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Abstract. Nonlinear excitation of low frequency zonal structure (LFZS) by
beta-induced Alfvén eigenmode (BAE) is investigated using nonlinear gyrokinetic
theory. It is found that electrostatic zonal flow (ZF), rather than zonal current, is
preferentially excited by finite amplitude BAE. In addition to the well-known
meso-scale radial envelope structure, ZF is also found to exhibit fine radial
structure due to the localization of BAE with respect to mode rational surfaces.
Specifically, the zonal electric field has an even mode structure at the rational
surface where radial envelope peaks.



2

1. Introduction

Shear Alfvén waves (SAW) are expected to play important roles in future magnetic
confinement fusion devices such as ITER. With group velocities mainly along magnetic
field lines and frequency close to the characteristic frequencies of fusion alphas, SAWs
could be excited by energetic particles (EPs) via wave-particle interactions [1–5]; and
in turn, induce EP transport and degrade overall plasma confinement. This subject has
been recently reviewed and discussed in Ref. 23. Among various Alfvénic instabilities,
beta-induced Alfvén eigenmode (BAE) [6, 7] is of particular interest since it can be
driven unstable by both thermal particles and EPs, with different wavelengths to
maximize wave-particle interaction strength. BAE is excited inside the kinetic thermal
ion induced SAW continuum gap [8], with the frequency in the ion acoustic frequency
range and mode structure highly localized around magnetic rational surfaces.

There are two routes for the nonlinear saturation of SAWs [9], i.e., nonlinear wave-
particle and nonlinear wave-wave interactions. Nonlinear wave-particle interactions of
EP driven SAWs, such as BAEs, have been investigated by several different codes,
e.g., GTC [10] and HMGC [11]. On the other hand, the wave-wave nonlinearity of
SAWs in toroidal geometry in the ITER relevant short wavelength regime is relatively
less studied.

Among various wave-wave nonlinearities, generation of zonal structures (ZS) by
modulational instability is of particular importance. Zonal structures [12], including
zonal flows (ZF) and zonal current (ZC), are known to play important self-regulatory
roles on micro-scale drift wave type instabilities by scattering drift waves into short
radial wavelength stable domain [13, 14]. Typically, the scattering rate depends on
the ZS intensity. Thus, understanding the mechanism of ZS generation is of key
importance to the nonlinear dynamics of SAWs. Ref. 15 first investigated the
nonlinear generation of low frequency zonal structure (LFZS) by Toroidal Alfvén
eigenmode (TAE), and found that spontaneous excitation of LFZS could be achieved
when the nonlinear drive by TAE overcomes the threshold condition due to frequency
mismatch. In addition, ZC is found to be preferentially excited under certain
conditions, which are related to the sign of frequency mismatch. These are not
those typically verified in tokamak equilibria. In fact, simulations of TAE nonlinear
dynamics, have observed forced driven of LFZS by TAE rather than spontaneous
excitation [16,17]. Ref. 18 studied the nonlinear excitation of ZS by BAE, and found
that geodesic acoustic mode (GAM) [19, 20] and LFZS are generated in weak and
strong EP drive cases, respectively. In the latter case, LFZS is observed to further
reduce the final saturation level of BAE.

In this work, we will investigate the nonlinear excitation of LFZS by BAE using
nonlinear gyrokinetic theory [21] and assuming that BAE initially exists at a prescribed
fluctuation amplitude. Self-consistent inclusion of nonlinear wave-particle interactions
will be discussed in a later publication. The rest of the paper is organized as follows. In
section 2, the theoretical model is presented, while nonlinear LFZS and BAE equations
are derived in section 3, which are then used to derive the nonlinear dispersion relation
of the modulational instability in section 4. Finally, conclusions and discussions are
presented in section 5.
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2. Theoretical Model

We follow the theoretical approach of [13] and [15], and use δϕ and δA∥ as the
field variables to investigate the nonlinear interactions between BAE and LFZS. To
investigate BAE modulational instability, the fluctuations is assumed to consist of a
constant-amplitude pump wave (ω0,k0) and upper and lower sidebands due to the
modulation by LFZS, (ω±,k±). Using subscripts Z and B for LFZS and BAE,
respectively, one then has, δϕ = δϕZ + δϕB , δϕB = δϕ0 + δϕ+ + δϕ−. Subscripts
0, + and − denote BAE pump, upper and lower sidebands, respectively. Assuming
BAEs have high toroidal mode numbers, we can adopt the well-known ballooning-
mode decomposition [22] in the (r, θ, ϕ) field-aligned toroidal flux coordinates

δϕ0 = A0e
i(nϕ−m0θ−ω0t)

∑
j

e−ijθΦ0(x− j) + c.c.,

δϕ± = A±e
±i(nϕ−m0θ−ω0t)ei(

∫
k̂Zdr−ωZt)

×
∑
j

e∓ijθ

{
Φ+(x− j)

Φ−(x− j)

}
+ c.c..

Here, (m = m0+j, n) are the poloidal and toroidal mode numbers, m0 is the reference

value ofm, nq(r0) = m0, q(r) is the safety factor, x = nq−m0 = nq′(r−r0), k̂Z ≡ nq′θk
is the radial envelope wave number in the ballooning representation, Φ is the fine radial
structure associated with k∥ and magnetic shear, and A is the envelope amplitude.

Since BAE fine radial mode structure is highly localized around mode rational
surfaces, we expect that, LFZS could also exhibit a similar fine radial structure, in
addition to the well-known meso-scale radial envelope. Thus, we take

δϕZ = AZe
i
∫
k̂Zdr−iωZt

∑
j

ΦZ(x− j) + c.c., (1)

with ΦZ accounting for the fine radial structure.
We assume the same decomposition for δA∥. In the derivation, we let δψ =

ωδA∥/(ck∥) be an alternative field variable for n ̸= 0 BAEs, such that ideal MHD
condition is recovered if one takes δϕ = δψ. Note that k∥ as well as kr should, in
general, be considered as operators.

3. Nonlinear equations

3.1. Nonlinear LFZS equation

The first equation of LFZS can be derived from nonlinear vorticity equation [23]:

e2

Ti
⟨(1− J2

Z)F0⟩δϕZ −
∑
s

⟨
q

ωZ
JZωdδH

⟩
Z

= − i
c

B0ωZ

∑
kZ=k′+k′′

b̂ · k′′ × k′

×
[
c2k′′2⊥
4πω′ω′′ ∂lδψ

′∂lδψ
′′ + ⟨e(JkJk′ − Jk′′)δϕk′δHk′′⟩

]
;

(2)

with the nonlinearities coming from Maxwell and Reynolds stresses; i.e., the first
and second term on the right hand side of equation (2), respectively [24]. Here,
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Jk = J0(k⊥ρ) with J0 being the Bessel function, ρ = v⊥/Ω, Ω is the cyclotron
frequency, F0 is the equilibrium particle distribution function,

∑
s is the summation on

different species, q is the electric charge, ωd = (v2⊥ + 2v2∥)/(2ΩR0) (kr sin θ + kθ cos θ)
is the magnetic drift frequency, l is the length along the equilibrium magnetic field
line; and other notations are standard. Furthermore, ⟨· · ·⟩ indicates velocity space
integration and δH is the nonadiabatic particle response, which can be derived from
nonlinear gyrokinetic equation [21](

−iω + v∥∂l + iωd

)
δH = − iω

q

T
F0Jk

(
δϕ+

i

ω
v∥∂lδψ

)
− c

B0

∑
k=k′+k′′

b̂ · k′′ × k′Jk′

(
δϕ+

i

ω
v∥∂lδψ

)′

δH ′′. (3)

Note that the k are defined as operators for spatial derivatives; i.e.,

k0δϕ0 ≡ [k∥,0b+ kθ,0θ̂ − inq′∂x lnΦ0r̂]δϕ0,

k±δϕ± ≡ [±k∥,0b± kθ,0θ̂ + (k̂Z − inq′∂x lnΦ±)r̂]δϕ±,

kZδϕZ ≡ (k̂Z − inq′∂x lnΦZ)r̂δϕZ .

In the rest of the paper, for the simplicity of notations, the subscript “0” will be
suppressed when appropriate.

Noting |k⊥ρi| ≪ 1 in the inertial layer, one then obtains from surface averaged
vorticity equation

−iωZχiZδϕZ = − c

2B0
kθ

∂2

∂r2
[δϕ0∂rδϕ− − δϕ−∂rδϕ0

+δϕ+∂rδϕ0∗ − δϕ0∗∂rδϕ+

− (k2∥V
2
A/ω

2
0) (δψ−∂rδψ0 − δψ0∂rδψ−

−δψ+∂rδψ0∗ + δψ0∗∂rδψ+)] . (4)

Here, VA = B0/
√
4πnmi is the Alfvén speed, χiZ is the well-known neoclassical

polarizability of LFZS [25], and we have χiZ ≃ 1.6k2Zρ
2
i /
√
ϵ with ϵ ≡ r/R0 being

the inverse aspect ratio of the torus. Applying the δϕB representation into equation
(4), we then obtain,

−iωZ χ̂iZAZΦZ = − (c/2B0)k̂Zkθ

(
1− (k2∥V

2
A/ω

2
0)
)

× (A0A− −A0∗A+) |Φ0|2 . (5)

Here, χ̂iZ ≡ χiZ/(k
2
Zρ

2
i ) ≃ 1.6q2/

√
ϵ [25]. In deriving equation (5), we assumed

Φ+ ≃ Φ0, Φ− ≃ Φ∗
0 (self-consistently proved a posteriori), and Φ0 being purely real.

Note that Φ0 may have anti-Hermitian part if the pump BAE is driven via wave-
particle resonances; and, in that case, the nonlinear term derived here should be
modified to take into account the contribution of resonant particles ‡.

Note that AZ is the usual “meso-scale” radial envelope, while ΦZ corresponds to
the fine radial structure of ZF. Taking advantage of the scale separation, it is clear
from equation (5) that we can let

ΦZ = |Φ0|2. (6)

‡ Here, we take δϕ0∂rδϕ−−δϕ−∂rδϕ0 as an example. δϕ0∂rδϕ−−δϕ−∂rδϕ0 = A0A− exp(i
∫
k̂Zdr−

iωZt)
∑

l,p exp(−i(l − p)θ)
(
ik̂ZΦ0Φ− +Φ0∂rΦ− − Φ−∂rΦ0

)
. If Φ− ≃ Φ∗

0 and Φ0 has an anti-

hermitian part, we have Φ0∂rΦ− − Φ−∂rΦ0 ≃ −2iIm(nq′∂x lnΦ0)|Φ0|2, which could dominate over

k̂Z |Φ0|2.
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The envelope equation for AZ is then given by [26]

ωZ χ̂ZAZ = − i
c

2B0
kθk̂ZĈ (A0A− −A0∗A+) . (7)

Here, Ĉ ≡ ⟨⟨1− k2∥(x)V
2
A/ω

2
0⟩⟩, with ⟨⟨· · ·⟩⟩ defined as

⟨⟨· · ·⟩⟩ ≡
∫

(· · ·) |Φ0|2(x)dx
/∫

|Φ0|2dx,

and we typically have Ĉ ≃ 1 for modes near the accumulation point of BAE gap [7] §.
Noting ∂rA± = ±ik̂ZA±, equation (5) can also be straightforwardly expressed as

AZΦZ =
1

2

c

B0
kθ

Ĉ

ωZ χ̂iZ
(A0∂rA− −A0∗∂rA+) |Φ0|2. (8)

Furthermore, with |k̂Z | ≪ |∂r lnΦZ | ∼ |nq′|, we then have

δEr = − cĈkθ
2B0ωZ χ̂iZ

(A0∂rA− −A0∗∂rA+) ∂r|Φ0|2.

(9)

Thus, assuming A± ∼ cos(k̂Zr), we then have δEr as an even function of r at the
center of the envelope; consistent with the GTC simulation [18] ∥.

The other equation of ZF can be derived from the parallel component of the
nonlinear ideal Ohm’s law.

δE∥,Z = −
∑

k′+k′′=kZ

b̂ · δuk′ × δBk′′/c (10)

with δu being the E×B drift velocity. Noting k∥,Z = 0, one then has

∂δA∥,Z

∂t
= −i c

B0
kθ

∂

∂r

(
k∥,0

ω0
δψ0δϕ0 −

k∥,−

ω−
δψ−δϕ0

+
k∥,+

ω+
δψ+δϕ0∗ −

k∥,0∗

ω0∗
δψ0∗δϕ+

)
= − c

B0
kθ

1

ω2
0

∂

∂t

∂

∂r

(
k∥,0δϕ0δϕ− + k∥,0δϕ+δϕ0∗

)
. (11)

In deriving equation (11), we have applied ideal MHD condition (δϕ − δψ = 0) for
BAEs in the inertial layer [7], k∥,± = ±k∥,0, and ω± = ±ω0 + i∂t. We then obtain

δA∥,Z = − c

B0ω2
0

kθ
∂

∂r
(k∥δϕ0δϕ− + k∥δϕ+δϕ0∗). (12)

3.2. Nonlinear BAE equations

To derive the nonlinear dispersion relation of the parametric process, we need also the
equations describing BAE sidebands generation. The first nonlinear equation of BAE
sidebands can be derived from nonlinear Ohm’s law. Noting δE∥ = −∂l(δϕ− δψ), we
then have,

(δϕ− δψ)± =
1

B0
kθ

{
δϕ0
δϕ0∗

}(
c

ω0
∂rδϕZ − 1

k∥
∂rδA∥,Z

)
.

(13)

§ The correction to Ĉ from k∥ ̸= 0 poloidal harmonics is of order O(q4β2ϵ2) smaller.
∥ Note that in the GTC simulation [18], BAE is driven by energetic particles (EP), while EP effect
is not considered here. Inclusion of EPs could change the parity of the radial electric field here.
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To close the system, we derive the other equation of BAE sidebands from nonlinear
vorticity equation. Here, we give the detailed derivation for BAE upper sideband.
Following [26], and applying k⊥ρi ≪ 1 in the inertial layer, one obtains

c2

4πω2
+

B0
∂

∂l

k2⊥
B0

∂

∂l
δψ+ +

e2

Ti
⟨(1− J2

k )F0⟩δϕ+

−
∑⟨ q

ω
JkωdδH

⟩
+

= − c

B0ω+
kθ
n0e

2

Ti

ρ2i
2

[
∂rδϕZ∂

2
⊥δϕ0 − δϕ0∂

3
rδϕZ

− V 2
A

ω2
0

(
k∥δψ0∂

3
r (k∥δψZ)− ∂r(k∥δψZ)∂

2
⊥(k∥δψ0)

)]
.

(14)

Here, δψZ ≡ ω0δA∥,Z/(ck∥,0). Noting that ⟨⟨k2∥,0V
2
A/ω

2
0⟩⟩ ≪ 1, the second term on

the right hand side is negligible comparing to the first term. Thus, because of finite
plasma compressibility, the Alfvénic state is broken [9, 23], and Maxwell’s stress does
not nearly cancel Reynold’s stress as for incompressible SAWs in uniform plasma.
Meanwhile, we have that

∂rδϕZ∂
2
⊥δϕ0 − δϕ0∂

3
rδϕZ

=
[
−ik̂Z(k2θ − k̂2Z) + nq′(−k2θ∂x lnΦZ + 3k̂2Z∂x lnΦZ)

+ ik̂Z(nq
′)2
(
(∂x lnΦ0)

2 − 3(∂x lnΦZ)
2
)

+ (nq′)3
(
∂x lnΦZ(∂x lnΦ0)

2 − (∂x lnΦZ)
3
)]
δϕ0δϕZ .

(15)

Noting that the BAE envelope equation is derived by averaging out the fine structures,
and that ΦZ and Φ0 are even functions of x in the vicinity of rational surfaces, only
the first (proportional to −ik̂Z(k2θ − k̂2Z)) and third (proportional to (nq′)2) terms will
contribute; while the terms proportional to nq′ and (nq′)3 are odd functions of x.
Substituting equation (13) into equation (14), and noting ⟨⟨k2∥V

2
A/ω

2
0⟩⟩ ≪ 1, one then

obtains

k2⊥,+LB,+A+Φ+ = i
c

B0ω+
kθk̂Z

[
k2θ − k̂2Z

−(nq′)2
(
(∂x lnΦ0)

2 − 3(∂x lnΦZ)
2
)]
AZA0Φ0ΦZ . (16)

Here, LB ≡ 1 − k2∥V
2
A/ω

2 − ω2
G/ω

2 is the WKB dispersion relation of BAE, with ωG

being the accumulation point frequency of kinetic thermal ion SAW continuum gap
(“BAE gap”). It is easy to see that the second term on the RHS of equation (16), due

to the fine structure, is larger than the first term by O(k̂2Z/(nq
′)2) ≫ 1. Keeping terms

from fine radial structure only, assuming Φ0 = exp(−x2/(2∆2
r))/(π

1/4∆
1/2
r ) with

∆r ≪ 1 being the characteristic scale length of the fine radial structure, and defining
EB ≡

∫
Φ∗

0LBΦ0dx, equation (16) can then be solved perturbatively. Expanding

LB,+ = L
(0)
B,++L

(1)
B,++· · · with L(0)

B,+ = LB,0, E+ = E
(0)
+ +E

(1)
+ +· · ·, Φ+ = Φ0+Φ1+· · ·

with Φ1 orthogonal to Φ0, we then have, to the lowest order

E
(0)
+ = E0 ≡

∫
Φ∗

0LB,0Φ0dx. (17)
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To the next order, we obtain the required nonlinear equation for BAE upper sideband

k2⊥,+E
(2)
+ A+ = i

11

2
√
2
√
π∆3

r

c

B0ω+
kθk̂ZAZA0. (18)

Here, E
(2)
+ ≡

∫
Φ∗

0L
(2)
B,0Φ0dx.

The nonlinear equation for BAE lower sideband can be derived similarly

k2⊥,−E
(2)
− A− = −i 11

4
√
π∆3

r

c

B0ω−
kθk̂ZAZA0∗ . (19)

4. Nonlinear dispersion relation

The nonlinear dispersion relation describing LFZS generation by BAE can then be
derived. Substituting equations (18) and (19) into equation (5), we then obtain

ωZ χ̂iZ = − 1

2

( c
B
kθk̂Z

)2
ξ̂|A0|2

×

(
1

k2⊥,+E
(2)
+ ω+

+
1

k2⊥,−E
(2)
− ω−

)
, (20)

with ξ̂ ≡ 11/(2
√
2π∆3

r). Taking ω+ ≃ ω0, ω− ≃ −ω0, E
(2)
± ≃ (∂E0/∂ω0)(±ωZ + ∆),

with ∆ ≡ k̂2Z(∂
2E0/∂k̂

2
Z)/(2∂E0/∂ω0) being the frequency mismatch, and taking

γ ≡ −iωZ , we finally derive the following modulational instability dispersion relation

γ2 = −∆2 +
( c
B
kθk̂Z

)2
|A0|2

ξ̂

k2⊥,+χ̂iZω0(∂E0/∂ω0)
. (21)

Thus, LFZS can be excited when the nonlinear drive overcomes the threshold condition
due to frequency mismatch. We note that the nonlinear coupling effects for the
parametric process would be underestimated by one order of magnitude if the
contribution from fine structure was ignored. The threshold condition can then be
estimated as ∣∣∣∣δBr

B0

∣∣∣∣
threshold

∼ O(10−4). (22)

In estimating this threshold condition, we assumed ∆ ∼
√
βω0, q2 ∼ O(10),

k2⊥ρ
2
i ∼ O(10−1) and ρi/R0 ∼ O(10−3). Here β is the ratio of thermal and magnetic

pressure.

5. Conclusions and discussions

In conclusion, we have derived the equations describing the nonlinear interactions
between low frequency zonal structure (LFZS) and beta-induced Alfvén eigenmode
(BAE), which are then used to derive the nonlinear dispersion relation of the
modulational instability. It is found that, predominantly electrostatic zonal flow (ZF)
can be spontaneously excited by a finite-amplitude BAE when the threshold condition
due to frequency mismatch is exceeded.

We also found that the obtained scalar potential of LFZS, which is related to the
electrostatic ZF, has both the usual meso-scale radial envelope as well as a fine radial
structure due to the short scale of BAE localized near the mode rational surface. The
inclusion of fine structure significantly increases the nonlinear coupling coefficients of
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the modulational interactions, and thereby, decreases the threshold condition on BAE
amplitude. The corresponding radial electric field, meanwhile, is an even function
with respect to the mode rational surface where envelope peaks; consistent with the
observations in GTC simulation [18].

Due to ⟨⟨k2∥V
2
A/ω

2
0⟩⟩ ≪ 1, electron nonlinear dynamics described by Maxwell

stress is much smaller than Reynolds stress, such that the “pure Alfvénic state” is
strongly broken by finite ion compressibility here. As a consequence, the breaking of
ideal MHD condition (i.e., equation (13)) does not affect the final nonlinear dispersion
relation, contrary to the TAE cases [15, 27] (e.g., equations (11), (12) and (13) of
Ref. 27). Furthermore, zonal current is also much weaker compared with ZF; again
in contrast to the TAE case. However, we note that, if BAE was excited by energetic
particles localized away from rational surfaces, k∥ could be finite, leading to finite ZC
generation.

Further inclusion of contributions due to resonant particles; such as energetic
particles, in the BAE nonlinear dynamics is of crucial importance. The saturation
of BAE can be due to the competition/collaboration of the wave-wave nonlinearity,
discussed here, and wave-particle nonlinear dynamics [10, 11]. In fact, even if one
ignores the nonlinear evolution of the driving resonant particles [28], the linear
response related to wave-particle resonances may lead to important modifications to
the picture discussed here, as noted in the specific comments and remarks in our
analysis. These additional effects associated with the presence of resonant particles
will be further explored in future studies.
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