a toroidal plasma flow in the equilibrium, the GS 41 

equation has to be generalized. Several codes, such as FLOW[20], ATEC[21], 42 

CLIO[22], FINESSE[23], and M3D equilibrium solver[24], have also been developed 43 

to solve the generalized Grad-Shafranov (GGS) equation[25][26], which is able to 44 

obtain two types of the equilibria: isentropic equilibrium and isothermal equilibrium.. 45 

In the isentropic equilibrium, it is assumed that the entropy S=S(ψ) is constant on 46 



magnetic surfaces, which considers the isotropic plasma and holds for isentropic flow 47 

( ) 0S  =B . In the isothermal equilibrium, the plasma temperature is assumed to a 48 

surface quantity T=T(ψ) because of the large heat conductivity along the magnetic field 49 

line within a flux surface, which implies isothermal flow ( ) 0T  =B . In this paper, 50 

a detailed comparison between these two equilibria is presented. 51 

The boundary condition at the plasma surface can be chosen to be either a fixed 52 

boundary, where plasma-vacuum boundary is replaced by a surface of a perfect 53 

conductor[27], or a free boundary as shown in Figure 1. In this paper, we give 54 

construction schemes to solve the GGS equation for isentropic and isothermal equilibria 55 

with toroidal plasma flows for two different types of the free boundary condition. For 56 

the first type of the free boundary problem that is also called the 'limiter-type' free 57 

boundary, the plasma equilibrium is solved under an external field by imposing a 58 

constraint such as a fixed point where plasma interacts with the limiter. In the second 59 

type of the free boundary, namely the 'divertor-type' free boundary, the plasma-vacuum 60 

boundary flux value ψ, the position and the shape of plasma are unknown beforehand 61 

and defined by a set of external coils and plasma current[24][28].  62 

Three-dimensional toroidal magneto-hydrodynamics code (CLT, Ci-Liu-Ti, which 63 

means magnetohydrodynamics in Chinese) has been modified to include a free-64 

boundary equilibrium solver (called CLT-EQ) with toroidal flows and the scrape-off 65 

layer (SOL)[8].  A cylindrical coordinator (R, , Z) is used to avoid the singularity at 66 

the central point, r=0, in the toroidal coordinator (ψ, θ, ξ). However, the cylindrical 67 

coordinate makes the outer boundary to be more difficult handling because the plasma 68 



boundary at the plasma last close surface does not locate at the grid points in the old 69 

version of CLT[8]. The current version of the CLT code has been modified with a free 70 

plasma boundary and consists of the X point, the separatrix, and the SOL. With a free 71 

plasma boundary, CLT has the capability to calculate self-consistently in the plasma 72 

edge region. 73 

The rest of this paper is organized as follows: in Section II, isentropic and 74 

isothermal equilibrium formulations with a toroidal plasma flow are present. In Section 75 

III, a detail construction scheme to solve the GGS equation with a free boundary is 76 

discussed. To be more specific, different plasma regions in the computational domain 77 

are defined in order to construct the current source. The Green's function method is 78 

adopted for external coils. In Section IV, the solving procedure used in CLT-EQ is 79 

described. Numerical results of the isentropic and isothermal equilibria for the two 80 

different types of the free boundary with toroidal plasma flows are presented in Section 81 

V. The conclusion and discussion are given in Section VI. 82 

 83 

II. Formulation of Isentropic and Isothermal Equilibria for Toroidal Plasma Flow 84 

We start with the steady-state ideal magnetohydrodynamics (MHD) equations in a 85 

cylindrical coordinate (R, , Z) with 0  = . The MHD equations with plasma flows 86 

are as follows: 87 

( ) 0  =v                          (1) 88 

( ) p  =  −v v J B                          (2) 89 

0 =E                          (3) 90 



0 =B                          (4) 91 

0 =J B                          (5) 92 

= − E v B                          (6) 93 

where ρ, p, v, J, B and E are the plasma density, the pressure, the plasma flow 94 

velocity, the current density, the magnetic field, and the electric field. Let 95 

( )
0

, 2 ' '
R

zR Z d R B dR =  = B s  be the poloidal-disk flux[29]. Then, the magnetic 96 

field can be expressed as B  =  +B e , 
1

RB
R Z


= −


and 

1
ZB

R R


=


, where 97 

BR and BZ are the horizontal and vertical magnetic fields. From 0 =J B , then  98 

0RJ  = − ,                              (7) 99 

where J is the toroidal plasma current density and ( )2 2R R =   . The poloidal 100 

flux is able to be determined by Eq. (7), if J and the boundary condition are known. In 101 

the following, we will discuss the expression of J. Faraday's law ( ) 0  =B v  and 102 

( ) 0  =B B v  imply ( )  =  B v , where ( )  is an arbitrary function of the 103 

poloidal flux. If only a toroidal flow v = ev   is considered, then 104 

( )v v R     =   = eB v . We have 105 

( )v R =                                  (8) 106 

where ( )  is the toroidal angular velocity of the flux surface[26]. Similar to the 107 

poloidal flux ( ),R Z  , we define a poloidal current function 108 

( ) 0 0
0

, 2 ' '
R

zF R Z d R J dR  =  = J s   and then obtain 
0

1
Z

F
J

R R


=


 . Using109 



0 0 = B J =  , we have 
0

1
R

F
J

R Z


= −


  and the poloidal current 110 

( ) 0p F R =  J e  . From the R component of the Ampere's law Eq. (5), we get 111 

( )0 RJ F Z R B Z = −   = −  , which implied  112 

( ),F R Z RB=                                 (9) 113 

Considering ( ) ( )2

RR  = −  ev v , the  component of the momentum equation 114 

reduces to ( ) ( ) ( ) ( ) ( ) 0p R RB  
−  − +  =  =   =  =v v J B J B B B B , 115 

which means that the poloidal current function ( ) ( ),F R Z RB F = =  is also an 116 

arbitrary function of the poloidal flux. The momentum equation is written in the 117 

following form 118 

2

2

'J FF
p R R

R R


   = −   +                     (10) 119 

where prime ' denotes    . From the momentum equation,  120 

( ) 2 0p R R  =  −  +  =   B B v v J B B implies the plasma pressure is not a 121 

flux surface quantity anymore. 122 

The thermodynamic relationship of p, ρ and T in the presence of the plasma 123 

rotation are derived in two forms[25][26] [20] [21]. The first form is that the entropy 124 

S=S(ψ) is constant on magnetic surfaces, which considers isotropic plasma and holds 125 

for the isentropic flow ( ) 0S  =B . The other is that the plasma temperature T=T(ψ) 126 

is a surface quantity because of the large heat conductivity along the magnetic field line 127 

within a flux surface, which implies the isothermal flow ( ) 0T  =B . In this paper, 128 



both of the isentropic and isothermal equilibria are developed.  129 

For the isentropic case S(ψ), the right-hand side of Eq. (10) can be written in the 130 

following form[25][21]: 131 

( )2 2

2 2

' '
' 'S

FF FF
p R R TS R

R R
      

 
 −   +  =  + − +  +  

 
.    (11) 132 

We find that ( ) 2 2 12
1

S R S 
  



−= −  +
+

  is a surface quantity (see Appendix). 133 

Since   cannot be identically zero, Eq. (10) reduces to  134 

' 2

2

'
' 'S

J FF
TS R

R R


 = − +  + .                    (12) 135 

For the isentropic case, Eq. (7) and (12) are the general equilibrium equation of an 136 

axisymmetric plasma with a toroidal rotation in the cylindrical coordinate, where the 137 

entropy is assumed to be constant on magnetic surfaces. There are four arbitrary 138 

functions ( )S  , S(ψ), ( )  and F(ψ) in Eq. (12). If these four functions and the 139 

boundary condition are given, the solution of Eq. (7) is solely determined.  140 

(2) For the isothermal case T(ψ), the right-hand side of Eq. (10) can be written in 141 

the following form[25]: 142 

( ) ( )2 2

2 2

' '
1 ln ' 'T

FF FF
p R R T R

R R
        

 
 −   +  =  + − +  +  

 
.  (13) 143 

We find that ( ) 2 2 2 lnT R T  = −  +  is also a surface quantity (see Appendix). Eq. 144 

(10) is reduced to 145 

( )' 2

2

'
1 ln ' 'T

J FF
T R

R R


   = + − +  +                 (14) 146 

 Similarly, for the isothermal case T(ψ), the solution of Eq. (10) is also solely 147 

determined if the four arbitrary functions ( )T  , T(ψ), ( )  and F(ψ) in Eq. (14) 148 



and the boundary condition are given. 149 

 150 

III. The Construction Scheme for the Free Boundary Conditions 151 

152 

In this section, both the 'divertor-type' and 'limiter-type' free boundary are presented. A 153 

poloidal cross section of HL-2A tokamak with the divertor and the limiter are shown in 154 

Figure (1). Different regions in the computational domain are defined as follow. Firstly, 155 

the 'main plasma' region consists 1   , where ( ) ( )axix b axix    = − −   is the 156 

normalized poloidal flux, axix   and b   are the flux at the magnetic axis and the 157 

'main plasma' boundary, respectively. And =1  represents the plasma boundary. For 158 

 

Figure 1. (a) For the 'divertor-type' free boundary in HL-2A tokamak, the 

computational domain is divided into the main plasma, SOL, the vacuum, the 

private-flux, and the coil region. Note that the divertor coil is located inside the 

computational domain. (b) For the 'limiter-type' free boundary, the computation 

domain is only divided into the main plasma, SOL, and the vacuum region. 



the divertor configuration, the boundary is the separatrix or the last closed flux surface 159 

(LCFS). For the limiter, the boundary is the isoline of the constraint point where is the 160 

interface between the plasma and the limiter. Secondly, the SOL region consists of 161 

1 SOL   . 1SOL −  is the width of the SOL region that is roughly interchangeably 162 

with the power decay length λq that is designed to be about 20 mm ( SOL ~1.03) based 163 

on the experiment[30][31]. Thirdly, the vacuum region represents the area where the 164 

magnetic field is generated only by non-local currents, such as the plasma current and 165 

the external coil. Fourthly, the 'private flux' region (only for the divertor) consists of 166 

1   and is located below the X point. SOL is slightly widened into the 'private flux' 167 

region. In reality, the plasma region is more complicated than the above definition when 168 

the divertor is considered[32]. 169 

The main plasma boundary =1   is critical for the free boundary plasma 170 

equilibrium. For the limiter-type case, the boundary is the isoline of the constraint point 171 

where is the interface between the plasma and the limiter. The plasma equilibrium is 172 

solved under the external field, as shown in Figure 1(b). It is a bit more complicated for 173 

the divertor-type case. In order to produce the real divertor configuration, we need to 174 

consider divertor coils as shown in Figure 1(a). Moreover, for the high beta plasma 175 

equilibrium, the plasma will shift toward the low field side. Therefore, vertical field 176 

coils are designed to generate the vertical magnetic field to push the plasma inward by 177 

the Lorentz magnetic force. The shape and the position of the plasma are consistent 178 

with these coil currents. According to the position of these external coil, two numerical 179 

methods are adopted. If external coils are located inside the computational domain, they 180 

are regarded as local plasma currents and the flux ψ can be computed though Eq. (16). 181 



If external coils are located outside the computational domain, the Green's function 182 

method will be adopted via Eq. (19). 183 

 184 

A. Current Sources Located inside the Computational Domain 185 

Because divertor coils are located inside the computational domain for the 186 

'divertor-type' free boundary, we divide the computation domain into three parts, 187 

namely the plasma region (included the main plasma and SOL), the divertor coils region, 188 

and the vacuum region (including a part of the private flux area) as shown in Figure 189 

1(a). In the plasma region, the current source is the plasma toroidal current density J 190 

in Eq. (12) or Eq. (14), so the flux function ψ satisfies Eq. (7). In the vacuum region, 191 

there is no current source, so the flux function ψ satisfies 192 

0 =                                 (15) 193 

In the divertor coil region, the divertor coil currents are regarded as local plasma 194 

currents. Thus, the flux function ψ satisfies 195 

( ) ( )0 , 1, 2,3DiRJ R Z i  = − =                     (16) 196 

Three divertor coils, namely D1 (JD1), D2 (JD2), and D3 (JD3), are designed in this 197 

scheme. And the coil currents ( ),Di DiI J R Z ds=   , JDi is a parabolic distribution 198 

function. The current direction of the D1 and D3 coils must be opposite to that of the 199 

plasma current. The current direction the D2 coil is the same as that of the plasma 200 

current.   201 

 202 

B. Current Sources Located outside the Computational Domain 203 



In this case, because of vertical/horizonal field coils located outside the 204 

computational domain as shown in Figure 1, we introduce the Green's function, 205 

( ) ( ) ( ) ( )20 '
, ' 2 2

2

RR
G k F k E k

k




 = − −
 

x x ,               (17) 206 

where G(x, x') is the magnetic flux at x'=(R',Z') produced by the one Ampere vertical 207 

coil current at x=(R,Z)[27]. F(k) and E(k) is the first and the second complete elliptic 208 

integrals respectively, and ( ) ( )
2 22 4 ' ' 'k RR R R Z Z = − + −

 
. This Green's function in 209 

Eq. (17) satisfies  210 

( ) ( )0, ' 'G R  = − −x x x x                       (18) 211 

Because of the current source located outside the computational domain, this 212 

function is reduced as ( ), ' 0G =x x   in the computational domain. Therefore, the 213 

total poloidal flux ψT is expressed by the Green's function in the following form  214 

( ) ( ) ( )
1

, '
N

i

T coil

i

I G 
=

= +x x x x ,                   (19) 215 

where i

coilI  is the i-th coils current. The Green's function method can be applied to all 216 

poloidal field coils that are located outside the computational domain, such as 217 

horizontal coils are used to control the plasma vertical displacement while vertical field 218 

coils are used to control the plasma horizontal displacement. 219 

 220 

IV. Numerical Procedure 221 

Figure 2 is the flowchart of the CLT-EQ code. The equilibrium equation is 222 

computed on a 256 × 256 grid of the (R, Z) plane. The solving procedure is as follows.  223 

A. The four parameter functions ( )s  , S(ψ), ( )  and F(ψ) in Eq.(12) or 224 



( )T  , T(ψ), ( )  and F(ψ) in Eq.(14) are constructed. The profile of the parameter 225 

function can be chosen to be surface-averaged data from experiment or be specially 226 

designed for simulation requirement. Moreover, the plasma flow Ω is freely adjusted to 227 

study effects on the equilibrium by varying the plasma velocity.  228 

B. The initial flux ψ0 is calculated via a set of external coils and the initial plasma 229 

current. ψ0 is critical for convergence. And it contains information of the plasma shape 230 

and displacement.  231 

C. The X point, the separatrix, and the magnetic axis are calculated thought the 232 

initial flux ψ0 or the updated flux ψ. In other word, the position and the flux of the X 233 

point are calculated from ψ0 or ψ, and LCFS is identified through the isoline of the X 234 

point. Then the computational domain is divided into the plasma region (including the 235 

main plasma and SOL), the vacuum region (including a part of the private flux area), 236 

and the divertor coil region. Current sources in each region are obtained via Eq. (12), 237 

or (14), (15), (16). 238 

D. Eq. (7, 15, 16) are simultaneously solved using the Strongly Implicit 239 

Procedure (SIP) method to update the magnetic flux ψ [28][33][34]. In the nth iteration, 240 

the iterative formula is ( )1 0 ,n nRJ R  

+ = −  .  The convergence defined with a 241 

condition on the residual of this formula is 6

11
~10

N i i

n ni
N  −

+=
 = − , where N is the 242 

number of grids. 243 

E. Step C and D are iterated until the flux ψ at the end of Step D remains 244 

unchanged within a given tolerance. 245 

F. After an equilibrium calculation, we need to check whether plasma is in a 246 



reasonable position. If not, external coil currents need to be adjusted in order to obtain 247 

a suitable plasma position shown in Figure (3). Meanwhile, the initial poloidal flux ψ0 248 

is recalculated at Step B. Consequently, the new flux ψ is updated by iteration of Step 249 

C, D and E again. In the free-boundary calculation, the boundary condition is imposed 250 

during initialization. The X point, the magnetic axis, and the separatrix are not fixed 251 

and determined as a part of the solution of the equilibrium problem. Figure 3 is a high 252 

beta H-mode equilibrium. In this case, vertical field coil currents produce the vertical 253 

magnetic to put the plasma inward by the Lorentz force. Otherwise, the plasma will 254 

move to the low field side due to a large thermodynamic force. We note that the 255 

boundary is a constraint by a fixed point for the limiter-type case, while the X point is 256 

free for the divertor-type case.  257 



 258 

 

Figure 2. Flowchart of CLT-EQ 



 259 

 260 

V. Numerical Results 261 

A. Effect of Toroidal Plasma Flow on Magnetic Shift 262 

As we known, the magnetic axis is displaced due to the plasma pressure and the 263 

internal inductance, which is named as the Shafranov shift. With the toroidal plasma 264 

rotation, the moment equation Eq. (2) can roughly be expressed as 265 

( )2~ 2p v  − +
 

J B , which means that the 'kinetic energy' density, ( )2 2v  , like 266 

the plasma pressure, also contributes to the Shafranov shift. In order to investigate the 267 

effect of the toroidal flow on the magnetic axis shift, we use the toroidal Alfvѐn Mach 268 

number, AM v v= , to quantify the plasma flow. vA is the Alfvѐn speed and M0 is the 269 

toroidal Alfvѐn Mach number on the magnetic axis. In order to concentrate on the 270 

contribution of the toroidal flow in the Shafranov shift, we subtract the Shafranov shift 271 

 

Figure 3. Vertical Coils to control the horizontal displacement 



in the static equilibria 0=  from the total shift  , and normalize with the plasma 272 

minor radius a0. The expression ( )0 0a = −   quantifies the contribution of the 273 

toroidal plasma flow to the Shafranov shift as shown in Fig. 4(a) where the red and 274 

black lines represent for the isothermal and isentropic cases, respectively. The solid and 275 

dashed lines correspond to low beta and high beta plasma, respectively. The magnetic 276 

shift is larger at a lower beta plasma or a higher M0 for both isothermal and isentropic 277 

cases, which is not surprising since the "kinetic energy" term, compared with the 278 

pressure term in moment equation, will become more important with the plasma beta 279 

decrease or the toroidal flow (or M0) increase. In addition, in the low beta plasma, the 280 

magnetic shift in the isothermal case is larger than that in the isentropic case. This 281 

difference is more severe when 0M  increases. However, it is seen that the effect of the 282 

toroidal rotation on the shift in the high beta plasma is qualitatively similar for both 283 

cases. The magnetic shift due to the toroidal flow is about 0.04a0 at M0=0.2. Of more 284 

interest is the shift of the X-point due to the toroidal plasma flow as shown in Figure 285 

4(b), which is only calculated in the 'divertor-type' free boundary equilibrium. The X-286 

point is slightly shifted upward by about 0.0125 a0 for both the isentropic and 287 

isothermal cases at M0=0.2. In reality, M0 is almost less than 0.05 for most of present 288 

tokamaks[11]. Therefore, the effect of the toroidal flow on the magnetic axis and the X-289 

point shift may be neglected. 290 



 291 

 292 

B. Effect of Toroidal Flow on Plasma Parameters 293 

The effects of the toroidal flow on Plasma parameters, such as the density, the 294 

pressure, and the temperature, are shown in Figure 5 where the red and blue lines 295 

represent for the isothermal and isentropic cases, respectively. As we can see that 296 

toroidal flow shifts the plasma outward due to the centrifugal effect that is qualitatively 297 

similar both in the isothermal and isentropic cases. But there is a noticeable difference 298 

in the temperature profile due to the fact that the plasma temperature is a flux function 299 

regardless of the flow in the isothermal case. Because the temperature expresses as 300 

( )1 1T  −= −  in the isotropic case, the profile shift in the temperature is similar to 301 

that in the plasma density. 302 

 

Figure 5 (a) Shafranov shift as function of M0. Solid and dashed lines correspond 

to the low and high beta plasma, respectively. Red and black line represent the 

isothermal and isentropic cases. (b) Magnetic flux surfaces in the presence of the 

high toroidal flow. The X-point is slightly shifted upward. 



 303 

 304 

VI. Conclusion and Discussion 305 

In the paper, an extension of the CLT code to include a free-boundary equilibrium 306 

solver with a toroidal plasma flow and SOL, called CLT-EQ, was present. There are 307 

two kinds of construction schemes for the free boundary, namely 'divertor-type' and 308 

'limiter-type'.  Different regions, included the main plasma, SOL, the vacuum, and the 309 

'private flux' region, are defined in the computational domain in order to design current 310 

sources. The Green's function method is adopted for external coils if these coils are 311 

located outside the computational domain. With toroidal plasma flow, the flux function 312 

is considerably different under the isentropic and isothermal assumptions. For the 313 

isentropic case, the entropy S(ψ) is constant on magnetic surfaces. Four arbitrary 314 

functions ( )S  , S(ψ), ( )  and F(ψ) are pre-required for an equilibrium. For the 315 

isothermal case, the plasma temperature T(ψ) is a surface quantity due to large heat 316 

 

Figure 5. Density, pressure and Temperature contours for isentropic (blue) and 

isothermal (red) cases with a high toroidal flow. 



conductivity along magnetic field lines. Another four arbitrary functions ( )T  , T(ψ), 317 

( )  and F(ψ) are needed. The effects of the toroidal plasma flow on the Shafranov 318 

shift are investigated. In a high beta plasma, the magnetic shift due to the toroidal 319 

plasma flow are almost same for both the isentropic and isothermal cases and are about 320 

0.04a0 at M0=0.2. In addition, the X-point are slightly shifted upward by 0.0125 a0. But 321 

in fact, the effect of the toroidal flow on the magnetic axis and the X-point shift may be 322 

neglected because M0 is usually less than 0.05 in real tokamaks. The effects of the 323 

toroidal plasma flow on plasma parameters, such as the density, the pressure, and the 324 

temperature, are also investigated. The high toroidal flow shifts the plasma outward due 325 

to the centrifugal effect. But temperature profiles are noticeable difference in two cases 326 

because the plasma temperature is the flux function in the isothermal case. 327 
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 333 

Appendix 334 

From the well-known thermodynamic relations  335 

dh dp TdS= +  336 

where h is the specific enthalpy. Considering the isentropic problem dS=0 and then 337 

p S = , ( )1 1T  −= − [25][21], the following relation can be obtained: 338 



1

1
h S 




−=
−

 339 

where  is the ratio of specific heat that is chosen to be 5/3 as usual. Considering 340 

the isentropic equilibrium with ( ) 0S  =v  , and multiplying the momentum 341 

equation by 
1−
B  , the following expression is obtained by using 342 

( )2R R = −  v v  and 0 =B  343 
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2 2

2 2
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=  − 

J BB v v

B

B

 344 

which suggests that the Bernoulli equation is an arbitrary function of the poloidal flux, 345 

i.e., 346 

( ) 2 2 1 2 22 2
1

S h R S R
  



−= −  = − 
+

 347 

  Now let us consider the isothermal equilibrium T(ψ).  The plasma is assumed an 348 

ideal gas, ( ) ( ) ( ), ,p R T R   = . Multiplying the momentum equation by 
1−
B , 349 

the following expression is obtained by using ( )2R R = −  v v  and 0T =B  350 
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 351 

which indicates that ( ) 2 2ln 2T T R  = −    is also an arbitrary function of the 352 

poloidal flux. In order to ensure the flux surface quantity of ( )T   , we need to 353 



carefully construct a density distribution function ( ),R  . With a referenced density 354 

distribution ( )0  , we have  355 

( ) ( ) 2 2

0 0 0ln 2T T R   = −  356 

R0 is the major radius. Thus, the density that is not a flux surface quantity can be 357 

expressed as follows, 358 

( ) ( )
( )2 2 2

0

0,
2

R R
R exp

T
   

  −
 =
 
 

 359 

And similarly, the pressure can also be expressed to be  360 

( ) ( )
( )2 2 2

0

0,
2

R R
p R p exp

T
 

  −
 =
 
 

 361 

Note that the relation ( ) ( ) ( )0 0p T   =  must be satisfied. In other words, 362 

only two of the three parameters ( )0p  , ( )0   and ( )T   can be chosen freely. 363 

( )T   constructed by this method can easily be proved to be the flux surface quantity, 364 

( ) ( )
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( )

( )

2 2

2 2 2
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