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Abstract.

The properties of the low frequency shear Alfvén and acoustic wave spectra in

toroidal geometry are examined analytically and numerically considering wave particle

interactions with magnetically trapped and circulating particles, using the theoretical

model described in [Chavdarovski I and Zonca F 2009 Plasma Phys. Contr. Fusion

51 115001] and following the framework of the generalized fishbone-like dispersion re-

lation. Effects of trapped particles as well as diamagnetic effects on the frequencies

and damping rates of the beta-induced Alfvén eigenmodes (BAE), kinetic balooning

Modes (KBM) and beta-induced Alfvén-acoustic eigenmodes (BAAE) are discussed

and shown to be crucial to give a proper assessment of mode structure and stabil-

ity conditions. Present results also demonstrate the mutual coupling of these various

branches and suggest that frequency as well as mode polarization are crucial for their

identification on the basis of experimental evidence.
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1. Introduction

The low frequency spectrum of Alfvénic fluctuations in tokamak plasmas with |ω| ≪
ωA ≡ vA/qR0, where vA = B/

√
4πϱ is the local Alfvén speed, ϱ the plasma mass

density, q the safety factor and R0 the torus major radius, has been subject of intense

theoretical and experimental investigation since the discovery of the beta-induced

Alfvén eigenmodes (BAE) [3, 4] with frequency below the shear Alfvén continuous

spectrum. Experimental evidence exists [5, 6, 7, 8, 9] of modes belonging to both shear

Alfvén wave (SAW) and acoustic branches below the “BAE accumulation point” [10]

|ω| < ωBAE = ωGAM ≃ qωTi(7/4 + Te/Ti)
1/2, where ωTi = vTi/qR0 is the thermal ion

transit frequency, vTi the thermal ion velocity and Ti,e the ion and electron temperatures,

respectively. Observations in NSTX and JET also show the existence so-called beta

induced Alfvén acoustic eigenmodes (BAAE) [11, 12], with generally mixed Alfvén-

acoustic polarizations [11, 12, 13, 14, 15, 16] at frequencies ωBAAE ∼ (Te/Ti)
1/2ωTi.

Experimental evidence of BAAE is also reported in DIII-D [17] and HL-2A [18].

At frequencies lower than ωBAE, various physics becomes important, such as

coupling of SAW with the slow magneto-acoustic wave (SMW) and resonant wave-

particle interaction due to both circulating as well as trapped thermal particles (ions

and electrons) in the long mean free path collisionless limit [19]. Because of this, the fluid

plasma description can be justified only for modes near the BAE accumulation point and

well above the ion transit frequency (|ω| ≫ ωTi) [10], for which the ion Landau damping

becomes negligible. This is achieved for either q ≫ 1 or Te ≫ Ti, which is also the

necessary criterion for fluid plasma description of BAAE. In general, it has been shown

that validity of the fluid analysis is very limited [10, 20, 1, 21, 22, 23, 24] and kinetic

theory is generally needed to deal with the strong wave-particle resonant interactions

for BAEs [10, 25, 26, 27, 16, 28, 1], GAMs [29, 30, 31, 32] and BAAEs [23], including

diamagnetic effects in the case of BAEs [10, 26, 1, 2] and BAAEs. Kinetic analysis is also

necessary when going to even lower frequencies |ω|<∼ ωBi ≡ (r/R0)
1/2(Ti/mi)

1/2/(qR0) ≈
ϵ1/2ωTi, for which trapped thermal ion dynamics becomes crucial [20, 1, 21, 22]. Here,

ωBi is the bounce frequency of deeply trapped ions between magnetic mirror points, r

is the radial flux coordinate, and ϵ = r/R0 is the tokamak local inverse aspect-ratio.

Fluctuations belonging to the low frequency SAW spectrum can be described by

one single and general “fishbone-like” dispersion relation in the form [33, 34, 35, 10]

iΛ(ω) = δŴf + δŴk , (1)

which is based on the two scale-length of singular (inertial/kinetic) and regular (ideal

MHD) structures of the underlying fluctuations. Here, the left hand side (LHS)

is the inertial (kinetic) layer contribution due to thermal particles, while the right

hand side (RHS) comes from background MHD and thermal/energetic particle kinetic

contributions in the regular ideal regions.

Kinetic layer physics is dominated by thermal ions, while thermal electrons, due

to their small mass contribute mainly through trapped electron precessional motion

in toroidal direction. Similarly, thermal electrons contribute to δŴk via resonant as
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well as non-resonant responses mostly via their bounce averaged response. Bounce

averaged trapped ion dynamics contributes to δŴk as well and its effect may be of

crucial importance in determining the internal kink mode stability in ITER because of

ion Landau damping due to the precession resonance (ω = ωdi) [36]. Here, ωds (for

s = e, i) are the toroidal precessional frequencies for electrons and ions; in particular,

ωds = ωDsmsv
2/2Ts for deeply trapped particles, where ωDs = (nq/r)Ts/msR0ωcs and

ωcs = esB/msc. Treating wave-particle resonant interaction and SAW-SMW coupling

on the same footing shows that, for |ω| ≪ ωBi, trapped thermal ion response is not only

important, but becomes dominant and≈ϵ−1/2 larger than that of circulating particles [1].

Hence, it is of crucial importance to include trapped thermal ion dynamics when deriving

the dispersion relation of SAW/SMW spectra in toroidal geometry [20, 1, 21, 22].

In this paper we strictly follow Ref. [1], where a simplified model for circulating

and trapped particles was applied, considering the former as well circulating with

constant parallel velocity along the field lines and the latter as deeply trapped; i.e.,

characterized by harmonic bounce motion between magnetic mirror points. In a separate

and more formal and general work, we will analyze the same problem considered here,

in which both circulating and trapped particles are treated in action angle variables,

with a realistic description of particle motion in the whole considered frequency range.

Here, we describe the structures of low frequency SAW continuous spectrum in low β

tokamak plasmas (β = 8πP/B2
0 ≈ ϵ2, with P the plasma pressure and B0 the toroidal

magnetic field on axis), taking into account both thermal plasma ion compressibility

and diamagnetic effects; thus, ω ≈ ω∗pi = (Tic/eiB
2)(k × B) · ∇ lnPi, where ω∗pi is

the thermal plasma ion diamagnetic frequency. SAW/SMW coupling is treated on the

same footing of kinetic descriptions of both circulating as well as trapped particles,

while finite Larmor radius (FLR) and finite magnetic drift orbit width (FOW) effects

are neglected, but can be readily included in the present analysis [26, 25, 37]. For the

sake of simplicity, we also assume high poloidal mode numbers with kinetic singular

layer at k∥qR0 = 0 [10].

From the expression of Λ given in Ref. [1], it is difficult to visualize the effect of

trapped particle dynamics on the low frequency SAW continuous spectrum, due to its

complicated mathematical form. For this reason, in this paper we present numerical

studies of the previously derived analytic expression of Λ, with the aim of gaining

insights into the structures of the low frequency SAW continuous spectrum and of

discussing some of its important qualitative features due to trapped particles and

diamagnetic effects. In particular, we illustrate properties of frequency and polarization

of fluctuations existing in the SAW continuum frequency gaps, particularly BAEs,

BAAEs and kinetic balooning modes (KBM). Results discussed in this paper also include

kinetic effects on parallel electric field, mode polarization, frequency and damping rates

of BAAEs due to the coupling to KBMs. These findings help understanding the actual

nature of fluctuations observed experimentally at frequencies well below ωBAE; and

suggest that frequency as well as mode polarization are crucial for their identification

on the basis of experimental evidence.



Dispersive properties of shear Alfvén and acoustic wave spectra in tokamaks 4

This paper is organized as follows. In section 2, we present the theoretical model

underlying our kinetic analysis of wave-particle interactions at low frequencies; and

summarize the derivation of Λ following strictly Refs. [1, 10] and including both

thermal electron and ion responses. Mode polarization properties are also discussed

in this section, introducing a frequency dependent complex function that may be used

to quantify SAW-SMW coupling and its impact on collisionless damping. Section 3

discusses the fluid limit of Λ and trapped particle as well as diamagnetic effects on

the BAE frequency. In section 4, we illustrate the very low frequency limit; and discuss

trapped particle and diamagnetic effects on KBM and BAAE modes, as well as effects of

their mutual coupling on fluctuation frequency and damping rates. Concluding remarks

are given in section 5.

2. Theoretical Model

The generalized fishbone-like dispersion relation (1) is based on the two scale-length

asymptotic matching of singular (inertial/kinetic) and regular (ideal MHD) structures

of plasma fluctuations. Kinetic layer is characterized by sharply varying radial

structure, whose properties are closely related to particle magnetic drifts interaction

with perpendicular and parallel electric field [38]. In this paper, we follow the derivation

of Λ from Ref. [1], where, for the sake of simplicity in the analysis of the inertial/kinetic

layer, all trapped particles are treated as deeply trapped (harmonic v∥ between magnetic

mirror points) and all circulating particles as well circulating (constant v∥). We also

employ straight magnetic field line toroidal coordinates (r, ϑ, ζ), with r the radial-like

flux coordinate, ϑ the poloidal angle and ζ the generalized toroidal coordinate for which

q = B · ∇ζ/B · ∇ϑ = q(r), and the drift frequency can be written as

ωdg = k · vdg = −i
v∥B

ωc

∂

∂ℓ

(
b ·∇r ×∇ϑ

b ·∇ϑ

v∥
B

)
∂

∂r
, (2)

since, in the inertial/kinetic layer, it is dominated by the radial magnetic drifts.

Here, vdg is the geodesic particle magnetic drift velocity, v∥ the parallel (to B)

speed, ωc = eB/(mc) the cyclotron frequency of a particle of charge e and mass

m, b = B/B , ∂/∂ℓ = b · ∇ = (1/B)(∇ψp × ∇ϑ · ∇ζ)∂/∂ϑ and ψp = ψp(r) is the

poloidal magnetic flux. The major contribution to perpendicular dynamics is due to

ions excursion in the radial direction. Meanwhile, parallel current is dominated by

electrons, which have significantly smaller mass than ions and behave as massless fluid

that, due to Eq. (2), ensures overall charge neutrality by sustaining a parallel electric

field with periodic (a.c.) structure along magnetic field lines [38]. Equation (2) also

implies that the flute-like (d.c.) component of the parallel electric field in the long

wavelength limit is set by bounce-averaged wave-particle interactions via precessional

resonance [1].

The model applied in Ref. [1] assumes a low β ≈ ϵ2 axisymmetric tokamak plasma

equilibrium with shifted circular flux surfaces, where magnetic shear s = rq′/q and

α = −R0q
2β′ define a two-parameter set of plasma equilibria [39] and prime denotes
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derivation with respect to r. The plasma state is determined by three fluctuating

scalar fields [40, 41]: the scalar potential perturbation δϕ, the perturbed parallel

magnetic field δB∥ and the perturbed field δψ, defined in terms of the parallel vector

potential as δA∥ = −i(c/ω)b · ∇δψ . With these field variables, the perturbed parallel

electric field is given by δE∥ = −b · ∇(δϕ − δψ) and the ideal magneto-hydrodynamic

(MHD) limit is recovered setting δϕ = δψ, i.e δE∥ = 0. The fluctuating parallel

magnetic field, δB∥, can be explicitly solved for and eliminated form the equations

assuming perpendicular pressure balance and substituting ∇B drift by curvature drift

in vd = b× κ(µB + v2∥)/ωc [38, 41], with κ = b ·∇b.

The field equations for δϕ and δψ are the vorticity equation and quasi-neutrality

condition [40, 41]. In the inertial/kinetic layer, such equations are readily written in

the “ballooning space”, where ϑ is mapped into the extended poloidal angle θ [39]; and,

in the long wavelength limit (neglecting finite ion Larmor radius with respect to the

radial mode wavelength), vorticity equation and quasi-neutrality condition are given by,

respectively [34, 10]

Bb · ∇
[
1

B

k⊥
2

kϑ
2 b · ∇δψ

]
+
ω2

v2A

(
1− ω∗pi

ω

) k2⊥
k2ϑ
δϕ+

α

q2R2
g(θ)δψ =⟨ 4πe

k2ϑc
2
ωωdiδKi

⟩
, (3)(

1 +
1

τ

)
(δϕ− δψ) =

Ti
ne

⟨δKi − δKe⟩ , (4)

where ⟨(...)⟩ =
∫
dv(...) denotes integration in velocity space, b · ∇ = (qR0)

−1∂θ, R0

is the tokamak major radius, k2⊥/k
2
ϑ = 1 + k2r/k

2
ϑ = 1 + (sθ − α sin θ)2, kr and kϑ are

radial and poloidal wave vectors, respectively, and g(θ) = cos θ + [sθ − α sin θ ] sin θ.

Furthermore, for each particle species s = e, i, ω∗ps = ω∗ns+ω∗Ts, ω∗ns = (Tsc/esB)(k×
b) · ∇(ns)/ns, ω∗Ts = (Tsc/esB)(k× b) · ∇(Ts)/Ts, ns is the particle density, τ = Te/Ti,

ne = ni = n and we assume only one thermal ion species with unit electric charge.

In the kinetic layer, the fields have a sharply varying radial structure with

k2⊥/k
2
ϑ ≫ 1 or, equivalently, s2|θ|2 ≫ 1. For the optimal frequency ordering |k∥|vA ≈

ωTi = (2Ti/mi)
1/2/(qR0) and |s| = O(1), vA being the Alfvén speed, one readily obtains

|θ| = O(β−1/2) in the kinetic layer since |k∥|qR0 ≈ |θ|−1 ≈ β1/2 [10], with k∥ the parallel

(to b) wave vector. For large |θ| = O(β−1/2), the fluctuating fields show a two scale

behavior: they vary on a short scale θ0 ≈ 1 and on a long scale θ1 ≈ O(β−1/2). Although

this ordering is strictly derived for circulating particles, it can be readily extended to

include magnetically trapped particles, for which |θ0/θ1| ≪ 1 still applies [1]. For

convenience [38], it is useful to adopt the rescaled fluctuating potentials δΦ = (k⊥/kϑ)δϕ

and δΨ = (k⊥/kϑ)δψ, and represent them as asymptotic series in powers of β1/2; e.g.,

δΦ = δΦ(0) + δΦ(1) + δΦ(2) + ... , where δΦ(1) = O(β1/2), δΦ(2) = O(β), etc.

Following Refs. [1] and [10], we easily show that δΨ(0) = δΨ(0)(θ1) and δΨ
(1) = 0,

while, on the other hand, δΦ ≃ δΦ(0)(θ1) + δΦs(θ1) sin θ0 up to order β1/2, where

δΦs(θ1), δΦ
(0)(θ1) and δΨ(0)(θ1) vary only on the long scale θ1. One generally has
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δΦ(0)(θ1) ∼ δΨ(0)(θ1), while δΦs(θ1) ∼ δΦ(0)(θ1) for ω ∼ ωDi = kϑ(cTi)/(eBR0) (the

precessional frequency) and δΦs(θ1) ∼ O(β1/2)δΦ(0)(θ1) for ω ∼ ωTi [1, 23].

Solving for the kinetic responses of thermal electrons and ions in the layer region,

it is possible to show [1]

δΦ(0) = IΦ(ω/ωDi, ω/ωDe)δΨ
(0) , (5)

with ωDe = −τωDi and

IΦ

(
ω

ωDi

,
ω

ωDe

)
= 1+

√
2ϵτ (L(ω/ωDi) + τ−1L(ω/ωDe))

1 + τω∗ni/ω +
√
2ϵτ [1− ω∗ni/ω −M(ω/ωDi)− τ−1M(ω/ωDe)]

.(6)

Here, ϵ = r/R0,

M

(
ω

ωDi

)
= − 2

ω

ωDi

{(
1− ω∗ni

ω
+

3

2

ω∗Ti

ω

)[
1 +

√
ω

ωDi

Z

(√
ω

ωDi

)]
− ω∗Ti

ω

[
1

2
+

ω

ωDi

+

(
ω

ωDi

)3/2

Z

(√
ω

ωDi

)]}
(7)

and

L

(
ω

ωDi

)
= − 2

{(
1− ω∗ni

ω
+

3

2

ω∗Ti

ω

)[
1

2
+

ω

ωDi

+

(
ω

ωDi

)3/2

Z

(√
ω

ωDi

)]

−ω∗Ti

ω

[
3

4
+

1

2

ω

ωDi

+

(
ω

ωDi

)2

+

(
ω

ωDi

)5/2

Z

(√
ω

ωDi

)]}
, (8)

with Z(x) = 1/
√
π
∫∞
−∞ e−y2/(y − x) dy. The corresponding functions for trapped

electrons M(ω/ωDe) and L(ω/ωDe) are obtained from Eqs. (7) and (8) by substitution

ωDi, ω∗ni, ω∗Ti → ωDe, ω∗ne, ω∗Te. Equation (5) shows that the d.c. component of

the parallel electric field, ∝ δΦ(0) − δΨ(0), is connected with the existence of trapped

particles and the precessional resonance, since IΦ → 1 for ϵ → 0. Furthermore, for

|ω| ≫ |ωDi,e|, |ω∗pi,e|, one can show M (ω/ωDi) → (1−ω∗ni/ω) and L (ω/ωDi) → ωDi/ω;

thus, again, reducing Eq. (6) to IΦ = 1.

The existence of finite d.c. parallel electric field is due to Iϕ ̸= 1 and, in the long

wavelength limit, it is due to the resonant wave-plasma interaction at trapped particle

precession frequency. In Fig. 1 we show real and imaginary parts of Iϕ for different

frequencies, assuming ωDe = −ωDi and −ω∗e = ω∗i = 0.2ωTi. The figure shows that Iϕ
is generally not equal to 1, but for a large portion of the spectrum, i.e., when ω > ωTi,

the simplified expressions ReIΦ ≃ 1 and ImIΦ ≃ 0 are reasonably good approximations.

In fact, for the parameters given in Fig. 1, around the frequency of BAE accumulation

point IΦ ≈ 0.989. For the same parameters we also have Iϕ = 1 when ω → 0. However,

we, again, remind the reader that, in order to make a general statement about the value

of Iϕ a treatment is required that includes correct particle motion and finite Larmor

radius effects. In the present approximative model, it is evident that the appearance

of finite d.c. parallel electric field is due to particle precessional resonance with both

thermal electrons and ions, ω ≃ ωDe,i accounted for by the plasma dispersion functions
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Figure 1. a.Values of ReIΦ (upper line) and ImIΦ (bottom line) as functions of

Re(ω/ω̄Di) for fixed parameters ω∗ni/ωTi = ω∗Ti/ωTi = 0.2, ω̄Di/ωTi = 0.15/
√
2,

q = 1.5 and τ = 1; b. The ratio | δΦ(0)/δΨ(0) | and c. The phase shift between δΦ(0)

and δΨ(0) for the same parameters.

in Eq. (6). This can be understood, since electrons and ions have ωDe = −τωDi. In this

way, electrons are not able to short circuit the d.c. parallel electric field if |ω| ∼ |ωDe,i|.
The expression of Iϕ is a function of precessional and diamagnetic frequencies

of thermal ions and electrons. Hence, in general, we can speak of precessional and

diamagnetic effects on the d.c. parallel electric field. Since d.c. parallel electric field also

exists due to the finite Larmor radius (FLR) effects [42, 43], for a complete the picture

one needs to consider both thermal ion FLR effects as well as precessional resonance

of both ions and electrons on the same footing.It is worthwhile noting that Iϕ has a

significant imaginary part (lower line of Fig. 1a), which in real space corresponds to a

phase shift between the perturbed δΦ and δΨ (see Fig. 1c), which is not case when only

FLR are considered. These effects will be studied and discussed in a separate work.

Further solving the quasineutrality condition for the sinusoidal term in the inertial

region we obtain [1]:

δΦs = −
N1(

ω
ωTi

) + ∆N1(
ω

ωTi
) +

√
2ϵP2(

ω
ωDi

, ωBi

ωDi
)

1 + 1
τ
+D1(

ω
ωTi

) + ∆D1(
ω

ωTi
) +

√
2ϵ

[
P1(

ω
ωDi

, ωBi

ωDi
)− P2(

ω
ωDi

, ωBi

ωDi
)
]ξδΦ(0) ,(9)

where P1(ω/ωDi, ωBi/ωDi) and P2(ω/ωDi, ωBi/ωDi) come from the trapped particles

dynamics and can be calculated as:

P1(ω/ωDi, ωBi/ωDi) = −2
ω2

ω2
Di

[
(1− ω∗n

ω
+

3

2

ω∗T

ω
)G2 −

ω∗T

ω
G4

]
,

P2(ω/ωDi, ωBi/ωDi) = −2
ω

ωDi

[
(1− ω∗n

ω
+

3

2

ω∗T

ω
)G4 −

ω∗T

ω
G6

]
;
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and we have denoted

Gn =
1

π1/2

∫ ∞

−∞

e−x2
xn

(ω/ωDi − x2)2 − (ωBi/ωDi)2x2
dx ,

for n = 2, 4, 6, 8. Following Ref.[1], we adopt the definition δΦs =

S(ω, ωDi, ωBi, ωTi)ξδΦ
(0) to indicate the relation in Eq. (9), while the Gn integrals

become [1]

G2 =
ωDi/ωBi

Ω1 + Ω2

[Ω1Z(Ω1)− Ω2Z(Ω2)] ,

G4 =
ωDi/ωBi

Ω1 + Ω2

[
Ω2

1 − Ω2
2 + Ω3

1Z(Ω1)− Ω3
2Z(Ω2)

]
,

G6 =
ωDi/ωBi

Ω1 + Ω2

[
(1/2)(Ω2

1 − Ω2
2) + Ω4

1 − Ω4
2 + Ω5

1Z(Ω1)− Ω5
2Z(Ω2)

]
,

G8 =
ωDi/ωBi

Ω1 + Ω2

[
(3/4)(Ω2

1 − Ω2
2) + (1/2)(Ω4

1 − Ω4
2) + Ω6

1 − Ω6
2 + Ω7

1Z(Ω1)− Ω7
2Z(Ω2)

]
,

with Ω1 and Ω2 defined as

Ω1 =

ωBi

ωDi
+
√

(ωBi

ωDi
)2 + 4 ω

ωDi

2
and Ω2 =

−ωBi

ωDi
+
√

(ωBi

ωDi
)2 + 4 ω

ωDi

2
.

Furthermore, in Eq. (9), the functions

D1(x) = x
(
1− ω∗ni

ω

)
Z(x)− ω∗Ti

ω
x[x+ (x2 − 1/2)Z(x)] (10)

and

N1(x) = 2(ωDi/ωTi)N(x) ,

with

N(x) =
(
1− ω∗ni

ω

)
[x+ (1/2 + x2)Z(x)]− ω∗Ti

ω
[x(1/2 + x2) + (1/4 + x4)Z(x)] , (11)

come from the well circulating particles dynamics [10], whereas the functions ∆N1(x)

and ∆D1(x) account for circulating particle dynamic modification due to finite trapped

particle fraction [1]:

∆D1(x) =
x

π1/2

∫ ∞

0

e−y ln

(
x+

√
2ϵy

x−
√
2ϵy

)[
1− ω∗ni

ω
− ω∗T i

ω

(
y − 3

2

)]
dy , (12)

∆N1(x) =
ωDi/ωTi

π1/2

∫ ∞

0

ye−y ln

(
x+

√
2ϵy

x−
√
2ϵy

)[
1− ω∗ni

ω
− ω∗Ti

ω

(
y − 3

2

)]
dy . (13)

Here, the logarithmic term in the integrands is numerically calculated as ln(x+
√
2ϵy)−

ln(x−
√
2ϵy) for ensuring proper analytic continuation [1].

Following Ref. [10, 1], the vorticity equation at second order in the asymptotic

expansion is reduced to the form (∂2/∂θ21)δΨ
(0) + Λ2δΨ(0) = 0, where the general

expression of Λ2 can be written as:

Λ2/IΦ =
ω2

ω2
A

(
1− ω∗pi

ω

)
+ Λ2

cir + Λ2
tra , (14)
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where Λ2
cir and Λ2

tra are the circulating and trapped particles contributions with

Λ2
tra =

ω2ω2
Bi

ω2
Aω

2
Di

q2√
2ϵ

[P3 + (P2 − P3)S(ω, ωDi, ωBi, ωTi)] (15)

and

P3 = −2

[
(1− ω∗n

ω
+

3

2

ω∗T

ω
)G6 −

ω∗T

ω
G8

]
.

The circulating particle term [10] contains the well circulating response and corrections

due to trapped particle fraction

Λ2
cir = q2

ωωTi

ω2
A

[(
1− ω∗ni

ω

)(
F

(
ω

ωTi

)
+∆F

(
ω

ωTi

))
− ω∗Ti

ω

(
G

(
ω

ωTi

)
+∆G

(
ω

ωTi

))
+
ωωTi

4ω2
Di

(
N1

(
ω

ωTi

)
+∆N1

(
ω

ωTi

))
S(ω, ωDi, ωBi, ωTi)

]
,

which reduces to the well circulating particle response given by [10] in the ϵ → 0 limit.

The functions within the brackets are [10]:

F (x) = x
(
x2 + 3/2

)
+
(
x4 + x2 + 1/2

)
Z(x) ,

G(x) = x
(
x4 + x2 + 2

)
+
(
x6 + x4/2 + x2 + 3/4

)
Z(x) , (16)

and ∆F (ω/ωTi) and ∆G(ω/ωTi) are given by [1]:

∆F (x) =
1

π1/2

∫ ∞

0

e−y ln

(
x+

√
2ϵy

x−
√
2ϵy

)
y2

4
dy , (17)

∆G(x) =
1

π1/2

∫ ∞

0

e−y ln

(
x+

√
2ϵy

x−
√
2ϵy

)
y2

4

(
y − 3

2

)
dy. (18)

The final term of Λ in Eq. (14) contains transit frequency resonance at ω = ωT i

and combined bounce/precession resonance ω = ωDi ± ωBi. In fact, as noted above the

precessional resonance ω = ωDi,e in the kinetic layer only contributes to the d.c. parallel

electric field term ∝ IΦ defined in Eq. (6). Thus, besides the τ = Te/Ti factor in the

quasi-neutrality equation, the ∝ IΦ term is the only way electron dynamics affects the

kinetic layer, assuming negligible inertia. Note that Eq. (14), similarly to Eq. (6), is

valid up to O(ϵ1/2) with respect to the leading order; and that higher order terms must

be neglected for consistency in the present asymptotic expansion.

The expression for Λ in Eq. (14) may be used in the general fishbone-like dispersion

relation, Eq. (1), for describing a variety of shear Alfvén modes in a wide frequency

range, from 0 to ωBAE. Note, however, that potentially important effects, such as

precession reversal and the contribution of barely trapped/circulating particles are not

included in Eq. (14). The accumulation points of the shear Alfvén continuous spectrum

are simply found by solving Λ = 0 with the complex frequency ω as root. The complex

accumulation point frequency is indicative of the corresponding type of fluctuation that

may be reasonably expected, since all modes “emerge” from the accumulation points

for increasing values of δŴf and/or δŴk, as it is readily recognized from Eq. (1) [44].

Specific examples are discussed below in sections 3 and 4.
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3. Fluid limit of Λ and BAE spectrum

Extensive studies of the effects of circulating ions on the BAE spectrum [10, 26, 27, 23]

enable us to elucidate the trapped particle influence on the high frequency spectrum

by observing the changes to the previous results when a trapped ion population is

introduced. In the high frequency limit, |ω| ≫ ωTi, it was shown that the circulating

particle contribution reduces to [1, 10]

Λ2
cir = −ω2

ω2
A

q2
ω2
T i

ω2

[(
7

4
+ τ

)
− 3

4

√
2ϵ

(
5

4
+ τ

)]
, (19)

where, for simplicity, the ω∗pi/ω → 0 limit is considered. The first term in the

brackets comes from F (x) and accounts for well circulating particles [10], while the

∝
√
2ϵ contribution comes from ∆F and describes the modified circulating particle

response only, since the S(ω, ωDi, ωBi, ωT i) function becomes independent of
√
2ϵ at

high frequency [1].

For the trapped particle term, we expand the final result in ωBi/ω → 0 and get:

Λ2
tra = −3

4

√
2ϵ
ω2

ω2
A

q2
ω2
Ti

ω2

(
5

4
+ τ

)
, (20)

As stated above, the trapped particles effect is of order
√
2ϵ with respect to that of

circulating particles and cancels the ∝
√
2ϵ terms in the circulating particle response at

high frequency. The combination of Eqs. (19) and (20) into Eq. (14) gives accumulation

points at Λ = 0; i.e.,

ωBAE = ±qωTi

√(
7

4
+ τ

)
, (21)

which is the same result for the BAE accumulation point frequency as when only

well circulating particles are taken into account [10]. Both Eq. (21) and previous

analytical results [1, 2] indicate that BAE accumulation point frequency is not affected

by the presence of trapped particles at the lowest order in the trapped particle fraction

expansion. This means that trapped ion effects cancel out barely circulating ion response

up to order ϵ. In other words, in this frequency limit we can treat the thermal plasma

as if it were composed of well circulating particles only. However, this assumption is

only valid for the approximate model adopted here, treating particles as either deeply

trapped or well circulating. When a proper treatment is used for the entire particle

population, barely trapped and barely circulating particles included, an order O(ϵ1/2)

frequency shift is expected to appear, as it is argued in the following.

The cancelation of barely circulating and deeply trapped particle contributions can

be verified in Fig. 2, where the real (ReΛ2) and imaginary part (ImΛ2) of Λ are plotted

against the real part of the frequency ω normalized to ωTi, for the cases with only

circulating particles (presented with full circles for real and empty circles for imaginary)

and the case when trapped particles are included (full and empty squares, analogously).

In all cases in this paper, unless otherwise specified, we will take q = 1.5, τ = 1 and

v2Ti/v
2
A = 0.01. In a previous work [1], a numerical calculation of the analytic dispersion
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Figure 2. Values of ReΛ2 (ϵ = 0 full circles; ϵ = 0.1 full squares) and ImΛ2 (ϵ = 0

open circles; ϵ = 0.1 open squares) are shown vs. Re(ω/ωTi) for fixed parameters

ω̄Di/ωTi = 0.15/
√
2, q = 1.5, τ = 1, ηi = ω∗Ti/ω∗ni = 1 and a. Ω∗ = ω∗ni/ωTi = 0.2

and b. Ω∗ = 0.5.

relation was presented, based on an inaccurate complex root finding routine, the result

of which was a significant shift of the curves in the high frequency regime (see Fig.1 of

that paper). The improved numerical assessment, shown here, corrects that inaccuracy

and demonstrates the cancelation of trapped and circulating particle responses up to

order ϵ, as predicted by Eqs. (19) and (20). In Fig. 2, the values of Λ are almost

identical with and without trapped particles as implied by Eq. (21) and Ref [1, 2] for

large frequencies (ω ≫ ωTi); and, hence, the BAE accumulation point Λ = 0 is not

affected by the trapped particle population. This conclusion is also valid for GAM, due

to the degeneracy of BAE and GAM spectra in the long wavelength limit (Λ = 0 and

ω∗pi = 0) [38, 45, 44, 46, 47].

The difference in the shear Alfvén continuous spectrum, due to trapped particles,

becomes significant at low frequency (ω ≪ ωBAE), as it is shown in Fig. 2. This

difference becomes even more evident with stronger diamagnetic effects (see Fig. 2b),

when the same plots are made for Ω∗ = ω∗ni/ωTi = 0.5 instead of Ω∗ni = 0.2. We

note, again, that the plots are almost identical at high frequency, but the behavior at

low frequency is significantly affected by the precession-bounce resonance with trapped

thermal ions. In Fig. 2b, it is evident that at the high frequency accumulation point,

where ReΛ2 crosses zero with positive slope and negative ImΛ2, the accumulation point

itself has a positive imaginary part, as noted in [10], due to finite thermal gradient

effects coming from ηi = ω∗Ti/ω∗ni = 1. The existence of an unstable accumulation

point in the shear Alfvén continuous spectrum is not an issue as, in one e-folding

time, the corresponding fluctuating field develops fine scale lengths, where finite ion

Larmor radius and finite magnetic orbit width play important role [10]. Then, either

the continuous spectrum is discretized and the short wavelength mode becomes a kinetic

BAE [26, 48], or a discrete Alfvénic ion temperature gradient driven mode (AITG) is

formed in the BAE frequency gap in the shear Alfvén continuum [27, 38, 44], provided

that δŴf + ReδŴk < 0 in the general “fishbone-like” dispersion relation, Eq. 1. The
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Figure 3. a.The real part of accumulation frequency of BAE spectrum shown vs. ϵ

for three values of Ω∗ = ω∗ni/ωTi = ω∗Ti/ωTi = 0, 0.2 and 0.5 and fixed parameters

ω̄Di/ωTi = 0.15/
√
2, q = 1.5, τ = 1; b.The imaginary part of the of accumulation

frequency of BAE for the same parameters.

lower frequency counterpart of AITG is the kinetic ballooning mode (KBM) branch

modified by wave-particle resonances, for which trapped particle effects are crucially

important, as shown in Fig. 2b. For sufficiently short wavelength, such that the

thermal ion diamagnetic drift is much larger than the thermal ion transit frequency

(|ω∗pi| ≫ ωTi), this branch connects to the usual KBM branch [49], discussed in the

literature since the early 1980s.

In Fig. 3 the accumulation point of the BAE spectrum is shown against ϵ, i.e.,

against increasing trapped ion population, for different values of Ω∗. In all cases, the

BAE frequency is un-affected by the change of ϵ, in agreement with Eq. (21). On

the other hand, numerical simulation results by the LIGKA code [21, 22] used for

analyzing BAE excited by ICRH energetic ions tails in AUG, show significant lowering

of the BAE frequency due to trapped particle population. Thus, we reasonably deduce

that this O(ϵ1/2) frequency shift is predominantly due to barely trapped/circulating

particle population. Meanwhile, the fact that barely trapped particle dynamics may

be significantly affected by collisions, depending on the collisionality regime, suggests

that the trapped particle induced O(ϵ1/2) shift of the BAE frequency should depend

on plasma collisionality, and, hence, that BAE/GAM frequency shift should depend on

plasma density. This issue will be dealt with in a more detailed study of the BAE/GAM

frequency spectrum using action-angle formulation for the analysis of general particle

motions.

The fact that the O(ϵ1/2) shift is not coming from the diamagnetic effects can

be seen from Fig. 4, where the real and imaginary parts of BAE accumulation point

are given against Ω∗ for two different values of ηi = 0 and 1. The lines with squares

represent the expressions with trapped particles included (ϵ = 0.1), the full line with

circulating particles only (ϵ = 0), while the dashed line shows ω∗pi = ω∗ni + ω∗Ti. The

line with crosses, shows existence of another solution to the BAE dispersion relation,

which typically has a large negative imaginary part as in the case of many further

solutions to the dispersion relation due to the transcendental nature of the Z function.
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Figure 4. The real and imaginary part of accumulation frequency of BAE spectrum

shown vs. Ω∗ = ω∗ni/ωTi for fixed parameters ω̄Di/ωTi = 0.15/
√
2, q = 1.5, τ = 1.5;

with ηi = 0 (Figures a and c), and ηi = 1 (Figures b and d). Circulating particles only

ϵ = 0 (full line), trapped ions included ϵ = 0.1 (presented with squares). The dashed

line is ω∗pi/ωTi, and the line with crosses is a second BAE branch.

In Fig 4a it is evident that there is no significant difference between the real BAE

frequency (squares) calculated with and without circulating particles, and in both cases

the frequency slightly drops with the increase of Ω∗. Fig 4.b, meanwhile, shows non-

negligible difference in the imaginary frequencies when trapped particles are included.

This effect is, however, due to the diminished Landau damping by circulating particles,

and it does not imply a destabilizing role of trapped particles. On the other hand it does

imply that a calculation of the threshold of the excitation of the Alfvénic ion temperature

gradient driven branch [10, 26, 27], should take in consideration the trapped ions, even

at high frequency. The BAE branch shown with crosses has significantly higher damping

rate than the BAE mode, with imaginary frequency well below the ones shown in 4b. In

Fig. 4c and d, where significant temperature gradient is given by ηi = 1, for both cases

with and without trapped particles the BAE frequency initially drops with increasing

Ω∗, but then it starts to grow to a certain level, due to the strong coupling to the KBM

spectrum (read [10] for more details). The imaginary parts of BAE frequency (Fig

4.d) in some regions shows slightly more destabilizing effects when trapped particles are

present.

Investigation of different values for the parameters shows that the BAE solution

presented with crosses is much more damped then the typical BAE mode (Fig 4c.d),

and it would be hardly observable in experiments or simulations. However, in some

special cases (take for example τ = 1 , ηi = 1 and Ω∗ > 2.5) the two BAE branches
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are so close to each other that they become degenerate and the BAE mode frequency

starts to deviate from the solution predicted by the well circulating particle response

[10]. Since these effects are typically small, we can conclude that generally there’s no

significant effect of the trapped particle presence on the real BAE frequency. Meanwhile

some of the stability properties are modified, and we expect more significant changes

with a proper treatment for barely trapped particles, especially for modes driven by a

strong thermal ion gradient.

4. Low frequency regime and gap modes

The importance of trapped particle dynamics for low frequency fluctuations was pointed

out in Ref. [1, 2], by taking the |ω| ≪ ωBi limit of Eq. (14) yielding:

Λ2/IΦ ≃ ω2

ω2
A

(
1− ω∗pi

ω

)(
1 +

15

16

√
2q2ϵ−1/2 + 0.5q2

)
, (22)

with IΦ ≈ 1. The (15/16)
√
2q2ϵ−1/2 factor in this equation comes from both

trapped particles response, accounting for (3/4)
√
2q2ϵ−1/2, and from circulating particle

corrections near the trapped to passing boundary, accounting for (3/16)
√
2q2ϵ−1/2.

Meanwhile, the 0.5q2 is the well circulating particles contribution [10]. Trapped particle

contribution is dominant at low frequency and is O(ϵ−1/2) ≫ 1 larger than that of well

circulating particles.

Equation 22 can be compared with the inertia enhancement [10, 46] given by the

generalized form of Λ for |ω| ≪ ωBi ≈ (r/R0)
1/2ωTi:

Λ2 =

[
ω2

ω2
A

(
1− ω∗pi

ω

)
+∆I

]
, (23)

with

∆I = q2
ω2

ω2
A

(
1− ω∗pi

ω

)(
R0

r

)1/2

f

(
r

R0

)
, (24)

where f(r/R0) = 1.6 + 0.5(r/R0)
1/2, when terms up to order (r/R0)

1/2 are kept [46].

The result is identical to the low frequency MHD result by Graves and Hastie [50]:

Λ2 =
ω2

ω2
A

(
1− ω∗pi

ω

)
(1 + 1.6q2ϵ−1/2 + 0.5q2) . (25)

Note that the structure of Eq. (23) is the same as that involved in the ZF

polarizability [51, 52], as expected. The approximate treatment of the particles as

deeply trapped/well circulating causes the difference between the factors 1.6 and

(15/16)
√
2 ≈ 1.3 in Eqs. (22) and (25). Taking into account the exact bounce/transit

motion of particles produces elliptic integrals in the velocity space and gives the same

result as Ref. [50], while Eq. 22 can be directly obtained from the exact expression

assuming small argument expansion for elliptic integrals (see [1] for details and [53] for

a recent discussion of particle motions in general tokamak equilibria). The term IΦ in

Eq. (22) acts as additional inertia enhancement related to the response of low frequency

perturbations to precessional motion of electrons and ions.
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Figure 5. KBM (squares) and BAAE (crosses) accumulation point vs. ηi = ω∗Ti/ω∗ni
for different values of Ω∗ and fixed parameters ω̄Di/ωTi = 0.15/

√
2, q = 1.5 and τ = 1;

Real part of the frequency (Figures a and b); Imaginary part (Figures c and d). Dashed

lines ω∗pi/ωTi; Solid line- circulating particles only KBM accumulation point.

Trapped particles response is dominant at frequencies well below ωBAE (ωDe,i ≪
ωBi ≪ ωTi < ωBAE). This can be demonstrated by studying trapped particle effects on

kinetic balooning modes (KBMs) which, for moderate mode numbers and not so steep

temperature and density profiles, have a typical frequency located inside the BAE gap.

Our analysis, again, should be considered qualitative due to the model of deeply trapped

particles adopted here. The real part of accumulation point frequencies of KBM and

so called beta induced Alfvén acoustic Eigenmode (BAAE) are shown in Fig. 5a and b

vs. ηi = ω∗Ti/ω∗ni for two different values of Ω∗ = ω∗ni/ωTi, while the corresponding

imaginary parts are shown in Fig. 5c and d. The dashed line represents ω∗pi/ωTi, the

solid red line is KBM frequency when only circulating particles are considered, and the

blue line with squares is KBM frequency when trapped particles are included. The

results show that for ηi = 0 the KBM accumulation point is the same with and without

trapped particles, but for increasing ηi the lines deviate from ω∗pi/ωTi; and the presence

of trapped particles shifts the frequency upward for Ω∗ = 0.5 and downward for Ω∗ = 0.2

(see also Ref. [2]). These different behaviors are clearly due to the intersection or not

of the two branches (green with crosses and blue with squares; i.e., KBM) in complex

frequency space, with Ω∗ as control parameter [10].

In Fig. 5, the second branch marked with green crosses corresponds to the BAAE

in the limit of small diamagnetic effects. BAAE is one of the branches of low frequency

ideal MHD equations for toroidal plasmas with finite compressibility [54, 11]. It is a
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Figure 6. KBM (squares) and BAAE (crosses) vs Ω∗ for fixed parameters ω̄Di/ωTi =

0.15/
√
2, q = 1.5 and τ = 1; Real part of the frequency (Figures a and b); Imaginary

part (Figures c and d). Dashed lines represent ω∗pi/ωTi. KBM with circulating

particles only - solid line.

mode of mixed Alfvénic-acoustic polarization with frequency ω ∼ ωTi and at the lowest

order, it can be viewed as toroidal sideband of the electrostatic drift wave [23]. Thus,

it can be found in the kinetic model of low frequency Alfvén spectrum in the limit

where the denominator in Eq. (9) tends to zero, or equivalently, when δΦs ≈ δΦ(0) or

even larger. Generally, in the present work we define BAAE as the solution of dispersion

relations with large values for |S| ≫ β1/2 (≈ O(1)) in Eq. (9) that, recalling δΦ(0) = δΨ(0)

and δΨ(1) = 0, causes a significant parallel electric field due to the high value of δΦs.

Figures 5a and c, show that the KBM spectrum (blue squares) is strongly coupled with

the BAAE (green crosses). Meanwhile, Figures 5a through d suggest that KBM-BAAE

coupling is due to diamagnetic effects, as trapped particle response, responsible for the

deviation of the solid red line from the blue line with squares, is clearly not crucial.

The same figures also show that when diamagnetic effects are negligible, the BAAE

is heavily damped, as expected [23], but the picture may change when significant ion

temperature gradient is present. These results suggest the crucial role that ηi may play

in determining the necessary conditions under which BAAE, or modified DW in the

more rigorous definition introduced above, can be excited by energetic particle drive.

In Fig. 6, the KBM and BAAE frequencies are given vs. Ω∗ for two values of

ηi = 0.5 and 1. In both cases, we find that KBM plots with (squares) and without

(solid line) trapped particles are close to each other and to the ω∗pi line for small Ω∗,
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Figure 7. The value of |S| for BAE (squares and triangles), KBM (circles) and BAAE

(crosses) for fixed ω̄Di/ωTi = 0.15/
√
2, q = 1.5 and τ = 1.

with the trapped particles shifting the frequency significantly upward as Ω∗ increases.

Plots with smaller values of ηi (ηi < 0.25, not shown in the figure; see Ref. [2]), show

no difference between the spectra with and without trapped particles. In Fig. 6, again,

we notice that the KBM spectrum is coupled with the BAAE branch; and the real

frequency with trapped particles starts to deviate from the full line in the region of

relatively small values of Ω∗. The imaginary parts of the frequencies (Fig 6c and d),

show that trapped particles can increase or decrease the mode damping, depending on

the values of Ω∗ and ηi. For increasing diamagnetic effects both KBM lines with and

without trapped particle reach a pick and then decrease with growing Ω∗, due to the

coupling with the BAE spectrum around Ω∗ ≃ 0.5 located above the KBM spectrum

(compare to Fig. 4b and Ref. [10]).

The values of |S| are given in Fig. 7 for the modes discussed so far. In all cases,

BAE (both branches) has small values for |S|<∼ 0.1, while BAAE has generally large

(≈ O(1)) values. The simultaneous change of the |S| function for BAAE and KBM

suggests that the coupling between these two branches, discussed above, is also related

to the parallel electric field due to δΦs. In Fig. 7c, however, which corresponds to the

parameters in Fig. 5b and d, the KBM value for |S| becomes larger than that of BAAE

when going to high ηi. For this parameter set, the real part of BAAE frequency is

following Ω∗, while both modes have similar damping rate, the BAAE being slightly

more damped than KBM. Thus, these branches would be experimentally identified

the other way around (the BAAE as KBM and the KBM as BAAE). Although our

classification of low frequency modes is just one among all possible choices, it is based

on analytic continuation and mode polarization; and, in this specific case of Fig. 5b and

d and Fig. 7c, is quite straightforward.

In conclusion, trapped particle response has significant impact on the properties of

the low frequency modes (KBM and BAAE); and even with the approximate model of

deeply trapped particles we can provide detailed descriptions of mode characteristics, as

well as produce new findings concerning their mutual interaction due to finite parallel

electric field and diamagnetic effects, especially in the presence of finite ion temperature

gradient.
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5. Conclusions and discussion

We have examined the low frequency shear Alfvén and acoustic wave spectra in toroidal

geometry, taking into account wave-particle interactions with magnetically trapped and

circulating particles, following the framework of the generalized fishbone-like dispersion

relation. Numerical solutions for the accumulation point frequency (Λ = 0) of the

shear Alfvén continuum show the possibility of co-existence of multiple solutions of the

dispersion relation, i.e., multiple branches of the same Beta-induced Alfvén Eigenmode.

This is generally not an issue as far as identification of experimentally observed modes

are concerned, since multiple modes are typically affected by strong damping. This

feature is a consequence to be expected of the transcendental character of the low-

frequency dispersion function accounting for wave-particle resonances with thermal

plasma species. Effects of trapped particles are shown to be important for proper

description of low frequency modes, such as, kinetic balooning modes and beta-induced

Alfvén-acoustic eigenmodes, which proves that kinetic theory is necessary for the proper

treatment of mode structures and stability conditions at frequency of the order of or

lower than the thermal ion transit frequency ωTi. The mutual coupling of low frequency

KBMs and BAAEs has strong effect on the real frequency and damping rate of both

modes, which is of particular interest for identification of scenarios in which otherwise

heavily damped BAAE modes, could be excited by energetic particles and/or thermal

plasma gradients. For some plasma parameters, the two modes be strongly coupled,

which means there could be a smooth transition from KBM to BAAE and vice-versa.

This interplay of different low-frequency fluctuation branches has important implications

on a number of kinetic stability problems as well as long time scale plasma behaviors,

since realistic tokamak plasmas are characterized by complex behaviors due to the

mutual interactions of SAW, MHD and Drift Wave Turbulence (DWT) [55, 56].
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