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Fishbone bursts have been observed to strongly correlate to internal transport barrier (ITB)
formation in a number of tokamak devices. A simple model incorporating the fishbone
dynamics and ion pressure gradient evolution is proposed in order to investigate the key
physics parameters assisting the triggering of ITB. The time evolution of fishbone is
described by the well-known predator–prey model. For each burst cycle, the energetic
particles (EPs) resonantly interact with fishbone and are radially expelled from inner
region leading to a radial current. A compensating bulk plasma return current and, hence,
poloidal flow can be induced if the fishbone cycle frequency is greater than the poloidal
flow damping rate. When the shear of the poloidal flow exceeds a critical value, the
turbulent fluctuations are suppressed and the bulk ion pressure gradient transits to the
high-confinement state. It is shown that this process is only sensitive to the deposition
rate of the trapped EPs within the q = 1 surface, but not sensitive to other parameters. A
quantitative formula for the shearing rate of poloidal flow induced by fishbone bursts is
derived and verified numerically.
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1. Introduction

Since fishbone was observed in the Poloidal Divertor Experiments (PDX) (McGuire
et al. 1983), it has been widely studied on account of large energetic particle (EP) losses
in the presence of such mode (White et al. 1983). The fishbone excitation has been
explained by the internal kink mode destabilised by trapped EPs as the mode frequency is
close to the trapped particle precession frequency (Chen, White & Rosenbluth 1984). A
well-known zero-dimensional model, named the predator–prey model (White et al. 1983;
Chen et al. 1984), was proposed to describe the nonlinear instability cycle observed in the
experiments (McGuire et al. 1983). This model could be derived from the first principle
via the nonlinear gyrokinetic equation (Zonca et al. 2007), and was recently applied to
the estimation of the fishbone cycle frequency quantitatively in tokamak experiments (Xu
et al. 2015; Zhu et al. 2020).

The internal transport barrier (ITB) has been explored in tokamak plasmas in order to
improve the core confinement, and to achieve the advanced scenario with high bootstrap
current fraction for steady-state operations (Wolf 2003; Connor et al. 2004). The physical
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mechanisms for the formation and dynamics of the ITB in tokamak and helical plasmas
were reviewed in (Ida & Fujita 2018). It is strongly suggested that the key to ITB formation
includes radial electric field shear, magnetic shear and rational surface (Ida & Fujita 2018).
A theoretical model based on the transport bifurcation has been proposed to predict a
power threshold for the transition from low- to high-confinement state locally inside the
ITB foot (Diamond et al. 1997), and uncover its spatiotemporal dynamics (Newman et al.
1998).

Fishbone was first observed to be correlated to ITB formation in ASDEX-Upgrade and
the instability was proposed to be responsible for clamping the safety factor q value to the
vicinity of unity and avoiding sawteeth (Wolf et al. 1999; Gruber et al. 2000). During
the whistling down period of the fishbone oscillation the transport is reduced around
the corresponding rational surface, leading to an increased pressure gradient (Gunter
et al. 2001). This behaviour could be explained by the redistribution of the resonant
EPs resulting in a sheared plasma rotation, which is equivalent to a radial electric field
(Pinches et al. 2001). Meanwhile, in JET experiments with negative central magnetic
shear, the analysis of ITB triggering reveals a correlation between the formation of the
ITB and qmin reaching an integer value (Joffrin et al. 2002); however, no direct causal
relationship to fishbone was reported. In MAST ITB, its onset tends to coincide with
the occurrence of the bursts of toroidal Alfvén eigenmodes (TAEs), which are eventually
replaced by fishbone instabilities as the q profile decreases, at this time the plasma rotation
exhibits a positive gradient just outside qmin surface (Field et al. 2011; Clive, Crocker
& Hillesheim 2019). In HL-2A tokamak, the flow shear in the stationary ion ITB state
reaches the level required for suppressing the ion temperature gradient mode instability,
which indicates the important role of flow shear in sustaining the ion ITB (Yu et al.
2016). Experimental evidence and simulation analysis suggest that the fishbone activities
can induce a poloidal flow, which is beneficial for the suppression of turbulence in the
plasma core region (Deng et al. 2022). In addition, it has been revealed that fishbone
instability is often excited after the ITB formation, and it plays no role in triggering ITB;
however, ITBs with fishbone are stronger than without fishbone (He et al. 2022). In EAST
tokamak, ITB formation is stepwise and always appears after the fishbone instability
(Yang et al. 2017; Liu et al. 2020). It is identified that ITB formation in the ion thermal
channel strongly correlates to the excitation of the fishbone (Chu et al. 2021; Zhang et al.
2022). With neutral beam injection (NBI) power increasing step by step, the magnitude
of each burst of fishbone becomes larger and the burst frequency becomes higher and,
accordingly, the ITB becomes stronger (Zhu et al. 2020; Chu et al. 2022). Experimental
analysis demonstrates that the increasing E × B shear flow is important for the formation
of ITB (Zhang et al. 2023). By using the hybrid kinetic–magnetohydrodynamic (MHD)
code M3D-K, single-n simulations showed that when the central gradient of the total
pressure profile is above a threshold, the fishbone instability can transport the thermal
pressure radially inward and promote the ITB formation (Ren et al. 2022). In multiple-n
simulations, it is found that a zonal electric field can be induced in the nonlinear fishbone
stage, leading to a relatively large E × B zonal flow that is sufficient for suppressing
the dominant micro-instability before ITB formation (Ge et al. 2023). A similar process
was recently reported in DIII-D plasmas by gyrokinetic and kinetic–MHD simulations;
however, it was found that self-generated zonal flows, but not wave–particle interaction,
can dominate the fishbone saturation (Brochard et al. 2023).

In this paper, a simple model incorporating the fishbone dynamics and ion pressure
gradient evolution is proposed in order to investigate the key physics parameters assisting
the triggering of ITB. The time evolution of fishbone is described by the well-known
predator–prey model (White et al. 1983; Chen et al. 1984; Zhu et al. 2020). For each
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burst cycle, the EPs resonantly interact with fishbone and are expelled radially leading
to a radial current, and hence a compensating bulk plasma return current. For fishbones
that repeat on a timescale faster than the poloidal damping timescale, a sufficient sheared
flow driven by plasma current can be induced (Gunter et al. 2001; Pinches et al. 2001).
It should be emphasised that zonal flow generation by fluid nonlinearity is different from
the flow driven by plasma current: the former comes from the mode–mode coupling, i.e.
Reynolds stress or Maxwell stress, whereas the latter is driven by the J × B torque due
to plasma current in the momentum equation. The radial current induced by EP losses
during the injection of NBI or alpha particle production has been discussed (Rosenbluth
& Hinton 1996; McClements & Thyagaraja 2006; Thyagaraja, Schwander & McClements
2007), which will drive a significant amount of plasma rotation. The temporal evolution of
fluctuation level and ion pressure gradient can be described by a simple zero-dimensional
model (Diamond et al. 1997). When the shear of the flow exceeds a critical value,
the turbulent fluctuations are suppressed, and the ion pressure gradient accesses the
high-confinement state (Burrell 1997).

The remainder of the paper is organised as follows. The theoretical model is presented
in § 2 including a description of fishbone amplitude evolution equation, poloidal rotation
driven by radial current and ion transport equation. The corresponding analytical
steady-state solutions are derived and verified numerically. Numerical solutions are
presented in § 3. Section 4 gives discussions on the simplified model used and the
implications of our results for the suppression of turbulence by fishbone. Section 5 gives
a summary and conclusions. In Appendix A, the equation for poloidal rotation driven by
radial current including neoclassical effects is derived.

2. Theoretical model
2.1. Fishbone amplitude evolution equation

The evolution of EP beta and fishbone amplitude can be described by the well-known
predator–prey model (White et al. 1983; Chen et al. 1984; Zhu et al. 2020),

dβep

dt
= D − AZβmaxH(βep − βmin), (2.1)

dA
dt

= AΓ (βep − βcrit), (2.2)

where βep is the average trapped EP beta within the q = 1 surface, A is fishbone amplitude
(≡ δBr/B0, the normalised radial perturbed magnetic field), D is the deposition rate
of trapped EP within the q = 1 surface, Z is a measure of the EP loss rate, βmax =
βcrit/(1 − ft/2), βmin = (1 − ft)βmax = 2βcrit − βmax, ft is the fraction of trapped EPs that
can be ejected, βcrit is the excitation threshold of fishbone, Γ is the resonant drive of
trapped EPs and H is Heaviside function. The evolution of βep is periodic with minimum
βmin and maximum βmax. The Hamiltonian of the system (Heidbrink et al. 1993), which is
conserved and equals the energy C, is given by

H(x, px) ≡ 1
2Γ p2

x − Dx + exZβmax = C, (2.3)

where x ≡ ln A and px ≡ βep − βcrit is the generalised coordinate and momentum,
respectively. Equations (2.1) and (2.2) can be derived from (2.3) directly as ṗx =
−∂H/∂x = D − exZβmax, ẋ = ∂H/∂px = Γ px, where for the steady solution βmin ≤ βep ≤
βmax and H(βep − βmin) = 1. From (2.1), one can see that βep = βmin at A = D/Zβmax,
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substituting into (2.3) leads to

C = 1
2
Γ (βmin − βcrit)

2 − D ln
D

Zβmax
+ D. (2.4)

On the other hand, from (2.2), A is periodic with minimum Amin and maximum Amax at
βep = βcrit,

− D ln Amax + AmaxZβmax = −D ln Amin + AminZβmax = C. (2.5)

The extrema of A, Amin and Amax can be determined by (2.4) and (2.5). For this reason,
there are only five free parameters in the predator–prey model, D,Z, βcrit, βmax, Γ .

For Hamilton’s equations, the period of fishbone tp is related to the action J = ∮
px dx

and energy C (Heidbrink et al. 1993) by

tp = dJ
dC

=
√

2
Γ

∫ Amax

Amin

dA
1

A
√
(Amax − A)Zβmax − D ln(Amax/A)

. (2.6)

The single burst solution can be obtained by expanding around βep = βcrit and A = Amax,
βep ≈ βcrit + c(t − t0), ln A ≈ ln Amax + d(t − t0)

2/2, substituting into (2.1) and (2.2), we
obtain c = D − AmaxZβmax, d = Γ c and

As(t) ≈ Amax exp

[
−
(

t − t0

�t

)2
]
, �t =

√
2

Γ (AmaxZβmax − D)
, (2.7a,b)

where t0 is the time at A = Amax. As a result, the solution of successive bursts is constituted
as

A(t) =
∑

p=0,1,2,...

As(t − ptp)H(t − ptp)H(( p + 1)tp − t). (2.8)

This analytical solution has been verified numerically as shown in figure 1, where the red
line is the numerical solution of (2.1) and (2.2) and the blue dashed line is the analytical
solution of (2.8). The five free parameters are selected as βcrit = 0.001, βmax = 0.0014,
Γ = 5.0 × 106 s−1, D = 0.1 s−1 and Z = 3.0 × 107 s−1, which come from the fitting of
EAST experimental data (Xu et al. 2015; Zhu et al. 2020). The initial conditions are βep =
βcrit and A = Amin. The maximum Amax in the numerical solution is exactly the same as the
value calculated from (2.4) and (2.5). Meanwhile, the burst period tp and the burst width
�t both coincide with the numerical solution.

2.2. Poloidal rotation driven by EP radial current
It can be shown that (2.1) is essentially the EP transport equation. The flux surface
averaged EP charge conservation law is

∂ρep

∂t
+ 1

r
∂

∂r
(rJr) = Sep, (2.9)

where ρep ≡ qepnep, qep and nep are the EP charge and density, respectively, Jr is the radial
current, r is radial coordinate (the simple toroidal coordinate system is adopted and r
represents the flux surface) and Sep is the source of EPs. Assuming the radial current
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(a)

(b)

FIGURE 1. Numerical solution (red line) of (2.1) and (2.2), analytical solution (blue dashed
line) of (2.8), where the burst period tp and width �t are defined in (2.6) and (2.7b),

respectively.

comes from interaction of EPs and fishbone, its radial structure can be represented by a
Gaussian shape as computed by HAGIS simulations (Pinches et al. 2001),

Jr(r, t) ≈ J(t)
r
r0

exp

[
−
(

r − r0

�r

)2
]
, (2.10)

where r0 is the position of the Gaussian peak which mostly depends on the location in
phase space of the dominant precessional resonant response (Fu et al. 2006). In practice,
r0 ∼ rs is the position of q = 1 surface and �r ∼ rs is the radial width of fishbone. The
Gaussian shape used here is just to simplify the model calculation: one can substitute
a realistic profile of Jr into simulations or experiments to obtain more precise results.
Multiplying by 4μ0Tepr/B2

0qepr2
s and integrating from 0 to rs in (2.9), we get

dβep

dt
= D − 4μ0Tep

B2
0qeprs

J(t), (2.11)

where βep ≡ 2μ0n̄epTep/B2
0 is the averaged EP beta, n̄ep ≡ ∫ rs

0 2rnep dr/r2
s is the averaged

EP density, Tep is the EP temperature and is assumed to be a constant, μ0 is the
permeability of vacuum and D ≡ (4μ0Tep/B2

0qepr2
s )
∫ rs

0 Sepr dr. Comparing with (2.1), one
can identify that the radial current is proportional to the fishbone amplitude,

J(t) = Jf A(t), Jf ≡ B2
0qeprs

4μ0Tep
Zβmax. (2.12)

There is also a theoretical derivation from the nonlinear gyrokinetic equation (Zonca et al.
2007), confirming the linear relation between fishbone amplitude and EP transport flux.

https://doi.org/10.1017/S0022377823001344 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001344


6 Z. Liu and G. Fu

The equation for poloidal rotation driven by radial current (Peeters 1998) is derived in
Appendix A as

a
∂Vθ
∂t

= −νVθ − fJr, (2.13)

where a = (ε2/q2)(1 + 2q2 + 1.63q2/
√
ε), 1.63q2/

√
ε comes from the neoclassical

effect (Shaing, Ida & Sabbagh 2015), the poloidal flow damping rate ν = 1.1νii
√
ε is

proportional to the ion–ion collisional frequency νii, f = (ε2/q2)(B0/nimi), ni and mi are
the ion density and mass, respectively, ε ≡ r/R0 and R0 is major radius of the tokamak. As
the radial current J(t) ∝ A(t), which is composed of successive bursts, a steady poloidal
flow can be built up on condition that the burst frequency is greater than the poloidal flow
damping rate. The steady flow for a given radial position can be estimated as follows:
here we choose the position of r = rs for illustration, for other positions near r = rs, the
conclusion is qualitatively the same. For r = rs, vanishing of the left-hand side of (2.13)
gives the steady solution

〈Vθ 〉t = − f
ν

〈Jr〉t = − f
ν

Jf 〈A(t)〉t , (2.14)

where 〈· · · 〉t denotes the long-time average, and is equivalent to the time average over one
period, 〈A(t)〉t = ∫ tp

0 dtAs(t)/tp. For �t ≤ tp, the integral
∫ tp

0 dtAs(t) is close to Gaussian
integral and ≈ √

π�tAmax. As a result, the steady flow can be approximated as

〈Vθ 〉t ≈ −√
π
�t
tp

f
ν

Jf Amax. (2.15)

It can be shown that the steady flow is proportional to �t/tp, which means the larger burst
frequency or the longer burst duration would lead to larger steady flow shear and assist in
the building of ITB. In order to calculate the radial shear of the poloidal rotation, (2.13)
and its radial derivative are written respectively as

∂Vθ
∂t

= −ν
a

Vθ − f
a

Jr, (2.16)

∂V ′
θ

∂t
= −ν

a
V ′
θ −

(ν
a

)′
Vθ − f

a
J′

r −
(

f
a

)′
Jr, (2.17)

where the prime represents derivative in the radial direction. The flow shear V ′
θ can be

obtained by solving (2.16) and (2.17) simultaneously. Here we only consider the radial
variation of ε in the coefficients a, ν and f ; the equilibrium related parameters such as
q, νii and ni are assumed to be constant. Since the leading-order term for ε � 1 in a is
1.63q2/

√
ε, we have a′/a ≈ 3/2r, ν ′/ν = 1/2r and f ′/f = 2/r. The steady flow shear can

be estimated by the same method given previously, for r = rs, vanishing of the left-hand
side of (2.17) gives 〈

V ′
θ

〉
t ≈ −5

√
π

2rs

�t
tp

f
ν

Jf Amax. (2.18)

Selecting a set of typical tokamak parameters such as R0 = 2 m, rs/R0 = 0.1, ν = 5 s−1

and fJf = 2.0 × 109 m s−2, the numerical solution of (2.16) and (2.17) is displayed in the
red line in figure 2(a,b) and the dashed blue line is the analytical steady solution of (2.15)
and (2.18), respectively. The poloidal rotation driven by a single burst of (2.7a) is also
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(a) (b)

FIGURE 2. (a) Numerical solution (solid red line) of (2.16), where the dashed blue line is the
analytical solution of (2.15). (b) Numerical solution (solid red line) of (2.17), where the dashed
blue line is the analytical solution of (2.18) and the dashed red line is the poloidal rotation driven
by a single burst of (2.7a).

displayed as a dashed red line, and is eventually damped without a steady flow. Note that
similar results have been obtained in figure 4 of Pinches et al. (2001).

Substituting (2.12) into (2.18) gives an analytical expression to estimate the absolute
value of the steady flow shear induced by fishbone bursts,

〈∣∣V ′
θ

∣∣〉
t ≈ 5

√
π

8.8
ε3/2

q2

Ωep

νii

v2
A

v2
ep

�t
tp

ZβmaxAmax, (2.19)

where vA ≡ B0/
√
μ0nimi is the Alfvén velocity, vep ≡ √

Tep/mep is the EP thermal
velocity, Ωep ≡ qepB0/mep is the EP gyrofrequency. This quantitative formula can be
further simplified when D is small enough, D � AmaxZβmax. By using the relations
given by (2.5)–(2.7a,b), the burst width can be approximated as �t ≈ √

2/(Γ AmaxZβmax),
because most of the time A � Amax, the AZβmax term in the integrand of (2.6) can be
neglected; hence, the integral is solved analytically, tp ≈ 2

√
2AmaxZβmax/Γ /D. As a result,

we obtain �t/tp ≈ D/(2AmaxZβmax) and

〈∣∣V ′
θ

∣∣〉
t ≈ 5

√
π

17.6
ε3/2

q2

Ωep

νii

v2
A

v2
ep

D, (2.20)

which means that the steady flow shear grows linearly with D increasing, and it is
independent of other parameters of Z, βcrit, βmax, Γ . This analytical expression is broken
as D → AmaxZβmax, since�t → ∞ as shown in (2.7b). In fact, when�t > tp, the solution
of A behaves like oscillation rather than burst; thus, the form of exponential in (2.7a) is
incorrect. However, the numerical solution in § 3 still shows the same trend that the steady
flow shear only depends on D linearly.

2.3. Ion transport model
The temporal evolution of ion temperature gradient mode (ITG) fluctuation level and ion
pressure gradient can be described by a simple zero-dimensional model (Diamond et al.
1997; Newman et al. 1998),

∂E
∂t

= (
γ0N − α1E − α2V ′2

E

)
E, (2.21)

∂N
∂t

= S − (Dn + DaE)N, (2.22)
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where E ≡ 〈
(ñ/n)2

〉1/2 is the normalised turbulent fluctuation level and N ≡
(a0/Pi)(−dPi/dr) is the ion pressure gradient normalised with the minor radius a0. The
parameter α1 is determined by the saturation level of the instability in the low-confinement
regime and can be estimated by the empirical mix-length model (Diamond et al.
1995), γ0/α1 ∼ �r/a0. The other parameter α2 is determined from the E × B shear
flow suppression criterion (Biglari, Diamond & Terry 1990; Zhang & Mahajan 1992),
α2 = (�r/�θ)

2/γ0. Here, �r and �θ are the turbulent radial and poloidal correlation
length, respectively, and assumed to be the same order, �r ≈ �θ . Here S is the source
of thermal ions, and Dn and Da are the neoclassical and turbulent transport coefficients,
respectively. The E × B flow VE is determined by the radial ion force balance equation,

VE = Vθ − Bθ
B

Vϕ − 1
eBni

dPi

dr
. (2.23)

In this paper, we focus on the poloidal rotation induced by fishbone. Neglecting the toroidal
rotation Vϕ and ion pressure gradient term in (2.23) leads to V ′

E ≈ V ′
θ . As a result, the

predator–prey model and the ion transport model are coupled through the sheared poloidal
flow term in (2.21).

There are two steady solutions for (2.21) and (2.22): (a) low-confinement solution
(E,N) = (EL,NL), when the flow shear V ′

θ ≈ 0, the saturation level of the turbulent
fluctuation is EL = γ0NL/α1, and the steady transport satisfies S = (Dn + DaEL)NL; and
(b) high-confinement solution (E,N) = (EH,NH), when the flow shear is larger than a
critical value, the turbulent fluctuation is suppressed, EH ≈ 0, the transport is neoclassical,
NH = S/Dn. The critical value of flow shear is∣∣V ′

θ

∣∣ ≥ V ′
θ,c ≡ γ0

√
S/Dn. (2.24)

3. Numerical results

The simple model incorporating the fishbone dynamics and ion pressure gradient
evolution is proposed as (2.1) and (2.2), (2.16) and (2.17), (2.21) and (2.22), and is
numerically solved by the Runge–Kutta method provided by the MATLAB ODE45
library. The fishbone- and rotation-related parameters are the same as in §§ 2.1 and
2.2, respectively. The ion-transport-related parameters are selected as γ0 = 104 s−1, α1 =
105 s−1, α2 = 10−4 s2, S = 104 s−1, Dn = 5.0 × 103 s−1 and Da = 2.0 × 105 s−1. The initial
turbulent fluctuation level and ion pressure gradient are set as low-confinement solution,
EL = 0.06 and NL = 0.6. The corresponding high-confinement solution is NH = 2. In
this paper, we focus on the effect of fishbone dynamics on the ITB formation. In other
words, five free parameters in the predator–prey model are scanned to investigate which
is the key parameter that determines whether the ion pressure gradient can achieve a
high-confinement solution, while other parameters are kept fixed.

The temporal evolutions of βep, A, V ′
θ , E and N for D = 0.10, D = 0.12 and D = 0.14

are displayed in figure 3(a). With D increasing, the burst frequency ∼1/tp, burst width
�t and the maximum of fishbone amplitude Amax all increase. As a result, the steady flow
shear V ′

θ grows gradually, the turbulent fluctuation E is suppressed and the ion pressure
gradient N achieves a high-confinement solution when D exceeds a threshold. The average
values of |V ′

θ |, E and N over t = 0.1–0.2 s are displayed in figure 3(b). One can see that
the transition is stepwise: as D increases from 0.04 to 0.12, the steady flow shear rises
gradually to the critical value shown by the dashed grey line, which is given by (2.24). The
turbulent fluctuation level reduces to EH = 0 and the ion pressure gradient attains NH = 2
at D = 0.12 and remain at these levels even as D grows further. It should be emphasised
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(a)

(b)

FIGURE 3. (a) Temporal evolutions of βep, A, V ′
θ , E and N for D = 0.10 s−1, D = 0.12 s−1 and

D = 0.14 s−1. (b) Average values of |V ′
θ |, E and N over t = 0.1–0.2 s with D increasing. Other

parameters are set as βcrit = 0.001, βmax = 0.0014, Γ = 5.0 × 106 s−1 and Z = 3.0 × 107 s−1.

that there is a linear relationship between
〈|V ′

θ |
〉
t and D, and the slope is about 1.2 × 105,

which is a little larger than the analytical solution of the green line given by (2.19).
The temporal evolutions of βep, A, V ′

θ , E and N for Z = 107, Z = 3 × 107 and Z = 5 ×
107 are displayed in figure 4(a). With Z increasing, the burst frequency ∼1/tp and width�t
of A both remain the same; however, only the maximums of A decrease. It can be deduced
that AZ is constant from (2.3) and (2.4), hence V ′

θ , E and N are unchanged for different Z
which is shown in figure 4(a). The average values of |V ′

θ |, E and N over t = 0.1–0.2 s are
displayed in figure 4(b) and are independent of Z.

The temporal evolutions of βep, A, V ′
θ , E and N for Γ = 106, Γ = 5 × 106 and

Γ = 9 × 106 are displayed in figure 5(a). With Γ increasing, the burst frequency ∼1/tp
of A increases, and its burst width �t decreases. As a result, the steady flow shear
∝ (�t/tp)ZβmaxAmax remains almost the same, which can be seen in figure 5(b). The
average values of E and N over t = 0.1–0.2 s show little change.

The temporal evolutions of βep, A, V ′
θ , E and N for βmax = 0.0011, βmax = 0.0014 and

βmax = 0.0017 are displayed in figure 6(a). With βmax increasing, the burst frequency ∼1/tp
and width �t of A both decrease; however, Amax increases. As a result, the steady flow
shear ∝ (�t/tp)ZβmaxAmax remains almost the same, which can be seen in figure 6(b).
The average values of E and N over t = 0.1–0.2 s also remain almost constant. Similar
results for βcrit are displayed in figure 7. There is a rapid ramp in the analytical solution
of the green line when βmax approaches βcrit in figures 6(b) and 7(b). The reason is that as
βmax → βcrit, AmaxZβmax → D and �t → ∞ in (2.7b), the analytical solution is not valid
in this parameter region.

In conclusion, the key parameter that determines the ITB formation is D in fishbone
dynamics, whereas other parameters such as Z, βcrit, βmax and Γ are not significant. The
reason is that the long-time average value of the flow shear, even though it oscillates with
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(a)

(b)

FIGURE 4. (a) Temporal evolutions of βep, A, V ′
θ , E and N for Z = 107 s−1, Z = 3 × 107 s−1

and Z = 5 × 107 s−1. (b) Average values of |V ′
θ |, E and N over t = 0.1–0.2 s with Z increasing.

Other parameters are set as βcrit = 0.001, βmax = 0.0014, Γ = 5.0 × 106 s−1 and D = 1.0 s−1.

(a)

(b)

FIGURE 5. (a) Temporal evolutions of βep, A, V ′
θ , E and N for Γ = 106 s−1, Γ = 5 × 106 s−1

and Γ = 9 × 106 s−1. (b) Average values of |V ′
θ |, E and N over t = 0.1–0.2 s with Γ increasing.

Other parameters are set as βcrit = 0.001, βmax = 0.0014, D = 0.1 s−1 and Z = 3.0 × 107 s−1.
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(a)

(b)

FIGURE 6. (a) Temporal evolutions of βep, A, V ′
θ , E and N for βmax = 0.0011, βmax = 0.0014

and βmax = 0.0017. (b) Average values of |V ′
θ |, E and N over t = 0.1–0.2 s with βmax increasing.

Other parameters are set as βcrit = 0.001, Γ = 5.0 × 106 s−1, D = 0.1 s−1 and Z = 3.0 ×
107 s−1.

(a)

(b)

FIGURE 7. (a) Temporal evolutions of βep, A, V ′
θ , E and N for βcrit = 0.0008, βcrit = 0.001 and

βcrit = 0.0012. (b) Average values of |V ′
θ |, E and N over t = 0.1–0.2 s with βcrit increasing. Other

parameters are set as βmax = 0.0014, Γ = 5.0 × 106 s−1, D = 0.1 s−1 and Z = 3.0 × 107 s−1.
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different amplitudes, grows linearly with increasing D; however, it remains almost constant
when varying other parameters. Upon the steady flow shear exceeding the critical value
of low- to high-confinement transition, the turbulent fluctuation level reduces to zero and
the ion pressure gradient attains high-confinement solution leading to the ITB formation
around the q = 1 surface.

4. Discussion

Before presenting our summary and conclusions, we discuss the simplified models
adopted in this paper and the implications of our results on the suppression of
micro-turbulence by fishbone.

Regarding the predator–prey model, in order to derive the zero-dimensional
predator–prey model from one-dimensional equations, the dynamics due to time-dependent
frequency shifts is neglected. It is assumed that βep can be described by a characteristic
spatial scale � � rs and ∂r ∼1/�, ∂2

r ∼ −1/�2 (Zonca et al. 2007). Furthermore, in the
EP transport equation (2.1), the diffusive transport is neglected by the assumption that it is
much smaller than the convective transport originated from fishbone. The physics of EPs
slowing down is also neglected in this model. If we keep this term, (2.1) could be written
as

dβep

dt
= D − AZβmaxH(βep − βmin)− βep

τs
, (4.1)

where τs represents the EP slowing-down time. Note that there is an equilibrium solution
β̄ep = Dτs at A = 0, fishbone is unstable for β̄ep > βcrit, which indicates that τs cannot
be too small. Selecting a set of typical tokamak parameters such as ni ≈ 2.5 × 1019 m−3,
Ti ≈ 1 keV, the ion–ion collision time τi ≈ 0.002 s and τs ≈ (τi/2

√
2)

√
mi/me ≈ 0.03 s

(here mep ≈ mi is used), which is larger than fishbone burst period tp ≈ 0.0119 s in figure 1.
In order to investigate the effect of τs, the numerical solution of the predator–prey model
and poloidal flow shear with different τs is displayed in figure 8, other parameters are the
same as in figures 1 and 2. One can see that for τs < tp, βep remains its initial value and
there is no fishbone instability. As for τs > tp, βep behaves like a dying oscillation, in each
successive period, βmax and Amax decreases continuously. According to formula (2.20), �t
increases and tp decreases, which coincides with the results in figure 8. Comparing with
the results without τs term, the numerical solution remains qualitatively unchanged when
τs � tp.

For the ion transport model, it is a semi-empirical model in which the coefficients γ0, α1,
α2, Dn and Da should be functions of radius and related to a lot of factors, nevertheless, they
are all simply taken as constants. It only provides a qualitative description of the transport
dynamics (Diamond et al. 1997), and more complete transport model is necessary to
explore the transport transition and threshold effects (Newman et al. 1998). Furthermore,
in this work, we focus on the poloidal rotation induced by fishbone, and we assume that
the toroidal rotation term and the ion pressure gradient term can be neglected before ITB
forms. According to the radial ion force balance (2.23), the conditions for V ′

E ≈ V ′
θ are

|V ′
θ | > |(VϕBθ/B)′| and |V ′

θ | > |V ′
∗i|, where V∗i ≡ (1/eBni)(dPi/dr) is the ion diamagnetic

velocity.
Finally, we discuss the implication of our results for suppression of micro-turbulence

by fishbone. A figure of merit for fishbone stabilisation of turbulence can be derived as
follows. The condition for suppression of ITG turbulence is |V ′

θ | > γITG, where the ITG
growth rate γITG ∝ Vi/LPi , Vi ≡ √

Ti/mi is the ion thermal velocity, LPi ≡ −Pi/(dPi/dr)
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FIGURE 8. Numerical solution of the predator–prey model and poloidal flow shear with
different τs; other parameters are the same as in figures 1 and 2.

is the scale length of thermal ion pressure profile. Substituting into (2.20) gives

|V ′
θ |

γITG
∝ ε3/2

q2

n̄ep

ni

LPi

ρi
, (4.2)

where n̄ep is equilibrium EP density, β̄ep = Dτs has been used and νiiτs is a constant.
Therefore, we can define a figure of merit Qfishbone for suppression of ITG turbulence as
follows:

Qfishbone = ε3/2

q2

n̄ep

ni

LPi

ρi
. (4.3)

This result indicates that suppression of ITG turbulence and formation of ITB is more
likely for larger values of Qfishbone.

5. Summary and conclusions

In this paper, fishbone dynamics is described by the well-known predator–prey model
(White et al. 1983; Chen et al. 1984; Zhu et al. 2020), (2.1) and (2.2). It is shown that
there are only five free parameters in this model, D, Z, βcrit, βmax and Γ . The evolution
of EP beta βep is bounded between βmin and βmax, and the minimum and maximum
of fishbone amplitude A can be determined by (2.4) and (2.5). The fishbone induces
redistribution of resonant EPs, and the EPs’ convective transport leads to a radial current,
which is proportional to the fishbone amplitude (Zonca et al. 2007). In order to satisfy
the quasi-neutral condition, there must be a compensating plasma current with the same
value and opposite direction. This radial current can drive plasma poloidal rotation through
the J × B torque (Rosenbluth & Hinton 1996; Peeters 1998; McClements & Thyagaraja
2006; Thyagaraja et al. 2007), which is given in (2.13) and deduced in Appendix A,
including the neoclassical effects (Shaing et al. 2015). Because the fishbone amplitude
constitutes successive bursts, steady poloidal flow can only be built up on condition that
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the burst frequency is greater than the poloidal flow damping rate (Pinches et al. 2001). The
absolute value of the steady flow shear can be analytically estimated by (2.19), and further
simplified by (2.20) for small D (the deposition rate of trapped EPs within the q = 1
surface). The result indicates that the steady flow shear grows linearly with D increasing,
and remains almost unchanged when varying other parameters of Z, βcrit, βmax and Γ ,
which has been numerically verified in § 3. Upon the flow shear exceeding the critical
value given by (2.22), the turbulent fluctuation level reduces to zero and the ion pressure
gradient attains the high-confinement state, assisting ITB formation. The transition process
shown in figure 3 is stepwise, which coincides with the EAST experiments (Yang et al.
2017; Chu et al. 2022). Note that in Chu et al. (2022), the experimental results showed that
the higher NBI heating power leads to the stronger ITB. A figure of merit, Qfishbone given
in above equation, has been derived based on (2.20). The suppression of ITG turbulence
and formation of ITB by fishbone is more likely for larger values of Qfishbone.

This conclusion is qualitative, since it is derived from the simple zero-dimensional
model. Extension to a one-dimensional model to obtain more quantitative results and
uncover the spatiotemporal dynamics of the transition is left as future work. The radial
distribution of the radial current should also be calculated more self-consistently by
numerical simulations, for example, via M3D-K code (Fu et al. 2006). The E × B shear
considered in this paper comes from the poloidal rotation driven by the radial current
induced by fishbone: the effect of toroidal rotation and ion pressure gradient is beyond the
scope of this paper. Considering the effect of the ion pressure gradient’s contribution to
the E × B shear would lead to a more interesting transport bifurcation process (Diamond
et al. 1997).
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Appendix A. Equation for poloidal rotation driven by radial current including
neoclassical effect

The plasma flow evolution equation can be obtained by summing the electron and ion
momentum equations as (Rosenbluth & Hinton 1996; Peeters 1998)

nimi
∂V
∂t

= J P × B − ∇P − ∇ · π , (A1)

where V is plasma flow, J P is plasma current and P and π are the pressure scalar and
tensor, respectively. The projection of (A1) on the direction of magnetic field and torus
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respectively are

nimi
∂

∂t
(B · V ) = −B · ∇P − B · ∇ · π , (A2)

nimi
∂

∂t
(Ret · V ) = Ret · J P × B − Ret · ∇P − Ret · ∇ · π . (A3)

After averaging over magnetic surface, one obtains

nimi
∂

∂t

〈
BV‖

〉 = −〈B · ∇ · π〉 , (A4)

nimi
∂

∂t
〈RVt〉 = − 〈RBpJr

P

〉
, (A5)

where we have defined B = Btet + Bpep, the subscripts t and p representing toroidal and
poloidal, respectively, and the coordinate is right-hand, er ≡ et × ep. The magnetic surface
average is defined as 〈G〉 ≡ ∮

dsG/B/
∮

ds/B and 〈B · ∇P〉 = 0, Ret · ∇P + Ret · ∇ ·
π = 0 because of toroidal symmetry.

The plasma flow perpendicular to the magnetic field in lowest order is (Peeters 1998)

V ⊥ = E∗r

B2
(Btep − Bpet), (A6)

where E∗r ≡ E∗ · ∇r and E∗ = −∇φ − ∇Pi/nie is the effective electric field. As the
plasma flow is less than the sound velocity, it is incompressible and can be expressed
as V = K(ψp)B + G(ψp)Ret, where K(ψp) and G(ψp) are flux functions,

K(ψp) = 〈
Vp
〉
/
〈
Bp
〉
,G(ψp) = − 〈E∗r〉 / 〈RBp

〉
. (A7)

Substituting (A7) into (A4) and (A5), one obtains

nimi

〈
B2
〉

〈
Bp
〉 ∂
∂t

〈
Vp
〉− nimi

〈RBt〉〈
RBp

〉 ∂
∂t

〈E∗r〉 = − 〈B · ∇ · π〉 , (A8)

nimi
〈RBt〉〈

Bp
〉 ∂
∂t

〈
Vp
〉− nimi

〈
R2
〉

〈
RBp

〉 ∂
∂t

〈E∗r〉 = − 〈RBpJr
P

〉
. (A9)

The plasma current is determined as follows (Rosenbluth & Hinton 1996): when there
is radial current due to the interaction of EPs and fishbone, the plasma must carry a
compensating current to satisfy the quasi-neutral condition,

〈
RBpJr

P

〉 = − 〈Jψp
〉
. Including

the neoclassical effect (Shaing et al. 2015),

〈B · ∇ · π〉 ≈ nimi

〈
B2
〉

〈
Bp
〉
(

1.1νii
√
ε
〈
Vp
〉+ 1.63ε3/2 ∂

〈
Vp
〉

∂t

)
. (A10)

By eliminating 〈E∗r〉 in (A8) and (A9), and using the lowest-order equilibrium R = R0(1 +
ε cos θ), the magnetic surface average is 〈G〉 = ∮

dθ(1 + ε cos θ)G, and the equation for
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poloidal rotation Vθ ≡ 〈
Vp
〉

is

ε2

q2

(
1 + 2q2 + 1.63

q2

√
ε

)
∂Vθ
∂t

= −1.1νii
√
εVθ − ε

nimiR0q

[
1 − ε2

q2
(1 + 2q2)

] 〈
Jψp
〉
.

(A11)

In (A11),
〈
Jψp
〉 = |∇ψp|Jr is the contravariant component of current induced by fishbone.

A similar equation for poloidal rotation has been derived in Peeters (1998) and Shaing
et al. (2015); here, use is made of the lowest-order equilibrium to express the coefficients
as function of ε.
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