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Abstract. New developments in the gyrokinetic particle simulation enable the GTC code to simulate 

turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry, which is a 

critical step in the code-experiment validation process. These new developments include numerical 

equilibrium representation using B-spline, a new Poisson solver based on finite difference using field-

aligned mesh and magnetic flux coordinates, a new zonal flow solver under general geometry, 

improvements on the conventional four-point gyroaverage, nonuniform background marker loading. 

With these new futures GTC is able to simulate a typical DIII-D discharge with experimental magnetic 

geometry and profiles. The simulated turbulent heat diffusivity and its radial profile show good 

agreement with other gyrokinetic code. The newly-developed nonuniform loading method gives a 

different radial transport profile from the conventional uniform loading and the underlying physics is 

explained. 

I. Introduction 

A complete understanding of the physics of anomalous transport is critical for designing future 

magnetic fusion reactors [1]. It is generally believed that the turbulence in ion gyroradius scale (micro-

scale) leads to the anomalous transport [2] observed in experiments. For low beta and high 

temperature toroidal plasmas, electrostatic modes may contribute most to the turbulent transport. The 

ion temperature gradient (ITG) mode [2, 3] and collisionless trapped electron mode (CTEM) [4] are 

two prominent candidates accounting for ion and electron turbulent transport respectively. By several 

decades’ development, massively parallel gyrokinetic simulation based on first-principles has emerged 

as a major tool to investigate the complicated physics of the turbulent transport [5].  
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The code development for these large scale gyrokinetic simulations has experienced several stages. In 

the beginning, the code is implemented based on the gyrokinetic model and then verified by some 

analytic theory and other numerical codes to assure that the code faithfully represented the simulation 

model [6, 7],. The next step is to use the existing code to carry out various interesting but complicated 

physics studies such as saturation mechanism and transport mechanism of the turbulence [8, 9]. The 

third step is called code validation [10-12], which is usually parallel to the aforementioned second 

stage. In this step the gyrokinetic simulation is performed using the real experiment parameters. The 

simulation results, such as the transport flux, temporal and spatial characteristics of the turbulence, are 

compared to the experimental measurements to help explain experiments and in the other hand, to 

verify that the simulation model has captured the essential physics of the turbulent transport. After all 

the comprehensive comparison between code, simulation model and experiments, the code is expected 

to have a predictive power. The ultimate goal of the gyrokinetic code development is applied to guide 

new campaign of experiments and help design next generation of tokamaks. 

 

The current efforts on the gyrokinetic code development still focus on the first three stages. Especially, 

the code validation step is a critical step in this roadmap. The main purpose of this article is to report 

the recent progress of the global gyrokinetic particle code (GTC) [5, 13], on incorporating general 

equilibrium magnetic geometry and real experimental profiles to simulate the turbulent transport in 

tokamak experiments. In fact, these new features developed in this work have already been used 

successfully to validate GTC simulations of Alfven eigenmodes [14, 15] in DIII-D experiments and to 

study the trapped electron mode (TEM) instability in the pedestal of DIII-D H-mode plasmas [16]. The 

general geometry capability can also be readily utilized together with the recent upgrades of GTC 

physics models for global simulations of macroscopic MHD instabilities excited by equilibrium 

current [17] and radio frequency waves in tokamaks [18]. 

 

In this work, we develop a numerical scheme based on B-splines to calculate the equilibrium 

quantities on the computational mesh grids or evaluate the field quantities at the particle position. This 

new feature enables the usage of numerical magnetic equilibrium produced by MHD equilibrium 

codes such as EFIT[19, 20], VMEC[21] and TRANSP[21, 22]. In order to accommodate the general 

magnetic geometry, we make improvements on the conventional four point average method [23] to 

calculate gyroaverage, and we also implement a new gyrokinetic Poisson solver based on the Pade 

approximation. Since the field-aligned magnetic coordinates are employed, this new Poisson solver in 

the GTC code is able to simulate small aspect ratio tokamaks such as NSTX in addition to the 

conventional large aspect ratio tokamaks. A new zonal flow solver is developed for the general 

magnetic geometry. We also implement a nonuniform loading method for the background marker 
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distribution in addition to the conventional uniform loading method. Next we use DIII-D discharge 

#101391 as a benchmark case for these new developments in the GTC code. In the simulation, we 

include kinetic electrons and find this discharge is an ITG-mode-dominating case. We compare the 

heat diffusivity for different gyrokinetic Poisson solvers and different marker loading methods. The 

new gyrokinetic Poisson solver gives about the same turbulent transport level as the conventional four-

point average method. In addition, the nonuniform loading method gives about the same volume 

averaged turbulent transport as the conventional uniform loading. However, the radial profile of the 

turbulent transport is different for these two loading methods, which can be understood by the 

stabilizing effect of the gyroaverage, i.e., the finite Larmor radius (FLR) effect. The simulation results 

are compared to that from GYRO [24, 25]  and good agreement is obtained.  

 

The remainder of this paper is organized as follows. In Section II, we provide an introduction to 

numerical representation of equilibrium plasma quantities, especially the B-spline interpolation. In 

Section III, the δf method to solve gyrokinetic equation and particle pushing scheme in general 

magnetic geometry are reviewed for completeness. Then we explained how to use the Pade 

approximation to solve gyrokinetic Poisson equation and the associated zonal flow component in 

Section IV, where the conventional 4-point average method is also improved. The finite difference 

scheme is used to discretize the Laplacian operator and then is verified by examples, as shown in 

Section V. Based on the preceding improvements, a gyrokinetic turbulence simulation is carried out 

and benchmarked with DIII-D experimental parameters in Section VI.  Summary and discussion are 

provided in Section VII. 

 

II. Numerical representation of equilibrium plasma quantities 

In the plasma turbulence studies we often divide physical quantities into an equilibrium part and a 

fluctuating part. The equilibrium quantities obey the MHD equilibrium, i.e., the Grad-Shafranov 

equation, while the fluctuating part is driven by various instabilities that lead to turbulent transport. 

The equilibrium magnetic configuration used by the gyrokinetic simulation are either from analytic 

models, such as simple circular cross section or Miller equilibrium, or from other numeric equilibrium 

codes, such as EFIT[19, 20]  or TRANSP[21, 22]. The equilibrium in tokamaks can be better described 

by the magnetic flux coordinates instead of the Cartesian coordinates, because some important 

equilibrium quantities, such as plasma temperature and density, can be shown to depends on the 

magnetic flux only. The GTC code employs magnetic flux coordinates ),,(   to represent the 

electromagnetic fields and plasma profiles, where   is the poloidal magnetic flux,   is the poloidal 
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angle and   is the toroidal angle. The equilibrium magnetic field can be represented either in the 

following covariant form  

 ,0   IgB  (1) 

or in the contravariant form 

 .0   qB  (2) 

Then the transformation Jacobian takes the following form 

 
Igq

B
J




2
01  . (3) 

If the Jacobian is properly chosen such that ),,(   are the Boozer coordinates, the toroidal current 

g  and poloidal current I , can be represented by a sole function of  , i.e.,    . ,  IIgg    

The GTC code inputs the numerical magnetic equilibrium and plasma profiles from EFIT/TRANSP by 

transforming the equilibrium quantities defined in the toroidal coordinates ),,( ZR  to those defined in 

the magnetic coordinates ),,(  . However, the EFIT outputs only provide equilibrium quantities on 

a coarse mesh, which usually contains a few tens of grid points in the radial or poloidal direction. This 

is insufficient to simulate ion gyroradius ( i ) scale microturbulence, which requires hundreds to 

thousands of grid points in the radial and poloidal direction for the size of a realistic tokamak.  

Therefore, it is necessary to map the coarse experimental mesh to the fine computational mesh to 

achieve sufficient numerical accuracy.  

The B-splines, which are first order continuous, are currently implemented in the GTC code for the 1D 

and 2D functions to interpolate the complicated magnetic geometry and plasma profiles, which 

provides a good compromise between high numerical confidence and reasonable computation 

efficiency. Generally two classes of functions are involved in the representing magnetic geometry and 

plasma profiles, one dimensional function  f  or two dimensional function   ,f . For the 1D 

function  f , such as ion temperature profile  iT  and toroidal current  g , we can use the 

following B-spline representation 

         ,,3,2,1 2hifhififf   (4) 
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where Nih iiii ,...,1,0  ,, 11    , and    ifif ,1 . Here we assume uniform grid 

size in the radial direction.  The coefficients  if ,2  and  if ,3  can be calculated from  if ,1 , as 

discussed in Appendix I.  

After constructing 1D B-splines, the derivative of the spline function can easily be found as 

 
     ihfiff i ,32,2 

 (5) 

This expression is useful to evaluate the temperature gradient,    ddT , and density gradient, 

   ddn , which are the main instability drives for the microturbulences.  

With these 1-D spline functions constructed, we can proceed to construct B-spline functions for one 

class of very useful 2D functions      
n

nn hgf  , , which can be used to describe most 

tokamak equilibrium magnetic configurations. Each function  ng  or  nh  can be represented by 

the 1D B-splines, i.e.,         23,2,1,   igigigg nnnn  and 

        23,2,1,   ihihihh nnnn . Then the 2D function   ,f  can be expressed by the 

following equation to the accuracy of the second order. 

 

       

     

      2222

2

2

,,9,,8,,7   

,,6,,5,,4     

,,3,,2,,1,













jifjifjif

jifjifjif

jifjifjiff

, (6) 

where the coefficients  jimf ,, , 9,...,1m , can be related by the spline coefficients  lign ,  and 

 lihn , .  The derivatives of   ,f  on the grid points, to the accuracy of first order, can be found as 

 

       

      2

2

,,9,,6,,32   

,,8,,5,,2,









jifjifjif

jifjifjiff

, (7) 

 

       

      2

2

,,9,,8,,72   

,,6,,5,,4,









jifjifjif

jifjifjiff

. (8) 

These expressions are particularly useful for calculating the relevant physical quantities, such as 
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B  and B , which will be used to compute the particle motion in the gyrokinetic simulation. 

III. Gyrokinetic equation and particle pushing in general geometry 

Gyrokinetic particle simulation uses the particle-in-cell method to solve gyrokinetic equation, which is 

essentially a Monte-Carlo approach to solve the reduced dynamic equation in the 5D phase space of 

  ,,,, ||v , where Bmv 2
2

  is the magnetic moment and ||v  is the parallel velocity for the 

particle. In the simulation a large number of particles are initiated to satisfy the equilibrium 

distribution and then evolve according to equations of motion in the 5D phase space. After these 

particles are relocated, the electromagnetic fields are computed by Gyrokinetic Poisson equation 

through gathering the charges on the mesh grids and hence the particles can be pushed to the next time 

step. In order to minimize the Monte-Carlo noise caused by the particle method, the f algorithm is 

usually applied in the gyrokinetic simulation, which separate the perturbed distribution function 

f from the total particle distribution MFff  . The equilibrium distribution MF is noiseless in 

this algorithm and the f algorithm can improve the noise to signal ratio by a factor of .fFM   

In the GTC code, we apply gyrokinetics for ions and drift kinetics for electrons since we focus on the 

turbulence on the ion gyroradius scale. The ion distribution function iMii fff  , with the perturbed 

guiding center distribution function if  satisfying the following gyrokinetic equation [26] 

 

   










































Mi
i

i
MiEMi

i
i

iEd
i

f
vm

eZ
ff

f
vm

eZBv
tdt

fd

lnln
||

*

||

*
||










bv

bvvb

 (9) 

In this equation, bbb  ||
* v

eBZ

cm

i

i , 
B

vmi

2

2
 ,

B

c

E






b

v  with 

     





ddxρRxx
2

1
 the gyroaveraged electrostatic potential, gcd vvv    with 

bv 



i

c

v
2

||
 and B

m ii
g 


 bv


. Decompose the electrostatic potential to a flux-surface 

averaged component (zonal component) and a fluctuating component, i.e.,    with 0 . 

The electrons may mostly respond to the fluctuating potential adiabatically due to the fast electron 

motion. Therefore, it is convenient to write the electron distribution function 



 

 

7 

as eMe
e

Mee gf
T

e
ff 


 , with 1

eT

e
 and eg  satisfying the following drift kinetic equation 

[27] 

 

   

 
  ,lnexp

0

||

*
||
















































































e
EdMeE

ee
Me

e
e

Ed

T

e
f

T

e

tT

e
f

g
vm

eBv
t








vvv

bvvb

 (10) 

where 
B

c

E








b
v  .  

In the f algorithm, the particle weight  ffw  works as an additional attribute to the particles. The 

evolution of the particle weight is determined by the following equation [28] 

 
dt

fd

F

w

dt

dw

M




1
 (11) 

The original equation of motion in the Boozer coordinates [29] can be applied without modification to 

the general magnetic geometry case. For completeness, we list the equation of motion implemented in 

GTC for the electrostatic simulation: 

  














 























D

IB

D

I
B

m

Z

Z
Iq

D

B 2
||

2

||

2
|| 1  (12) 

  














 























D

gB

D

g
B

m

Z

Z
g

D

B 2
||

2

||

2
|| 1

1  (13) 

 






















 















































D

g

D

IB
B

m

Z

D

I

Z

B
B

m

Z

D

g

Z

2
||

2
2

||

2
11  (14) 
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 
 

 
 
















































































B

D

B
m

Z
Iq

ZD

Iq

D

gB

D

B
m

Z
g

Z

2
||

2

||
||

||

2
||

2

||

||

1

1
1

1

 (15) 

This set of equations is based on a Hamiltonian principle, with the Hamiltonian 

  BBH 222
|| , which is suitable for determining the motion of the guiding centers of both 

ions and electrons. The physical quantities in the preceding equations are all normalized quantities: 

,,
0

||||
||2

00 











R

vv

RB
  gIIgIqg

RB
D  ||

00

1
 ,

d

Id
I

RB

I
I  ,

00

, 

2
0

2
000

,,,



Rm

e

m

m
m

d

gd
g

RB

g
g

HH








, with Hm  hydrogen mass, 

cm

eB

H

0
0   hydrogen 

gyrofrequency, 0R  tokamak major radius  and 0B  the magnetic field at magnetic axis. However, we 

note in Ref. [29] this set of equations are normalized by the particle gyrofrequency 
cm

eBZ






0 . 

With some minor modifications, these equations of motion can also be used to push particle in the 

presence of electromagnetic perturbations [13, 29]. 

IV. Poisson solver in the general magnetic geometry    

To close the preceding gyrokinetic equations, we need to use the following gyrokinetic Poisson 

equation: 

   11
0

2 ~
eii

i

ii nnZ
T

enZ
  (16) 

with        





ddvddvFMi ||||,,ρ
2

1~
RRRxR [30]. The electron may be dominated by 

adiabatic response due to the fast electron motion in the ambient turbulence. Therefore, it is 

convenient to write    1
01 1 eeeme nTenn   , with 0m  for electrostatic case and 1m  for 

electromagnetic case. So we obtain the following gyrokinetic poisson equation [13, 27, 31]: 
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 1

1
0

2
00

2 ~
eii

i

ii
m

e

e

i

ii nnZ
T

enZ

T

en

T

enZ
 














  (17) 

There are two approaches to evaluate 
~

 , the 4-point average or Pade approximation. The 4-point 

average method is illustrated in Ref. [32] which is shown in Fig. 3(a). However, the 4-point method 

conventionally implemented in GTC is only accurate in the local approximation when ir  , since 

it only retains the leading order term in the ri  expansion. This conventional method is shown by 

the dark red points in Fig. 3(b). In order to capture the global effects, the traditional method needs to 

retain higher order terms, e.g., the first order correction, as shown by the fresh red points in Fig. 3(b).  

We note that in long wave length limit  22~
 i . Hence one crucial step to verify the improved 

4-point average method for the gyrokinetic Poisson equation is to show that it can be used to solve the 

Poisson problem n  
2

. In the high q limit, the toroidal effects can be ignored. Considering a 

circular cross section tokamak, the Laplacian operator can be approximated as 

2

2

2

2 11















rr
r

rr
. This Poisson problem essentially becomes a Bessel problem. Then if we 

let    
 
 

 rkY
akY

akJ
rkJrn 00

100

100
00,  , with 0k  satisfying         0000100100000  akYakJakYakJ , 

the Poisson equation has a theory solution  
 
 

 rkY
akY

akJ
rkJ 00

100

100
00  , under the boundary 

condition     010  arar  . As shown by Fig. 6, the solid lines shows the theory solution, 

while the lines with different shapes show the different number of radial grids applied in the numeric 

calculation. Fig. 4(a) shows the solutions from the conventional local approximation for the 4-point 

average method for different numbers of radial grids, while Fig. 4(b) shows the solution by adding 

higher order global corrections to 4-point average method. As one can see from these figures, the new 

implementation of the global correction makes the numeric solution more close to the theory value. 

Next we discuss the second method to evaluate 
~

, the Pade approximation, as demonstrated as 

following.  

 





22

22

1

~










i

i  (18) 
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Decompose the electrostatic potential and density perturbation to a flux-surface averaged component 

(zonal component) and a fluctuating component, i.e., nnn   11, , with 

0 n . The flux-surface average is calculated by 





Jdd

Jdd




 . Subtracting Eq.(16) by its 

flux-surface average gives 

  eii

ii

i nnZ
Zn

eT
 

2

~~ ~
 (19) 

In the large aspect ratio limit, the term 
~~

  in the preceding equation mainly represents the 

coupling between equilibrium magnetic field and 0,0  mn  harmonics, which is transparent in the 

long wavelength limit  22222222
~~

iiirir kkkk  




  . If we assume 

the equilibrium magnetic field takes the form  


0

)sincos(
m

mm
m

mm
m BAB  , with 0Rr  

the inverse aspect ratio, then it can be estimated 0,0

0.0

~

~
~













 mn

m

mn

  , which is usually 

much smaller than 
0,0

~













mn

  for tokamaks. Therefore, the following gyrokinetic poisson 

equation can be used to compute the fluctuating potential in the requisite accuracy: 

  eii

ii

i nnZ
Zn

eT
 

2

~

 (20) 

The flux-surface averaged gyrokinetic Poisson equation by using Eq. (16) and (18) can be written as 

  11
2

222

2
iie

ii

i

iii

i nZne
Zn

T

Zn

T















 


  (21) 

Using Eq. (25), the flux-surface averaged perpendicular Laplacian  2
  in the preceding equation 

can be evaluated by 
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J
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J
 (22) 

Where    JddJ 0  is the flux-surface averaged Jacobian. The radio between the second the first 

term is 11  m  and negligible in the large aspect ratio limit. The third term is even smaller 

than the second one by the factor 
 gg , where g measures the non-orthogonality of the 

magnetic coordinates   ,  and it may be small for most flux surfaces in the tokamak. Therefore, we 

only keep the first term in the right hand side of Eq. (22).  Let  11 eiic nnZe  , the gyrokinetic 

Poisson equation for the zonal potential   reads as following 

       c

ii

i

iii

i gJ
Zn

T
J

Zn

T
gJ 



























































222

1
 (23) 

Integrate the preceding equation to obtain the zonal electric field 

 
 

   
c

ii

iii

ic

ii

i

d

nTd
g

Zn

JT
d

gJZn

T













 
 


























 ln11
222 0

 (24) 

The preceding equation has been used in GTC to calculate the zonal flow response for a given density 

perturbation, which has recently reproduced the Rosenbluth-Hinton residual level [33]. 

V. Laplacian operator and geometric tensor 

The inversion of the Laplacian operator plays a crucial role in computing perturbed electromagnetic 

fields. In this section, we study how to discretize the Laplacian operator in the magnetic coordinates 

by the finite difference method. In the magnetic coordinate system, the Laplacian can be expressed as,  

 3,2,1 and ,3,2,1 with ,
12 























 




 



fJ

J
f  (25) 

where     ,,,, 321   are coordinates the jacobian   1
 J . Define a 

contravariant geometric tensor  



a

g . For an axisymmetric system, the Laplacian can 

be explicitly expressed as 
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22

2

2
2

 (26) 

In order to compute the above Laplacian, we first need to compute the contravariant geometric tensor 

 a

g . The B-spline representation of the magnetic field provides a transformation between two 

coordinate systems, i.e.,     ,Z and , ZXX  , where  ,,ZX  are the toroidal coordinates. 

The covariant geometic tensor  ag can be obtained by the following formula 

 

,

22































ZX
g

 (27) 

 

,

22
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


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g

 (28) 
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

















ZZXX
g

 (29) 

and 2, Xggg   . Using the identity 



 



 gg a , we can find the transformation from 

the covariant to contravariant geometric tensor 
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 (30) 

with the determinant  gggg  .  

Closely related to the magnetic coordinates, the field aligned coordinates  00,,  is employed in the 

GTC code to define field-aligned mesh, which is essential to reduce the number of toroidal grids, 

where q 0 and  0 . Then the Laplacian in this new coordinate system becomes 
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Using the fact the perpendicular scale length is much shorter than the parallel scalar length, the 

perpendicular Laplacian can be obtained from the preceding equation: 
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Next we study how to discretize the preceding perpendicular Laplacian. In the GTC code, we use an 

unstructured mesh to ensure the roughly equal grid size in the radial and poiloidal direction. The mesh 

grids are uniform in the 0 direction for each flux surface and non-uniform in the  direction. In order 

to evaluate the Laplacian numerically in Eq. (), we need to discretize the following five operators:  

0


,



,

2

2




,

0

2




 and 

2
0

2




. The discretization of these differential operators by the finite 

difference method is shown in Appendix II.  

After discretizing each term in Eq. (32), we can convert the Poisson equation   ,
2

n  to a 

big-size matrix equation and solve it parallelly by using the software of PETSc [34].  A numeric 

example is provided to verify the numerical Poisson solver.  In the simple circular cross section limit, 

we assume the safety factor constq  , then 22 qrg  , 21 rg  , 0g , 
21 Xg 

, with 

0cos1 RrX  .  Then the Laplace operator including the essential toroidal effect becomes 






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. The source term in the Poisson equation 

is set as    





























   m

aa

ar
rn cos4sin,

01̀

02
, with 6m , which is shown in Fig. 6(a) in the 2D 

poloidal plane. Using the boundary condition     010  arar   and the new Poisson solver 

implemented in GTC, we can find the numeric solution to the Poisson equation, as shown in Fig. 6(b). 

Then we find the numeric values along the black solid line in Fig. 6(b), and compare them to 

those from the analytic solution. As shown in Fig. 6(c), the numeric solution almost overlaps 
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the analytic solution, which verifies the effectiveness of this finite difference based Poisson solver. 

VI. Simulation for DIII-D Experiment 

Next we put together all the preceding newly developed features in GTC to simulate a real tokamak 

experiment based on the DIII-D discharge #101391[25]. This low β L-mode discharge has been 

carefully studied by the GYRO code [24]. Therefore, the simulation of this particular discharge will 

provide a useful benchmark case for the verification between the gyrokinetic codes through 

completely different approaches. In order to carry out a meaningful verification/validation, it is critical 

to compare the convention used in these codes. We first compare the convention of the input physical 

quantities in GTC with that in GYRO in the Appendix III. Then we use the GTC code to carry out an 

electrostatic turbulence simulation with kinetic electrons. The temperature and density profiles for ions 

and electrons are taken from the EFIT-produced iterdb file. Fig. 9 show the input profiles for the GTC 

simulation, with the simulation domain  aar 82.0,12.0 . Since the zero boundary condition is 

assumed in the GTC simulation, we artificially flatten the plasma profiles in the two edges of the 

simulation domain to lower the turbulence drive in those regions.  

In the PIC simulation, generally a limited number of particles are used to simulate a physical system 

with much larger number of particles. These particles in the simulation are called “markers”. For the 

background marker loading at the beginning of the simulation, we apply two different methods, 

namely the uniform loading and nonuniform loading.  For the uniform loading method, the marker 

temperature and density are set to be uniform along the radial direction, which is equal to the value at 

the reference point refrr  , while still keeping the experimental temperature and density gradient 

profiles, as sketched by Fig. 10(a)(b). For the nonuniform loading method, we choose the marker 

temperature and density to faithfully follow the input profiles and their gradients, as shown by Fig. 10 

(c)(d). The GTC code conventionally uses the uniform loading method since it has less Monte Carlo 

noise than nonuniform loading method for the same total number of particles in the simulation. As 

discussed in the preceding sections, the gyrokinetic Poisson equation can also be solved in two 

approaches, the improved 4-point average method or the Pade approximation method.  

We show the time history of the volume averaged ion heat diffusivity in Fig. 11, with the red solid line 

denoting the uniform loading, the red circle line denoting the non-uniform loading. In these two cases 

the improved 4-point average method is used to solve the gyrokinetic Poisson equation. The blue 

square line in Fig. 11 shows the time history of the ion heat diffusivity for the non-uniform loading 

using the Pade approximation to solve gyrokinetic Poisson equation. All these three methods give the 

same level of turbulent transport, which indicates that the uniform loading method retain a good 
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approximation for the essential turbulent transport physics. In the mean while, it confirms the Pade 

approximation is as good as the 4-point average method to solve the gyrokinetic Poisson equation in 

the turbulence simulation.  

Then we focus on the gyrokinetic simulation using nonuniform marker loading and the improved 4-

point Poisson solver. The 3D global turbulence mode structure is displayed for the linear stage and 

nonlinear stage in Fig. 12 (a) and (b) respectively. In the linear stage, strong eigenmode structure 

forms along the radial direction. In the nonlinear stage, due to the excitation of the zonal flow, the 

predominant linear radial structure is totally destroyed. This confirms that the zonal flow plays an 

important role in regulating turbulence for this particular case. 

The ion heat diffusivity is time-averaged during the nonlinear stage at each radial location, which 

gives the radial profile of the time averaged ion heat diffusivity, as shown by the red solid line in Fig. 

13. As a comparison, the ion heat diffusivity profile from the GYRO simulation is also shown by the 

dashed line in Fig. 13. These two curves overlap each other very well, which provides a good 

verification example in the microturbulence simulation between two difference gyrokinetic codes.  

The results are then shown for the simulation which uses the Pade approximation to solve the 

gyrokinetic Poisson equation. The radial profiles of the time averaged ion and electron heat diffusivity 

are shown by the dashed lines in Fig. 14. In this Figure, the time averaged ion and electron heat 

diffusivity from the improved 4-point average method are also shown by the solid lines. These two 

different methods for the gyrokinetic equation give approximately similar radial profiles for the ion 

and electron heat diffusivity. 

Next we compare the radial profiles for the time averaged ion heat diffusivity for the two marker 

loading method mentioned before. As shown by Fig. 15, the solid line is for the non-uniform loading 

and the dashed line is for the uniform loading. One can see that the ion heat diffusivity from the 

uniform loading is larger on the inner side than that from the non-uniform loading. On the outer side 

of the radius, the ion heat diffusivity for the uniform loading is smaller instead. This phenomenon can 

be explained by the fact that on the inner side of the radius, the marker temperature for the nonuniform 

loading is larger than that for the uniform loading, so is the ion gyroradius. Due to stabilizing effect of 

gyroaverage, i.e., the finite Larmor radius (FLR) effect, the linear growth rate for the nonuniform 

loading is smaller than that for the uniform loading on the inner side of the radius. So is the turbulence 

transport.  The same argument can be applied to explain why on the outer side the turbulent transport 

for the uniform loading is smaller than that for the nonuniform loading. 
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VII. Summary and discussion 

In this paper, we extend the GTC code to import experimental profiles and magnetic geometry and 

simulate turbulent transport in general geometry by using B-splines to interpolate the equilibrium data. 

A new Poisson solver based on flux coordinates and finite difference scheme is designed and 

successfully implemented in GTC, which can be used along with Pade approximation to solve the 

gyrokinetic Poisson equation. This new Poisson solver can be further used for electromagnetic 

simulations. We also improved the conventional 4-point average method to include higher order global 

effects for gyrokinetic Poisson equation. An electrostatic turbulence simulation is carried out for DIII-

D discharge #101391 using the preceding two different approaches for the gyrokinetic Poisson solver. 

The resultant turbulent transport levels are found to be consistent with each other. The radial profile of 

the heat diffusivity is compared to that from GYRO and good agreement is found. For the background 

marder loading, we developed and tested a non-uniform loading method and found only small 

difference from the conventional uniform loading method on the volume averaged turbulent transport. 

But on the radial structure, there is a nontrivial difference between different loading methods. This 

difference is found due to the stabilizing effect of the gyroaverage (FLR effect). The new algorithm to 

solve Poisson equation using the flux coordinates can be used for electromagnetic simulation, where 

the Ampere’s law has a similar Laplacian form. Another advantage of this new gyrokinetic Poisson 

solver is that it can used to simulate the small aspect ratio tokamaks since the gyrokinetic Poisson 

equation is solved in the perpendicular plane other than poloidal plane in the conventional GTC 

simulation. 
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Appendix I: B-spline interpolation 

For 1D function  f  define at the points i , we can use B-spline to find its value at any space 

points,         2,3,2,1 hifhififf  ,  with Nih ii ,...,1,0  ,1    . Here the function values 

at the grid point i  is known, i.e.,  if ,1 . We try to find the other B-spine coefficients,  if ,2  
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and  if ,3 , by using the known values  if ,1 . By using zeroth and first order continuous condition 

one dimensional function  f  or two dimensional function   ,f . For the 1D function  f , such 

as ion temperature profile  iT  and toroidal current  g , we use the following B-spline 

representation 

         ,,3,2,1 2hifhififf   (33) 

where Nih iiii ,...,1,0  ,, 11    . 

 
       11  , 

 iiii xfhxfxfhxf , (34) 

We find that  

 
        2,3,2,11,1 hhfhififif 

, (35) 

 
   hififif ,32),2(1,2  . (36) 

The preceding two iterative equations are used to obtain the B-spline coefficients,  if ,2  and  if ,3 . 

However, the two initial values,  1,2f  and  1,3f  remain to be determined, which turns out to rely on 

the specific feature of the function  f  around the initial point 0 . When 0  , there are four 

relevant cases to be considered. 

Case 1:   0   where,   baf . In this case, the coefficients  1,2f  and  1,3f  are 

found to be 

        hfff 1,12,11,2   (37) 

   01,3 f  (38) 

Case 2:   2  baf , in which the coefficients  1,2f  and  1,3f  are found to be 

 
  01,2 f

 (39) 

 
       21,12,11,3 hfff 

 (40) 
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Case 3: 
  2  cbaf , in which the coefficients 

 1,2f  and 
 1,3f  are found to be  

 
          hffff 2/1,133,12,141,2   (41) 

 
         2/1,21,12,11,3 hhffff 

 (42) 

Case 4:     cbaxf . This case needs special care to find a smooth  if ,1  and the 

iteration equations become 

 
         hifififif 1,1,121,2,2   (43) 

 
          4,1342,12,21,1 ififhifif   (44) 

 
       hififif 2,21,2,3   (45) 

In order to evolve the preceding equations, the initial coefficients 
 1,2f  and 

 1,3f  are found to be  

 
           hffff 221,13,12,121,2 

 (46) 

 
         hhffff 1,21,12,11,3 

 (47) 

and the initial coefficients  2,2f  and 
 2,3f

 are found to be 

 
       hfff 21,21,32,2 

 (48) 

 
         2/2,22,13,12,3 hhffff 

 (49) 

The end point needs also special treatment: 

 
         hNfNfNfNf 2,11,122,21,2 

 (50) 

We note that with the above settings, the inversion of these B-spline functions can be obtained. 
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Appendix II: Discretization of differential operator on the GTC 

unstructured mesh 

Since the grid size in the  0  is uniform for each flux surface, we can apply a simple spatial central 

algorithm to discretize 
0


 to the second order accuracy. 

 
 

,
2 0

1,1,

,0 i

jiji

ji

fff

 


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











 
 (51) 

where i is the index label for  , j is the index lable for 0 , as shown in Fig. 5.  

Then we discretize 



 to obtain 

 ,
1

*,1,
1

2

,*,1
2

,
h

ff
w

h

ff
w

f jijijiji

ji

 


















 (52) 

with 11  iih  , iih   12 , and  2112 hhhw  ,  2121 hhhw  . The value of *,1 jif   

can be evaluated using the neighboring four points on the same flux surface 1i , as shown in Fig. 5, 

to the second order of accuracy: 
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3

1
1
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


 (53) 

where   1',11   ijiiw  , and 11 1   ii w . A similar expression can be found for the value 

*,1 jif  . 

We continue to discretize 
 



0

2

 to obtain  

 
0

*,1

2

2

0
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2
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2
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1
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Using the four neighboring points in the same flux surface, we can obtain 

 
   

  ]3331
3

1

[
2

1

2',11',1',11',111

',12',111',11',11
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



jijijijiii

jijiijijii
i

ji

ffffw

ffwff
f




  (55) 

Similar expressions can be written for 
0

*,1



  jif
.Finally we deal with the operator 

2

2




. 

  jijiji

ji

ffwfw
hh

f
,*,12*,11

21,
2

2 2



















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
 (56) 

where *,1 jif   can be evaluated by the four point interpolation using Eq. (53). Similar expression can 

be found for *,1 jif  . 

Appendix III: Convention issues for GTC and GYRO 

The DIII-D discharge #101391 serves as a concrete example to discuss the difference between these 

two codes. The GTC code can create an analytic equilibrium based on circular cross section model or 

input a numerical equilibrium from the EFIT data, with the latter usually used to precisely compare to 

experiments. All figures about the DIII-D shot #101391 in this paper are taken from the GTC’s output 

data, and then translated to GYRO convention if necessary. As shown in Fig. 8, each flux surface 

represents a particular value of the poloidal flux function  ZR,  . The center of each flux surface 

  has the coordinate  00,ZR , where  dZRdZRZZ0 , and   20   RRR , with _R  and R  

the intersection points of the flux surface and the horizontal line 0ZZ  . As shown by Fig. 8(a), the 

levitation of the flux surface center 0Z  is negligibly small for all flux surfaces. Starting from the flux 

surface center, we can define a set of new coordinates  ,r , as shown by Fig. 7, which leads to 

      , ,0, 00 rRRrRR . Then on the flux surface  , the effective radius in the 

GTC code is set as   00, RRrr   , which becomes a flux surface function. In the GYRO 

code, the effective radius gr  defined slightly differently, 

       22,0, 0RRrrrg   . The effective radius gtcr and gyror  are shown in Fig. 

8(c ) to vary with the poloidal flux  . Another useful effective radial variable     is also 
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used in the GYRO code, with the definition 22
0 BT   and 0B  is the magnetic field at the 

magnetic axis.  The toroidal magnetic flux T  is related the poloidal magnetic flux   by the 

following relation   qdd T  , where q  is the safety factor.  The quantity,  ggdrrd , as 

shown by Fig. 8(d) for DIII-D discharge #101391., is important for determining the local effective 

magnetic field at the reference point, 
gg

unit
drr

d
BB


0 . In the GYRO convention, the normalized 

gyroradius as * , where iss c  , and ies mTc  , 
i

uniti
i

cm

Bq
 .  For the case DIII-D 

discharge #101391,   mR 72.100  . According to Fig. 8 and 10, at the reference point 60.0argyro , 

  mRR 69.1098.0 00  .  In Fig. 8, we see that   mRa 62.00362.0 0  .  We can obtain kevTe 28.1  

at the reference point 60.0arg  from Fig. 9(a). Since in this discharge, TB 106.20  , then at the 

reference point TBunit 085.3 . These parameters give ms 0017.0  and then 0027.0as . This 

value is the same as the Ref. [25]. In order to make better comparison, we list some key parameters in 

Table (I) for GTC and GYRO [24, 25] for DIII-D discharge #101391. As shown by Table (I), the GTC 

parameters are very close to that of GYRO with some error within a few percentage.  

 GTC GYRO 

a (m) 0.62 0.63 

0R (m) 1.69 1.69 

0B (T) 2.11 2.1 

*  0.0027 0.0026 

q  1.55 1.59 

eT  (kev) 1.28 1.25 

GB ( sec2m ) 1.14 1.02 

Table I: Some important equilibrium parameters at 6.0ar  for DIII-D discharge #101391. The 

GYRO parameters are taken from Ref.[24, 25]. 
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The definition of heat diffusivity is another issue.  The GTC code employs the heat flux q


 to compute 

heat diffusivity ITER
gtc , with  

  












 T

mv
fvvdq E

2

3

2

2
3 


 (57) 

 















T
n

q
ITER
gtc

2



 (58) 

Where the  refers to the flux surface average. However, The GYRO code employs the heat flux Q


 

to compute heat diffusivity ITER
gyro , 

 
2

2
3 mv

fvvdQ E


 (59) 
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
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
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T
n

Q
ITER
gyro

2



 (60) 

In principle, the symbol   in Eq. (57) and (59) could be any flux surface function, such as gtcr , gyror  

or  . In the ITER definition, the symbol  refers specifically to the poloidal magnetic flux. The 

relationship between ITER
gtc  and ITER

gyro  can be described the following equation, 

 


















nTn

nTITER
gtc

ITER
gyro 22

3


 (61) 

Where the particle flux is defined as 

  fvvd E


3  (62) 
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Figure lists 

Figure 1. Equilibrium mesh 

 

Fig 1. Equilibrium mesh from EFIT data. The 

solid lines are drawn along constant ψ and θ. 

Figure 2. Unstructured mesh in GTC 

 

 

 

Fig 2. Sketch of Unstructured field-aligned mesh in GTC. The grids are 
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usually set to make the radial grid size and poloidal grid size equal. 

 

Figure 3. Four-point average revisited 

 

Fig 3 (a) Eight extra points are required to compute 
~

 based on the four-

point gyro-average method. (b) the points used to compute 
~

in the current GTC 

(fresh red points) capture the global effect while the points used conventionally 

(dark red points) are based on the local approximation. 

Figure 4. Verification of four-point average 

 

(a) 
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Fig 4. The four-point average applied to compute the 


~

 are verified in the Bessel problem, for the following 

two cases (a) with local approximation, (b) with global 

correction. 

 

Figure 5. Laplacian discretizaion 

 

Fig 5. Discretization of Laplacian at mesh point (i,j) involves 

additional 10 points around it.  
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Figure 6. Verification of Poisson solver 
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Fig 6 Verification of Poisson solver by a sample problem. 

 

 

Figure 7  Equilibrium flux surface for DIII-D shot # 101391 

 

Fig 7: Equilibrium flux surface for DIII-D Shot #101391 are 

demonstrated to show the coordinate definition in GTC and GYRO. 
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Figure 8. Radial Coordinate Conventions 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig 8 In the case of DIII-D Shot #101391: (a) 0Z  in unit of  0R  varies with poloidal flux surface 

 . (b) 0R  in unit of  0R  varies with poloidal flux surface  . (c) Effective radius for GTC r , for 

GYRO gr  and  0, r  in unit of  0R  varies with poloidal flux surface  . (d) 
gdr

d
 varies 

with gr  in unit of  0R , which is used to calculate the effect magnetic field .unitB  

 

Figure 9. Radial profiles for DIII-D Shot #101391 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig 9. Radial profiles from GTC for the following equilibrium quantities: (a) electron and ion 

temperature, (b) electron and ion temperature gradient, (c) electron density (d) electron 

density gradient. 

Figure 10 Background plasma profile setting 
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Fig 10 Sketch of loading scheme of the background particle distribution in the GTC simulation: (a)(b) 

uniform loading: uniform radial profiles for marker temperature and density with real/non-uniform 

temperature and density gradients to excite instability; (c)(d) nonuniform loading real/non-uniform 

radial profiles for marker temperature and density with real/non-uniform temperature and density 

gradients to excite instability. For the uniform loading, the temperature/density in Fig. (a) is set as the 

value at the reference point  refrr   in Fig. (c). 

 

Figure 11 Time history of ion heat diffusivity 
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Fig 11: Time history of the ion heat diffusivity for three difference 

cases, where unform means that that uniform marker loading with 

improved four-point average method to solve gyrokinetic Poisson 

equation, nonuni means that non-uniform marker loading with 

improved four-point average method, and nonuni pade means that non-

uniform marker loading with Pade approximation to solve gyrokinetic 

Poisson equation.  

 

Figure 12 Three-dimensional contour of turbulence structure  
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Fig 12 Gyrokinetic simulation of DIII-D discharge #101391, global mode 

structure in the (a) linear growth stage (b) nonlinear stage. 

Figure 13. Radial profile of ion heat diffusivity  

 

Fig 13: Comparison of radial profiles of ion heat diffusivity from 

GTC and GYRO simulation 

Fig. 14 Heat diffusivity radial profiles from four-point-average method and Pade approximation 
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Fig 14: time averaged heat diffusivity radial profiles from four-

point-average (4-ave) method and Pade approximation 

Fig. 15 Heat diffusivity radial profiles for two marker loading methods 

 

Fig 15: Heat diffusivity radial profile from two different marker 

loading methods, where uniform means the uniform marker loading 

and nonuni means the nonuniform marker loading.  
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