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Abstract 

Electron turbulence induced by trapped electron mode has been widely studied. The dissipative trapped 

electron mode (DTEM) is an important candidate for tokamak edge turbulence. Nonlinear gyrokinetic 

particle simulations based on edge parameters are carried out to investigate the collisional effects on 

the nonlinear transport of DTEM turbulence. It is found the collisions can induce a low level radially 

inward electron transport for the DTEM turbulence, which is closely related to the phase difference 

between the radial turbulent motion and perturbed density fluctuation induced by collisional dissipation. 

We observe an inverse spectral cascade of the turbulence during the nonlinear DTEM saturation, which 

is caused by quasimode scattering induced by trapped electrons and important for determining the 

magnitude of turbulent transport. The nonlinear decorrelation time is found to be inversely proportional 

to the collisional frequency by gyrokinetic simulation, which is consistent with the predication of 

quasilinear theory. 

 

 

I Introduction 

Drift wave turbulence is one important candidate for the anomalous transport 

observed in tokamaks [1]. In particular, the turbulence driven by trapped electron 

mode (TEM) instabilities, namely the collisionless trapped electron mode (CTEM) 

and the dissipative trapped electron mode (DTEM), can be responsible for the 

electron anomalous transport in the tokamak plasmas [2][3]. The CTEM, which is 

excited by the precessional resonance of the trapped electrons, has been studied both 

analytically and by gyrokinetic simulation [3][4][5][6][7][8][9][10]. On the other 

hand, the DTEM is relatively less investigated by the gyrokinetic simulation [10], 

especially for the nonlinear physics of the DTEM turbulence. Recently, the interest on 
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the DTEM has been revived by observation of the so-called edge coherent mode 

(ECM) in the EAST experiment as well as the code validation process by the C-Mod 

experiment [11][12].  

It is a common practice that people interpret the nonlinear transport and 

turbulence in terms of the characteristics of the linear instability [11]. These kinds of 

practice sometimes are misleading due to the spectral cascade during the nonlinear 

saturation. For example, the CTEM turbulence is excited at short wavelength [6] but 

saturates at long wavelength due to spectral cascading [13]. The spectral cascading 

during the nonlinear saturation has been an important research area since decades ago 

for people to accurately predict the transport level in tokamaks [3]. 

In this work, we use the global gyrokinetic particle simulation code GTC 

(Gyrokinetic Toroidal Code) [14] to investigate the nonlinear physics for DTEM, 

particularly the radial particle transport and the spectral cascading. We discover 

radially inward particle transport driven by the DTEM turbulence, which favors the 

formation of the transport barrier and the pressure pedestal. We identify that the 

nonlinear decorrelation time is inversely proportional to collisional frequency, first by 

a quasilinear theory and then verified by the gyrokinetic simulation, which shows that 

the quasilinear theory is still a valid description for the nonlinear DTEM transport in 

the edge turbulence. The spectral cascading during nonlinear saturation is found to be 

an inverse cascade induced by trapped electron scattering, which shows a different 

trend from the traditional theory [3].  

The rest of the paper is organized as follows. In Sec. II, we discuss the simulation 

model and parameters used. Then we show the nonlinear transport results for the 

DTEM in Sec. III. In Sec. IV we show the nonlinear spectral cascading results or the 

DTEM. Finally, conclusion and discussion are given in Sec. V.  

II. Simulation model and parameters 

The GTC code is a three-dimensional global gyrokinetic particle code for 

tokamak physics simulations, which uses the Boozer coordinates for realistic 



magnetic field geometry [15]. This code invokes a nonlinear δf scheme [16] to 

simulate the drift wave turbulence, energetic particle physics and many other 

important physics topics associated with instability and transport in the tokamak 

[17][18]. The linear DTEM simulation has been successfully benchmarked in our 

recent work with the analytical theory that includes the pitch angle scattering collision 

[19]. 

In the GTC simulation, the particle distribution is composed of an equilibrium 

Maxwellian distribution 
0F  and a perturbed distribution function f . The perturbed 

part for the ion if , and the non-adiabatic response eg , are solved through the 

nonlinear gyrokinetic equation [20] [21]. 

The f  method used in the GTC code efficiently limits the Monte Carlo noise 

associated with the discrete particles. We denote the particle weight w i  and we  

for the ion and electron respectively:
 

w /i i if f , w /e e eg f , which satisfies the 

following time evolution equation:  
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where 2

Ev E B B   is the E B  drift velocity，  2 2 3

||2dv m v v B B eB    is 

the magnetic drift velocity, 2

0 0ln ( 2 3 2) lnn mv T T      and 

|| ||gd dt t x v v        is the gyro-averaged Vlasov operator, where 

|| 0g E dx v B B v v   ,  *

|| 0 0v B mB B q       , and *

0 ||B B B v b   . 



The collisions on the electrons are dominated by the electron-ion collisions, 

which can be represented for simplicity by a pitch angle scattering operator, given by 

the following Monte-Carlo process [22][23]: 
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where 
||v v   is the pitch angle of the particle, Δt is the time step, and nR  is a 

random number between 0 and 1.  

In this work, we assume the concircular flux surface for simplicity. The basic 

simulation parameters are set as for a typical tokamak: 0 190cmR  , 0 0.3a R   , 

0 1.70B T , 0 2200evT  , 0i eT T T  ,  13 3

0 4.0 10 cmn    , where 0R  is the main 

radius, 0B  is the on-axis equilibrium magnetic field, 0n , 0T  is the density and the 

temperature at the magnetic axis. The Fig. 1 shows the plasma profiles used in the 

nonlinear DTEM simulations, where a  is the minor radius, r  is the radial 

coordinate. In the simulation, we set steep gradients for plasma density and 

temperature profiles in the edge region ( 0.8 1.0r a  ),  e.g.., 00 1 0ln 2r nR  , 

0 lnT 120r eR   , 0 lnT 110r iR   , to mimic the H-mode pressure profile of a 

typical tokamak.  At the center of the pedestal, the plasma parameters 

are: 131 10cn   ，  0.5icT kev ，  0.4ecT kev ， 04.0ei sC R  ，

0 0/ 20.0be Te sv qR C R   . The toroidal mesh for the electromagnetic field consists 

of 32 parallel grids on each flux surface and a set of unstructured poloidal mesh is set 

up with grid size about i  in the radial and poloidal directions to simulate the short 

perpendicular wavelength modes. The normalized collisional frequency in this profile 

is * ~ 1e  
in tokamak edge, where the effective electron collisional frequency 

 * 3/2

0e ei TeqR v   , Tev  is the electron thermal velocity and ei  is the typical 

electron-ion collisional frequency with  2 4 2 2 3

04ei i i e Ten Z e m v  . 

  



 

 

 

Figure 1: The plasma profiles used in the simulation for (a) ion density, (b) electron 

temperature, (c) ion temperature.  

III. Nonlinear transports for DTEM simulations 

The DTEM instability is caused by dissipative nonadiabatic response due to 

collisional trapping and detrapping of electrons. The linear growth rate of DTEM 

increases with the collisional frequency [24][19], which is different from the CTEM 

where the instability is driven by toroidal precessional resonance and the collisions 

play a damping role. Therefore, it is likely that the DTEM has a new saturation 

mechanism and transport behavior. Here we show nonlinear GTC simulation results 



for the particle and energy transport to address these important physics issues for 

DTEM.  

Fig. 2 shows the time history of the volume averaged electron particle and energy 

flux for DTEM, where the dashed line represents the simulation with the zonal flow, 

and the solid line represents the simulation without the zonal flow, and 0s st tC R , 

s e iC T m  is the normalized time. We can see that there exists an radially inward 

particle flux in Fig. 2(a), while the heat flux is found radially outward in Fig. 2(b). As 

shown later in this section by a quasilinear theory, the inward direction of the electron 

flux is caused by the phase difference between perturbed potential and perturbed 

density due to the dissipation of collisions. It is known that zonal flow can reduce the 

turbulent transport for both ITG and CTEM turbulence [25]. It is thus interesting to 

observe the effect of zonal flow on the DTEM turbulence. From Fig 2 one can see that 

the zonal flow indeed affects the saturation process of the DTEM instability. However, 

the zonal flow does not have a significant effect on the saturated nonlinear DTEM 

transport level. This is because in the short or transient time scale, the zonal flow can 

be excited by the DTEM instability due to the smallness of the collisionless 

neoclassical polarization [25]; in the long and transport time scale, the zonal flow 

response is damped away due to the collisional neoclassical polarization [26]. 

 

Next, we try to investigate the transport mechanism for the DTEM turbulence 

and start with a quasilinear theory and compute the flux-surface averaged electron 

radial flux as: 
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where  
v  

means integrate over the velocity space, 2Er

c
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     is the 

radial component of the E B  drift, eg  is the non-adiabatic electron response in 



the linear DTEM instability [19], which can be used to calculate the quasilinear 

turbulent transport: 
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,  
0J  is the zeroth order 

Bessel function, 2(1 ) (v)eia i    ,   01 2m E B E      is the normalized 

electron velocity pitch angle, E is the electron kinetic energy, MF  is the Maxwellian 

distribution. 

 

Choose the typical mode that maximize the mode amplitude in the nonlinear 

saturation phase, and combine Eq. (4) and Eq. (5), we can have: 
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where the term 0 0( ) ( )J a m J a  gives  the perturbed density  n  a phase shift 

from the perturbed electric potential   due to the collisional dissipation, which 

leads to the radially inward turbulent transport. If the 
* ~ 1e , the numerical 

computation of Eq. (7) is shown as Fig. 3. we can find the flux can be nearly 

represented as 4 14 10 ei   , when 
*0.5 2e  , where the minus sign shows that the 

electron flux is radially inward. From this quasilinear point of view the particle flux is 

proportional to 1

ei   and the magnitude is restrained when the collision frequency is 



large enough. We proceed to carry out gyrokinetic simulations using GTC for 

different collisionalities. In the simulation, we also find that the diffusivity is 

proportional to 1

ei   as shown in Fig. 4, which is consistent with the theoretical 

calculation in Fig. 3. This consistency suggests that the quasilinear theory is still a 

valid description for the nonlinear DTEM transport in the edge turbulence. 

These preceding simulation and theory results show that the collisions can 

essentially change the transport feature of the TEM turbulence, i.e., the direction of 

the particle flux. It is known the radially inward flux is beneficial for the formation of 

transport barrier and the improvement the plasma confinement. Therefore, the DTEM 

turbulence can be a beneficial trigger for the L-H transition.  

 

 

 
 

Figure 2: Time history of the volume averaged electron quantities: (a) particle 

diffusivity;  (b) heat diffusivity. 

 

 



 

Figure 3: Electron particle flux e Ern v    vs. collisional frequency. 

 

 

 



Figure 4: Electron diffusivity vs. collision frequency. 

IV Nonlinear cascading for DTEM simulation 

In Sec. III we have found an inward radial flux for the electrons in the DTEM 

and collisional TEM turbulence. Due to collisional damping, the zonal flow is not the 

dominant mechanism for the nonlinear saturation of DTEM turbulence. It is known 

the turbulent transport is closely related to the turbulence spectral since the spectral 

cascade can change the turbulence structure and affect the nonlinear saturation level 

and then turbulent transport [3]. It is thus desirable to investigate the nonlinear 

spectral cascade in the DTEM turbulence, as is shown in this section.  

In order to observe the spectral cascading dynamics, the turbulence fluctuation 

can be decomposed into its Fourier components. The electric potential thus can be 

written as: 

     
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ˆ, , , , r

r

i k r m

r k m

m

r t dk t e
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where 
,

ˆ
rk m  is the Fourier component of the electric potential at the toroidal angle 

0 ， rk  represents the radial wave vector, m is the poloidal mode number,   is the 

poloidal angle . When the potential is translated into the Fourier space, we can plot  

2

,
ˆ

rk m  to find potential energy distribution. The time evolution of this distribution 

gives the spectral cascade of the turbulence. 

Fig. 5 shows the two-dimensional contour for the potential energy for the DTEM 

turbulence in the edge region during the nonlinear saturation, where k m r   is the 

poloidal wave vector. All the four panels of Fig. 5 illustrate the potential energy 

distribution at different time steps during the nonlinear saturation in the radial and 

poloidal wave vector space. One can observe a clear spectral cascading in the poloidal 

direction while there is a slow normal cascade in the radial direction. We also note 

that rk  is the same size as k , which satisfies the usual gyrokinetic assumption. Fig. 

5(a) shows that, at the end of linear phase, the potential energy concentrates on 



~ 0.4sk , which is the most unstable mode in the linear phase. Fig. 5(b) shows that 

at the beginning of the nonlinear phase, the potential energy begins to transfer to a 

new wave ( ~ 0.05sk ). Then, the potential energy goes from short poloidal 

wavelength (higher sk ) modes to the long poloidal wavelength (lower sk ) 

modes, which are illustrated in Fig. 5(c) and Fig. 5(d). This process shows an inverse 

spectral cascading picture for the DTEM turbulence. Fig. 6 shows time history of the 

averaged poloidal mode number 
2 2ˆ ˆ
m m

m m

m m   , where ˆ
m  is the poloidal 

Fourier component with mode number m at the flux surface r=a/2. As shown by the 

dotted solid line in Fig. 6, m  becomes smaller during the nonlinear saturation, which 

suggests that the potential energy flows from the high mode number waves to the low 

mode number waves, and  an inverse spectral cascading occurs during the DTEM 

nonlinear saturation (after 2.5st  ). The averaged poloidal mode number ~ 205m  

( ~ 0.4sk )  in the linear phase ( 2.5st  ) and decrease to ~155m  ( ~ 0.3sk ) in 

the nonlinear saturation phase, which is consistent with Fig. 5.  

Moreover, if we linearize the electron response while maintaining the nonlinear ion 

response to carry out another simulation with the same parameters, there does not 

exist any spectral cascading, as shown by the dot-dashed line in Fig. 6. But if we 

linearize the ion response in the simulation and keep the nonlinear electron response, 

the inverse spectral cascading remains unchanged, which is not shown in Fig. 6 for 

simplicity. These results suggest that the inverse spectral cascading in the DTEM is 

caused by the nonlinear wave interaction induced by the trapped electrons and has no 

relationship with the nonlinear ion Landau damping. We further note that the DTEM 

has a spectral cascading characteristics similar to that of CTEM [13], although the 

turbulence is driven by the collisions instead of the precessional resonance in the 

CTEM turbulence. It is this nonlinear scattering of quasimodes to longer wavelength 

modes induced by the trapped electrons,  that leads to inverse spectral cascade and 

the saturation of the DTEM turbulence. However, the underlying nonlinear physics of 



the spectral cascading in DTEM and how the collisions play a role requires further 

investigation. 

  

 

 

 

 

Figure 5: Evolution of 2D potential spectral ,
ˆ

rk m  for the typical DTEM turbulence 

in the tokamak edge at (a) 2.5st  , (b) 3.0st  , (c) 3.5st  , (d)
 

4.0st  .  

 



 

 

Figure 6: Averaged poloidal mode number m  vs. time for the typical DTEM 

turbulence in the tokamak edge 

 

V Conclusion and discussion 

In this paper, we use the nonlinear gyrokinetic simulation by the GTC code to 

study the DTEM turbulence and the associated transport properties. It is found that in 

the DTEM turbulence the electron transport depends sensitively on the collisions. A 

radially inward particle flux is found by the self-consistent nonlinear simulation, 

which stems from the phase shift between the perturbed density and the electrostatic 

potential due to collisional dissipation and favors the formation of a transport barrier. 

We identify that the nonlinear decorrelation time is inversely proportional to 

collisional frequency, first by a quasilinear theory and then confirmed by the 

gyrokinetic simulation, which suggests that the quasilinear theory is a valid 

description for the nonlinear DTEM transport in the edge turbulence. It is further 

found that the inverse spectral cascading instead of the zonal flow leads to the 

saturation of the unstable modes and low level of turbulent transport in the DTEM 

turbulence. Although the driving mechanism for the DTEM turbulence is much 

different from that for CTEM, the DTEM turbulence has an inverse spectral cascading 

in the nonlinear saturation, which is similar to that in the CTEM turbulence. This 



inverse spectral cascading in the DTEM turbulence is rooted from nonlinear 

quasimode scattering induced by the trapped electrons instead of the nonlinear ion 

Landau damping, which needs to be further investigated. 
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