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Using electron drift wave (eDW) as a paradigm model, we have investigated analytically di-
rect wave-wave interactions between a test DW and ambient toroidal Alfvén eigenmodes (TAE) in
toroidal plasmas. The nonlinear effects enter via scatterings to short-wavelength electron Landau
damped kinetic Alfvén waves (KAWs). Specifically, it is found that scatterings to upper-sideband
KAW lead to stimulated absorption of eDW. Scatterings to the lower-sideband KAW, on the con-
trary, lead to its spontaneous emission. As a consequence, for typical parameters and fluctuation
intensity, nonlinear scatterings by TAE have negligible net effects on the stability of eDW.

I. INTRODUCTION

Drift wave (DW) [1] and shear Alfvén wave (SAW)
[2–7] are two fundamental electromagnetic oscillations
in magnetized plasmas such as tokamaks [8]. DWs
are, typically, electrostatic fluctuations excited by ther-
mal plasma density and/or temperature nonuniformi-
ties. Consequently, DWs have frequencies, perpendicu-
lar wavelengths and parallel wavelengths comparable, re-
spectively, to the thermal plasma diamagnetic drift fre-
quencies, thermal ion Larmor radii and the system size.
SAWs, meanwhile, are electromagnetic fluctuations and,
typically, manifest as Alfvén eigenmodes (AEs) locating
within the frequency gaps of SAW continuum spectra [2].
For typical tokamak parameters, AE frequencies could be
an order of magnitude higher than those of DWs, and,
thus, spontaneous excitations of AEs often involve reso-
nances with superthermal energetic particles (EPs); e.g.,
alphas in a D-T fusion plasma. AEs, thus, have perpen-
dicular wavelengths in the order of EP Larmor radii and
parallel wavelengths in the order of system size. In short,
we may describe DWs as low-frequency micro-scale fluc-
tuations; while AEs as high-frequency meso-scale fluctua-
tions. Since both DWs and AEs are intrinsic fluctuations
in magnetic confined fusion plasmas and have routinely
been observed in tokamak plasmas, it is, thus, natural
to inquire if and how these two fluctuations may interact
and its implications. Recently, we have investigated such
interactions via the channel of nonlinear wave scatterings
between toroidal Alfvén eigenmode (TAE) [2] and, as a
paradigm model, electron drift wave (eDW).

There are two types of direct nonlinear interactions
between TAE and eDW. The first type involves the scat-
tering of a test TAE by ambient eDWs [9]. Here, we
demonstrate that the TAE will suffer significant damping
via nonlinearly generated upper and lower sidebands of
short-wavelength electron Landau damped kinetic Alfvén
waves (KAWs) [10]. This scattering process, thus, may be
regarded as stimulated absorption. For typical parame-
ters, it is found, furthermore, that the nonlinear damping
rate could be comparable to the growth rate of TAE in-
stability excited by EPs. The second type of nonlinear

wave-wave interactions involve the scattering of a test
eDW by ambient TAEs, and is the focus of the present
work. As will be shown in the following analysis, while
the second type of scattering may be considered as the
“reverse” of the first type, the induced nonlinear damp-
ing/growth rate in this case is, in fact, negligible for typ-
ical parameters. Qualitatively speaking, while the non-
linearly generated upper sideband KAW (UKAW) still
gives rise to stimulated absorption, the nonlinearly gen-
erated lower sideband KAW (LKAW), however, gives rise
to stimulated emission (i.e., as in a parametric decay in-
stability) [11]. Quantatively, these two effects tend to
nearly cancel each other; leading to negligible net effect
on the stability of eDW.

The theoretical model and governing equations are
given in Sec. II. Section III presents the nonlinear gen-
eration of upper and lower KAW sidebands. Nonlinear
dispersion relation of eDW in the presence of the finite-
amplitude TAE is then derived and analyzed in Sec. IV.
Section V gives the final conclusions and discussions.

II. THEORETICAL MODEL AND GOVERNING
EQUATIONS

We consider a large-aspect-ratio and low-β tokamak
plasma with circular magnetic surfaces. Thus, ε ≡
r/R � 1 with r and R being, respectively, the minor
and major radii of the torus, and β ∼ O(ε2) � 1 being
the ratio between plasma and magnetic pressure. We,
furthermore, take the thermal background plasma to be
Maxwellian, and adopt the eDW paradigm model with fi-
nite density gradient but negligible temperature gradient
as well as trapped particle effects.

The perturbed distribution function, δfj with j = e, i,
obeys the nonlinear gyrokinetic equation [12]

δfj = −(e/T )jδφFMj + exp(−ρ · ∇)δgj , (1)

and (
∂t + v‖b · ∇+ vd · ∇+ 〈δug〉α·

)
δgj

= (e/T )jFMj (∂t + iω∗j) 〈exp(ρj · ∇)δL〉α. (2)
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Here, FMj is the Maxwellian distribution, ρj = v×b/Ωj ,
b ≡ B0/B0, Ωj = (eB0/mc)j , δgj is the non-adiabatic
particle response, vd = b × [(v2⊥/2)∇ lnB0 + v2‖b · ∇b]

is the magnetic drift velocity, 〈A〉α denotes the gyro-
phase averaging of A, ω∗j = −i(cT/eB0)b×∇ lnNj ·∇ is
the diamagnetic drift frequency due to the finite density
gradient,

〈δuj〉α = (c/B0)b×∇〈exp(−ρj · ∇)δL〉α, (3)

and

δL = δφ− v‖δA‖/c (4)

with δφ and δA‖ being, respectively, the scalar and par-
allel component of the vector potential. Note that, with
β � 1, magnetic compression may be neglected; i.e.,
δB‖ ' 0.

Meanwhile, the governing field equations are the quasi-
neutrality condition∑

j=e,i

[
(N0e

2/T )jδφ− ej 〈(Jkδg)j〉v
]
= 0, (5)

and the parallel Ampere’s law ∇2
⊥δA‖ = −(4π/c)δJ‖.

Here, we note Jk = J0(k⊥ρ) = 〈exp(iρ · k⊥)〉α and k2⊥ =
−∇2

⊥ should be understood as an operator. Furthermore,
we note that, for SAW and KAW, instead of the Ampere’s
law, it is more convenient to use the following nonlinear
gyrokinetic vorticity equation [13, 14]

ik‖δJ‖k + (N0e
2/T )i (1− Γk) (∂t + iω∗i)k δφk

−
∑
j

〈ejJkωdδgj〉v =
∑

k′+k′′=k

Λk′

k′′

{
δA‖k′δJk′′/c

−ej 〈(JkJk′ − Jk′′) δLk′δgk′′j〉v
}
. (6)

Here, Γk ≡ I0(bk) exp(−bk), bk = k2⊥ρ
2
i , ρ2i = Ti/(miΩ

2
i )

and I0 is the modified Bessel function. The first and sec-
ond terms on the left hand side correspond, respectively,
to the field line bending and inertia terms. Meanwhile,
the third term corresponds to the curvature-pressure cou-
pling term including the ballooning-interchange term and
finite plasma compression. Note that, for TAE/KAW
physics considered here, it can generally be ignored. The
right hand side contains, the nonlinear terms; where
Λk′

k′′ = (c/B0)b · (k′′×k′), and the first and second terms
correspond, respectively, to the Maxwell and generalized
gyrokinetic ion Reynolds stresses. Note that, while the
Maxwell stress makes negligible contribution in the TAE-
eDW interaction since eDW is predominantly electro-
static, the Maxwell stress, as will be shown later, does
play an important role in the TAE-KAW interaction.

We now consider the effects on eDW linear stability
due to nonlinear scattering by TAE. Letting Ω0(ω0,k0)
and Ωs = (ωs,ks) denote, respectively, a small but
finite-amplitude TAE with toroidal mode number, n0,
and a test eDW with toroidal mode number, ns. Thus,
|ω0| ' VA/(2qR) with VA being the Alfvén speed and q

FIG. 1: Schematic diagram of the two-step scattering
processes analyzed in the present work. The test eDW,

ambient TAE and nonlinearly generated KAW
sidebands are in blue, green and red, respectively.

the safety factor, ωs ∼ ω∗e the electron diamagnetic drift
frequency, and |ksθρi| = |nsqρi/r| ∼ O(1). Furthermore,
we have, typically, |ωs/ω0| < 1 and |n0/ns| < 1. That is,
TAE and eDW are disparate both in spatial and tempo-
ral scales. Consequently, the sidebands nonlinearly gen-
erated by TAE and eDW; i.e., Ω± = (ω±,k±) = Ωs±Ω0,
tend to have |ω±| ' |ω0| and |k±| ' |ks|, and may be re-
garded as short-wavelength (high-n) KAWs. Ω±, in turn,
can interact with Ω0; resulting in the nonlinear modifica-
tion of eDW dispersion relation and, thereby, the stability
properties. The two-step scattering processes are illus-
trated schematically in Fig. 1. The first-step scattering
process, i.e., the nonlinear generation of KAW sidebands
is analyzed in the following Sec. III. Section IV analyzes
the second step scattering process and the resultant non-
linear eDW dispersion relation.

III. NONLINEAR GENERATION OF UPPER
AND LOWER SIDEBANDS OF KINETIC

ALFVÉN WAVES

Let us first analyze the nonlinear generation of Ω+; i.e,
UKAW. The analysis for LKAW is similar. For electrons,
we have, from Eq. (2) and letting δgke = δg

(1)
ke + δg

(2)
ke ,

with superscripts “(1)” and “(2)” denoting, respectively,
the linear and nonlinear responses; thus,

δg
(1)
ke ' − e

Te
FMe

(
1− ω∗e

ω

)
k
δψk, (7)

where δψk = (ωδA‖/ck‖)k is the effective potential due
to the induced parallel electric field, −∂tδA‖/c and we
have taken the massless-electron |ωk/k‖vte| � 1 limit.
In Eq. (7), k stands for the TAE/KAW modes; Ω0 and
Ω±, and δg

(1)
se ' 0 as Ωs is an electrostatic eDW mode.

It then follows

δg
(2)
+e ' 0. (8)

Meanwhile, for ions, with |ω/k‖vti| � 1 for all the modes
considered here, TAE, KAW and eDW, we have

δg
(1)
ki ' e

Ti
FMiJkδφk

(
1− ω∗i

ω

)
k
, (9)
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and

δg
(2)
+i ' −i Λ

s
0

2ω+
J0Js

e

Ti
FMi

(ω∗i

ω

)
s
δφsδφ0. (10)

Substituting Eqs. (7) to (10) into the quasi-neutrality
condition, Eq. (5), we readily derive

δψ+ = σ∗+δφ+ + i
Λs
0

2ω+
D+δφ0δφs, (11)

where

σ∗+ = [1 + τ − τΓ+(1− ω∗i/ω)+] /(1− ω∗e/ω)+, (12)

and

D+ = τ(ω∗i/ω)sF+/(1− ω∗e/ω)+, (13)

τ = Te/Ti, and F+ = 〈J0J+JsFMi〉v/N0. Meanwhile, the
nonlinear gyrokinetic vorticity equation, Eq. (6), readily
yields

τb+

[(
1− ω∗i

ω

)
+

1− Γ+

b+
δφ+ −

(
V 2
Ak‖bk‖

bω2

)
+

δψ+

]

= −i Λ
s
0

2ω+
γ+δφsδφ0, (14)

where

γ+ = τ [Γs − Γ0 + (ω∗i/ω)s(F+ − Γs)] . (15)

Combining Eqs. (11) and (14) then yields the equation
describing the nonlinear generation of Ω+ by Ω0 and Ωs;
i.e.,

τb+εA+δφ+ = −i(Λs
0/2ω+)β+δφsδφ0, (16)

where

εAk =
(
1− ω∗i

ω

)
k

1− Γk

bk
−
(
V 2
A

b

k‖bk‖

ω2

)
k

σ∗k (17)

is the linear SAW/KAW operator, and

β+ = τ(Γs − Γ0) + τ
(ω∗i

ω

)
s

×

[
F+ − Γs −

(
k‖bk‖

ω2

)
+

τV 2
AF+

(1− ω∗e/ω)+

]
. (18)

Nonlinear generation of Ω− follows that of Ω+, and we,
therefore, present only the main results. For electrons,
we have, again, δg(2)−e ' 0, and, for ions,

δg
(2)
−i ' i

Λs
0

2ω−
J0Js

e

Ti
FMi

(ω∗i

ω

)
s
δφsδφ

∗
0. (19)

The quasi-neutrality condition, Eq. (5), yields,

δψ− = σ∗−δφ− − i(Λs
0/2ω−)D−δφsδφ

∗
0, (20)

with

D− = τ(ω∗i/ω)sF−/(1− ω∗e/ω)−, (21)

and F− = 〈J0J−JsFMi〉v/N0. Meanwhile, the nonlinear
gyrokinetic vorticity equation, Eq. (6), yields

τb−

[(
1− ω∗i

ω

)
−

(1− Γ−)

b−
δφ− −

(
V 2
Ak‖bk‖

bω2

)
−
δψ−

]

= i
Λs
0

2ω−
γ−δφsδφ

∗
0, (22)

and

γ− = τ [Γs − Γ0 + (ω∗i/ω)s(F− − Γs)] . (23)

Finally, from Eqs. (20) and (22), we have

τb−εA−δφ− = i(Λs
0/2ω−)β−δφsδφ

∗
0, (24)

and

β− = τ(Γs − Γ0) + τ
(ω∗i

ω

)
s

×

[
F− − Γs −

(
k‖bk‖

ω2

)
−

τV 2
AF−

(1− ω∗e/ω)−

]
. (25)

We remark, again, that εA± in Eqs. (16) and (24) are
KAW operators. That is, in terms of physics, Eqs. (16)
and (24) describe mode-converted KAWs (Ω±) driven by
the nonlinear coupling between a TAE (Ω0) and eDW
(Ωs).

IV. NONLINEAR DISPERSION RELATION OF
ELECTRON DRIFT WAVE

We now analyze the second scattering process between
Ω± and Ω0 back into Ωs. Again, let us first consider the
Ω+ channel; i.e., Ω+ + (−Ω0) → Ωs. From the nonlinear
gyrokinetic equation, Eq. (2), we have, for electrons in
the massless |ω/k‖vte| � 1 limit and noting Eqs. (7) and
(8),

δg
(2)
se,+ ' −i Λ

s
0

2ω+

e

Te
FMeδψ+δψ

∗
0

[
1 +

k‖0

k‖s

(ω∗e − ω)s
ω0

]
.(26)

Here, δg(2)se,+ denotes nonlinear electron response of Ωs

due to Ω+ and Ω∗
0 coupling. For ions, meanwhile, we

have

δg
(2)
si,+ ' i(Λs

0/2ωs)
(
J+δφ+δg

(1)∗
0i − J0δφ

∗
0δg+i

)
. (27)

Here, we note that δg+i = δg
(1)
+i +δg

(2)
+i given, respectively,

by Eqs. (9) and (10). δg(2)si,+ is then given by

δg
(2)
si,+ '

[
i
Λs
0

2ω+
J0J+δφ+δφ

∗
0 −

(Λs
0)

2

4ωsω+
J2
0Js|δφ0|2δφs

]
×

(ω∗i

ω

)
s

e

Ti
FMi. (28)
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The analysis is similar for the Ω− + Ω0 → Ωs scattering
channel. Then, we have

δg
(2)
se,− ' i

Λs
0

2ω−

e

Te
FMeδψ−δψ0

[
1 +

k‖0

k‖s

(ω∗e − ω)s
ω0

]
,(29)

and

δg
(2)
si,− ' −

[
i
Λs
0

2ω−
J0J−δφ−δφ0 +

(Λs
0)

2

4ωsω−
J2
0Js|δφ0|2δφs

]
×

(ω∗i

ω

)
s

e

Ti
FMi. (30)

Substituting the δgsj = δg
(1)
sj + δg

(2)
sj,+ + δg

(2)
sj,− for j =

e, i into the quasi-neutrality condition, Eq. (5), of the
Ωs mode, we then readily derive the following governing
equation for δφs;

εsδφs = i(Λs
0/2ω+)βs+δφ

∗
0δφ+ − i(Λs

0/2ω−)βs−δφ0δφ−

−ε(2)s |δφ0|2δφs. (31)

Here, εs is the eDW linear dielectric operator and, in
the limit of adiabatic circulating electrons and neglecting
trapped electrons, is given by

εs = 1 + τ − τ

〈(
ω − ω∗i

ω − k‖v‖ − ωd

)
s

FMi

N0
J2
s

〉
v

; (32)

and, in the lowest order,

εs ' 1 + τ(1− Γs) + τΓs(ω∗i/ω)s. (33)

Meanwhile,

βs± = τ
(ω∗i

ω

)
s
F± + σ∗0σ∗±

[
1 +

k‖0

k‖±

(ω∗e − ω)s
ω0

]
,(34)

and

ε(2)s =
∑

l=+,−

{
F2

ωsωl
+ σ∗0

[
1 +

k‖0

k‖l

(ω∗e − ω)s
ω0

]

×
[

Fl

ω2
l (1− ω∗e/ω)l

]}
(Λs

0)
2

4
τ
(ω∗i

ω

)
s
. (35)

Noting Eqs. (16) and (24) for, respectively, δφ+ and
δφ−, Eq. (31) can be formally expressed as

(
εs + ε(2)s |δφ0|2

)
δφs =

[(
Λs
0

2ω+

)2
β+
s δφ

∗
0β+

τb+εA+
δφ0

+

(
Λs
0

2ω−

)2
β−
s δφ0β−
τb−εA−

δφ∗0

]
δφs;(36)

which may be regarded as the nonlinear eigenmode equa-
tion of Ωs (eDW) in the presence of finite-amplitude Ω0

(TAE) fluctuations.
Equation (36), in general, need to be solved numer-

ically. We can, however, make analytical progress by

employing the scale separation and obtain an analyti-
cal dispersion relation variationally. First, we adopt the
ballooning-mode representation for δφs;

δφs = exp(insξ)
∑
ms

exp(−imsθ)Φs(nsq −ms ≡ zs),(37)

where ξ and θ are, respectively the toroidal and poloidal
angles, and denote the spatial scales of TAE and eDW
as, respectively, x0 and xs; such that |xs|/|x0| ∼
O(n0/ns) � 1. Multiplying Eq. (36) by δφ∗s and in-
tegrating over xs, we readily derive

Ds + χ(2)
s |δφ0(x0)|2 = R+ +R−, (38)

where

Ds = 〈Φ∗
s(zs)εsΦs〉s (39)

is the linear dielectric constant of Ωs,

〈Φ∗
s[A]Φs〉s ≡

∫ 1/2

−1/2

dzs
∑
ms

Φ∗
s[A]Φs

=

∫ ∞

−∞
dzsΦ

∗
s[A]Φs (40)

with the normalization 〈|Φs|2〉s = 1,

χ(2)
s = 〈Φ∗

sε
(2)
s Φs〉s, (41)

and

R± =

〈
Φ∗

s

(
Λs
s

2ω±

)2

β±
s

{
δφ∗0
δφ0

}
β±

(τbεA)±

{
δφ0
δφ∗0

}
Φs

〉
s

.

(42)

Equation (38) is formally the variational nonlinear
eDW dispersion relation in the presence of a finite-
amplitude TAE given by δφ0. We will later analyze
it further using a trial function for Φs(zs). We now
make same qualitative observations. We note that χ(2)

s

is real and, in general, R± = Re(R±) + iIm(R±). Thus,
χ
(2)
s and Re(R±) lead to nonlinear frequency shift; while
Im(R±) gives rise to nonlinear damping or growth. Fo-
cusing on Im(R±) first, we observe, from Eq. (42), that
Im(R±) ∝ Im(1/ε±); i.e., the imaginary component of
the SAW/KAW operator, εA±, given, by Eq. (17) along
with Eqs. (16) and (24), respectively. Looking at Eq.
(16) and letting

δφ+ = A+(x0) exp(insξs)

×
∑
ms

exp(−imsθ)Φ+(zs ≡ nsq −ms), (43)

we then have, recalling the scale separation between x0

and xs,

A+(x0)τbsε
s
A+Φ+(zs) = −i Λ

s
0

2ω+
β+Φs(zs)δφ0(x0), (44)
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where

εsA± =
(
1− ω∗

ω

)
±

1− Γs

bs
−

(
V 2
A

bs

k‖sbsk‖s

ω2
±

)
σs
∗±,

σs
∗± '

[
1 + τ − τΓs (1− ω∗i/ω)±

]
/(1− ω∗e/ω)±,(45)

bs = bsθ(1 + ŝ2∂2zs), bsθ = k2sθρ
2
i , ŝ = rq′/q denotes mag-

netic shear, and k‖s = (nsq−ms)/(qR) = zs/(qR). Since
|ŝ2∂2zs | < 1 for moderately/strongly ballooning modes,
εsA± further reduces to

εsA± ' bsθ ŝ
2∂2zs

∂εsA±
∂bsθ

−
(
ωA

ω±

)2

σ±s(z
2
s − z2±). (46)

Here, ωA = VA/(qR),

σ±s = [1 + τ − τΓs(bsθ)(1− ω∗i/ω)±] /(1− ω∗e/ω)±,(47)

and

z2± =

(
ω

ωA

)2

±

(
1− ω∗i

ω

)
±

1− Γs(bsθ)

bsθ

1

σ±s
<

1

4
; (48)

as |ω/ωA|2± ' 1/4. Equation (44) along with εsA+ given
by Eq. (46) indicates that the upper sideband is a KAW
mode converted at the high-n Alfvén resonance layer
zs = ±z+. As noted in previous study of mode-converted
KAW [10], for τ = Te/Ti ∼ 1, the finite electron Landau
damping as well as the Airy swelling of the amplitude
dictate that the damping occur predominantly around
z = ±z+ and the energy absorption rate approximates
that of the local Alfvén resonance via the causality con-
straint Im(ωs, ω+, ω−) > 0; i.e.,

Im

(
1

εA+

)
' −πδ(εA+) ' −π

(
ω+

ωA

)2 δ(z2s − z2+)

σ+s
.(49)

Similar processes occur for the Ω− KAW; i.e.,

Im

(
1

εA−

)
' πδ(εA−) ' π

(
ω−

ωA

)2 δ(z2s − z2−)

σ−s
. (50)

Consequently,

Im(R+) = −

〈
Φ∗

s

(
Λs
0

2ω+

)2
β+
s δφ

∗
0β+

τbs

×
(
ω+

ωA

)2 δ(z2s − z2+)

σ+s
δφ0Φs

〉
, (51)

and, omitted here, a similar corresponding expression can
be obtained for Im(R−).

To proceed further, we take the |k0⊥ρi|2 � 1 limit but
keep the finite |ωs/ω0| < 1 correction, it is then straight-
forward to derive

β±
s β±δ(εA±) ' τ(1− Γsθ)σsθ

(ω∗e − ω)s(ω − ω∗i)s
ω2
0

×
k‖±

k‖s
δ(εA±). (52)

Here, Γsθ = Γs(bsθ) and σsθ = 1 + τ(1− Γsθ).
The variational nonlinear eDW dispersion relation, Eq.

(38), then yields, letting ωs = ωsr+iγs and Dsr(ωsr) = 0,(
γs + γls

) ∂

∂ωsr
Dsr = Im(R+ +R−)

' − π

4βi

(
Ωi

ω0

)2 ∣∣∣∣δB0θ

B0

∣∣∣∣2 (1− Γsθ)σsθ
(ω∗e − ω)s(ω − ω∗i)s

ω2
0

×

〈[(
ω+

ωA

)2 δ(z2s − z2+)

σ+s
−

(
ω−

ωA

)2 δ(z2s − z2−)

σ−s

]
|Φs|2

〉
s

.(53)

Here, γls is the linear damping/growth of eDW. Noting
that ∂Dsr/∂ωsr > 0, Im(R+) < 0 and Im(R−) > 0,
scatterings to UKAW and LKAW, thus, lead to, respec-
tively, damping and growth of eDW. As illustrated in
Fig. 2, one may qualitatively regard UKAW scattering as
stimulated absorption, and LKAW scattering as sponta-
neous emission, similar to the familiar parametric decay
instability via a quasi-mode. In Eq. (53), we have also
noted ck0rδφ0/B0 ' VAδB0θ/B0.

To estimate the nonlinear damping/growth rate quan-
titatively, we adopt a trial function for Φs as |Φs|2 =
(1/

√
π∆s) exp(−z2s/∆2

s) with ∆s > 1 for a typical mod-
erately ballooning eDW. Equation (53) then yields

Im(R+ +R−) ' −
√
π

4βi

(
Ωi

ω0

)2 ∣∣∣∣δB0θ

B0

∣∣∣∣2 (1− Γsθ)σsθ

× (ω∗e − ω)s(ω − ω∗i)s
ω2
0

×

[(
ω+

ωA

)2
1

σ+sz+∆s
−

(
ω−

ωA

)2
1

σ−sz−∆s

]
. (54)

Taking typical tokamak parameters, Ωi/ω0 ∼ O(102),
βi ∼ O(10−2), bsθ ∼ O(1), |ωs/ω0|2 ∼ O(10−1), and
|∆sz±| ∼ O(1), we then find

|Im(R+ +R−)| < O(105)

∣∣∣∣δB0θ

B0

∣∣∣∣2 . (55)

Noting that ∂Dsr/∂ωsr ∼ 1/ωsr and γls/ωsr ∼ O(10−1)
as, e.g., in the trapped electron mode [15], we then
find that, for TAE fluctuations with |δB0θ/B0|2 <∼
O(10−7) [16], the nonlinearly induced damping/growth
rate, γs/ωsr ∼|Im(R+ + R−)| <∼ O(10−2), and should
have negligible effects on the eDW stability. We also re-
mark that one can, furthermore, straightforwardly show
that the nonlinear frequency shift due to χ(2)

s |δφ0|2 and
Re(R+ +R−) is also typically negligible.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have employed the nonlinear gy-
rokinetic equations and investigated analytically direct
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FIG. 2: Sketch illustrating the nonlinear scattering
processes of (a) stimulated absorption and (b)

spontaneous emission. Here, Ω0 is the finite-amplitude
TAE, Ωs is the test eDW, and Ω± are, respectively, the

upper and lower sideband KAWs. .

wave-wave interactions between a test electron drift wave
(eDW) and ambient finite-amplitude toroidal Alfvén
eigenmodes (TAEs) in low-β circular tokamak plas-
mas. Here, nonlinear scatterings generate upper and
lower sidebands of mode-converted kinetic Alfvén waves
(KAWs) at high todoial mode numbers which are typi-
cally damped by electrons around the mode conversion
positions. Furthermore, we find that scattering to upper-
sideband KAW gives rise to stimulated absorption and,
hence, damping of the eDW. Scattering to lower-sideband
KAW, on the other hand, gives rise to spontaneous emis-
sion and, thereby, growth of the eDW; i.e., TAE para-
metrically decays to eDW via the lower-sideband KAW
quasi-mode. For typical tokamak parameters and TAE
fluctuation intensity, our analysis indicates that the net
effects on eDW stability properties should be negligible.
We remark again that, as noted in Sec. I, the present
results are in contrast to those obtained previously for
the case of direct wave-wave interactions between a test
TAE and ambient eDW [9]. In that case, both channels of
scatterings to KAWs lead to stimulated absorption and,

thereby, significant damping of the TAE.

As noted above, our analysis adopts the electron drift
waves without temperature gradients as a paradigm
model in order to simplify the analysis and delineate more
clearly the underlying nonlinear physics mechanisms. It
is clearly desirable to extend the investigations to include
ion-temperature-gradient (ITG) modes as well as other
types of AEs; such as reversed shear Alfvén eigenmodes
(RSAEs) [17, 18] and beta-induced Alfvén eigenmodes
(BAEs) [4, 19]. While detailed analyses for such cases
remain to be carried out, one may conjecture that the
physical pictures outlined in the current paradigm model
should hold at least qualitatively.

Finally, that the present results indicating negligible
effects on eDW via direct wave-wave interactions with
TAE suggests the possible significance of indirect route
of interaction via, e.g., the zonal structures consisting of
flow, field and phase space nonlinearly generated by AEs
[20–22]. This interesting subject remains to be further
investigated in the future.
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