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We study x-ray production by coherent nonlinear
Thomson scattering of few-cycle laser pulses from rel-
ativistic electron sheets. For an electron sheet thicker
than the wavelength of the x-ray, the scattering effi-
ciency is found to increase by two orders of magni-
tude for single-cycle laser pulses as compared with
longer pulses. This enhancement is attributed to sup-
pression of destructive interference during the scatter-
ing process, as well as frequency downshift related to
the ultrabroad spectra of single-cycle pulses. The x-
ray amplitude in this nonadiabatic regime is calculated
and agrees with that from particle-in-cell simulation.
These results can be useful for designing more intense,
shorter attosecond x-ray sources. © 2016 Optical Society of

America
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Coherent x-ray sources, such as the free electron laser [1] and
high harmonic generation (HHG) from laser interaction with
gas targets [2], are opening new regimes of nonlinear x-ray op-
tics [3] and attosecond science [4]. The free-electron laser can
produce >10GW femtosecond x-ray pulses. HHG from gas tar-
gets can generate attosecond XUV pulses at low photon flux.
Some relativistic laser-plasma processes can deliver attosecond
pulses as powerful as that from free-electron lasers and shorter
than that from gas targets. These processes include HHG from
laser-irradiated solid surfaces [5–7], coherent Thomson scatter-
ing [8, 9] and half-cycle-wave emission from relativistic electron
sheets [10, 11]. These novel sources are useful for attosecond
diagnostics and understanding/investigating nonlinear attosec-
ond physics [12, 13].

Coherent Thomson scattering from relativistic electron sheets
can potentially produce >10GW and <10as isolated x-ray pulses
[9]. These electron sheets are formed by laser-accelerated elec-
trons from nano-foils [8, 14] or laser-driven plasma waves
[15, 16] in underdense plasmas. Consider an electron sheet
with the relativistic factor γ = 1/

√
1− (V/c)2, where V is the

electron velocity normal to the sheet plane. When a second,
counter-propagating, laser pulse is reflected from the sheet, its
frequency is Doppler upshifted by 4γ2. Thus, x-rays can be
produced at the modest electron energy of tens of MeV.

In earlier works the scattering efficiency has been analyzed
for flat-top or long-pulse lasers [9, 17], and is independent of
the pulse duration. In this paper, we study coherent Thomson
scattering in the few-cycle regime, and found that the conversion
efficiency can be significantly increased. The scattering enhance-
ment is attributed to suppression of destructive interference and
frequency downshift of the scattered signal. This finding can
circumvent the problem of weakening scattering from thicker
sheets as a result of the destructive scattering, as pointed out
in Ref. [9]. The field amplitude, the enhancement condition,
and the frequency downshift of the scattered x-rays are obtained
analytically, and confirmed by particle-in-cell (PIC) simulation.

To calculate the peak amplitude of the scattered x-rays,
we first transform the equations and parameters to the rest
frame of the electron sheet riding at the laser peak, derive
the scattering amplitude, and then transform it back to the
lab frame. Assume the electron sheet has a density profile
ne(x) = n0 exp(−πx2/d2

0), where n0 and d0 are the peak den-
sity and characteristic thickness, respectively. The sheet is in
the yz plane and moves along the x axis with a normalized

momentum p0 = P0/mc and relativistic factor γ0 =
√

1 + p2
0,

where m is the electron mass and c is the light speed. The
laser pulse is circularly-polarized and its vector potential is
a(ζ) = eA/mc = a0 f (ζ) × [ŷ cos(ω0ζ) + ẑ sin(ω0ζ)], where
a0 = eA0/mc, f (ζ) = exp[−(ζ/T)2], ω0 = 2π/τ0, ζ = t + x/c,
T is the pulse duration, and τ0 = λ0/c is the light wave cycle.

Coulomb expansion of the electron sheet and radiation reac-
tion is negligible within the present ultrashort scattering process.
The sheets produced from the laser-driven nanofoils have a
typical energy spread of ∼ 0.1% [8, 9] and are assumed to be
monoenergetic. The electron motion in the head-on relativistic
laser pulse is completely determined by the laser field. For an
electron with the initial perpendicular and parallel momenta
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p⊥0 = 0 and px0 = p0, respectively, we have [9]

p⊥(ζ) = a(ζ),

px(ζ) =
(γ0 + p0)

2 − [1 + a(ζ)2]

2(γ0 + p0)
,

γ(ζ) =
(γ0 + p0)

2 + [1 + a(ζ)2]

2(γ0 + p0)
.

(1)

When the sheet center coincides with the maximum laser field
a0, the longitudinal velocity of an electron there has

βx|a0 =
px|a0

γ|a0

=
(γ0 + p0)

2 − (1 + a2
0)

(γ0 + p0)2 + (1 + a2
0)

. (2)

The wavelength of produced x-rays is then given by λcts =
λ0/D, where D = (1 + βx|a0 )/(1− βx|a0 ) ≈ 4γ2/(1 + a2

0) is
the Doppler factor in the relativistic laser and a2

0 describes the
nonlinearity.

We perform a Lorentz transformation from the lab frame to a
boosted frame moving with βx|a0 along the x axis. In the new
frame, the initial relativistic factor and velocity of the electrons

are γ′0 = (1 + a2
0/2)/

√
1 + a2

0 and β′0 = a2
0/(2 + a2

0), respec-
tively. Since the vector potential a(ζ) is a Lorentz invariant,
similar to Eq. (1) in the lab frame, the electron motion is given
by

p′⊥(ζ
′) = a(ζ ′),

p′x(ζ
′) =

a2
0 − a2

0 f (ζ ′)2

2
√

1 + a2
0

,

γ′(ζ ′) =
2 + a2

0 + a2
0 f (ζ ′)2

2
√

1 + a2
0

.

(3)

In the flat-top ( f = 1) laser pulse [9], all electrons remain
stationary in the longitudinal direction, i.e. p′x = 0. However,
for a few-cycle pulse, the effect of the varying envelope f (ζ ′)
in Eq. (3) must be considered, and only electrons at the sheet
center have p′x(ζ ′ = 0) = 0.

In the boosted frame, the laser pulse can compress the elec-
tron sheet longitudinally. From Eq. (3), the electron velocity in
the x direction is

β′x(ζ
′) =

p′x(ζ ′)
γ′(ζ ′)

=
a2

0 − a2
0 f (ζ ′)2

2 + a2
0 + a2

0 f (ζ ′)2
. (4)

We consider two electrons with initial positions x′1i and x′2i, and
let the first electron meet the laser front at t′ = 0. At t′, these
two electrons reach the positions x′1 f and x′2 f , corresponding to
ζ ′1 and ζ ′2 within the laser envelope, respectively. Accordingly,
we have

t′ =
∫ ζ ′1

0

dζ ′′

1 + β′x(ζ ′′)
, (5)

t′ −
x′1i − x′2i
c(1 + β′0)

=
∫ ζ ′2

0

dζ ′′

1 + β′x(ζ ′′)
, (6)

where (x′1i − x′2i)/[c(1 + β′0)] is the time interval for the laser to
propagate from the first electron to the second one. When the
initial spacing x′1i − x′2i � λ′, substituting Eq. (5) into Eq. (6),
we obtain

x′1i − x′2i
c(1 + β′0)

=
∫ ζ ′1

ζ ′2

dζ ′′

1 + β′x(ζ ′′)
'

ζ ′1 − ζ ′2
1 + β′x(ζ ′)

, (7)
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Fig. 1. Peak amplitude acts of the scattered x-rays vs. laser
duration T for a0 = 5 (a) and a0 = 3.5 (b).

so that we have the compression ratio

η′(ζ ′) =
x′1i − x′2i
x′1 f − x′2 f

=
x′1i − x′2i

c(ζ ′1 − ζ ′2)
=

1 + β′0
1 + β′x(ζ ′)

. (8)

After this drift compression, the sheet density becomes

n′e|a0 (x′, ζ ′) = n′|a0 (ζ
′) exp

[
−πx′2

d′|a0 (ζ
′)2

]
, (9)

where n′|a0 (ζ
′) = n′0η′(ζ ′) = (γ′0/γ0)n0η′(ζ ′) and d′|a0 (ζ

′) =
d′0/η′(ζ ′) = (γ0/γ′0)d0/η′(ζ ′). Here the density profile devi-
ates slightly from the simple gaussian distribution due to the
appearance of ζ ′ in Eq. (9).

The scattered electromagnetic amplitude can
be obtained from the wave equation (∂2/∂x′2 −
c−2∂2/∂t′2)A′cts = −µ0J′(x′, t′), where J′(x′, t′) =
−ecn′e|a0 (x′ − x′|a0 , ζ ′)p′⊥(ζ

′)/γ′(ζ ′) is the current density,
and x′|a0 is the electron position at the sheet center. The
scattered signal has the electric field

E′cts = −
∂

∂t′

[
cµ0
2

∫ ∞

−∞
dx′′

∫ t′− |x
′−x′′ |

c

−∞
J′(x′′, t′′)dt′′

]
. (10)

We numerically integrate Eq. (10) to obtain the peak ampli-
tude, and transform it back to the lab frame through Ects =

E′cts
√
(1 + βx|a0 )/(1− βx|a0 ).

We simulate coherent Thomson scattering of few-cycle laser
pulses by the code JPIC [18], which adopts the boosted PIC
technique [9] for ultrafast and high-precision computation. The
electron sheet has d0 = 0.6nm, n0 = 10nc and γ0 = 70, where
nc = ε0mω2

0/e2 is the critical density. The laser pulse has λ0 =
800nm. Since the definition of pulse envelope becomes invalid
for T < 0.5τ0 [19], for the shortest pulse we take Tmin = 0.5τ0.

Figure 1(a) shows the x-ray amplitude acts versus the pulse
duration T for a0 = 5 and 3.5. We see that the PIC results confirm
that from our theory. At T = 5τ0, the results agree with that of
the long-pulse theory of Ref. [9]. For a0 = 5, the scattered signal
first remains constant, and then decreases slightly for T < 3τ0.
In contrast, at a0 = 3.5, the amplitude increases dramatically
when the pulse duration is shortened to 0.5τ0.

The evolution of acts with T in Fig. 1 can be interpreted in
terms of the interference effect of coherent scattering. The x-ray
amplitude acts is proportional to the space-time integral of the
current density J′ in Eq. (10). Figure 2 shows the density profiles
of the electron sheets calculated from Eq. (9) and the laser vector
potentials a′y when the sheet center coincides with the laser peak.
The vertical dashed lines indicate the positions of two nodes of
a′y around the sheets. According to Eq. (3), a′y is the same as the
transverse momentum of electrons.
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Fig. 2. Electron sheet density n′e (solid curve) and laser vector
potential a′y (dashed curve) for a0 = 5 (a,b) and a0 = 3.5
(c,d). Pulse duration T is 5τ0 in (a,c) and 0.8τ0 in (b,d). Vertical
dashed lines mark the nodes of the vector potentials.

As illustrated in Fig. 2(a) and Fig. 2(b), for a0 = 5, al-
most all of electrons in the sheet are located inside the positive-
momentum region between the dashed lines for both T = 5 and
0.8τ0. This accounts for the weak dependence of the scattering
amplitude on the pulse duration shown in Fig. 1(a). The slight
amplitude decrease is due to the smaller compression ratio η′

in Eq. (8) at T = 0.8τ0. This causes some electrons in the sheet
wings to slide into the negative-momentum region (see Fig. 2(b)),
which results in a small reduction of the radiation emitting from
the positive-momentum region.

For a0 = 3.5, a large portion of the electrons in the sheet
are already in the negative-momentum region. As the pulse
duration T decreases from 5τ0 to 0.8τ0, the amplitudes of the two
negative antinodes of the laser field are considerably decreased
(see Fig. 2(d)). Therefore, the destructive interference in the
radiating process is significantly mitigated, which is responsible
for the dramatic scattering enhancement shown in Fig. 1(b). The
amplitude acts at T = 0.5τ0 is 4.6 times that produced at T = 5τ0,
i.e., a 21-fold increase in the peak power.

From the theory, we find that the scattering enhancement
occurs at d′0|a0 /λ′ > 0.45, where d′0|a0 = d′|a0 (ζ

′ = 0) is the
sheet thickness at the laser peak. Tranforming back to the lab
frame, we obtain

d0 > 0.45
λ0(1 + a2

0)

γ2
0(1 + β0)

' 0.9λcts. (11)

Therefore, when the electron sheet is thicker than the wave-
length of the produced x-rays, the coherent scattering can be
considerably enhanced by using a single-cycle laser pulse. We
note that for a0 = 3.5 and 5 (Fig. 1), one has d0 ≈ 1.1λcts and
d0 ≈ 0.56λcts, respectively.

In the long-pulse case, the x-ray signal has the central fre-
quency ωcts = ω0D, independent of the pulse duration. How-
ever, we find that the central frequency becomes dependent on
T in the few-cycle regime. Figure 3(a) shows that ωcts/(ω0D)
monotonically decreases with T for both a0 = 5 and 3.5.
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Fig. 3. (a) Central frequency ωcts of scattered x-rays vs. pulse
duration T for a0 = 5 and 3.5. Open triangles and circles: PIC
results, solid and dashed curves: from Eq. (12). (b) Electric
field profile acts,y of scattered x-rays for a0 = 3.5.

To quantitatively calculate the frequency downshift, we again
consider the scattering process in the boosted frame. For the
gaussian pulse f (ζ ′) = exp[−(ζ ′/T′)2], its spectral amplitude
is given by F(ω′) ∝ exp[−(ω′ − ω′0)T

′2/4]. For each compo-
nent at the frequency ω′, the scattering amplitude is propor-
tional to exp[−4π(d′0|a0 /λ′)2] [9], where λ′ = 2πω′/c. Here,
we adopt the constant sheet thickness d′0|a0 at the laser peak.
Then, the spectral amplitude of the scattered signal scales with
exp[−(ω′ − ω′0)T

′2/4 − 4π(d′0|a0 /λ′)2], which is maximum
at the central frequency ω′cts/ω′0 = π(T′/τ′0)

2/[π(T′/τ′0)
2 +

4(d′0|a0 /λ′0)
2]. Transforming back to the lab frame, we obtain

ωcts = ω0D
π(T/τ0)

2

π(T/τ0)2 + (d0/λcts)2 . (12)

For a long pulse with T � τ0 or an ideal delta-function density
profile (d0 → 0), Eq. (12) leads to the well known relation
ωcts = ω0D. Similar to the amplitude enhancement discussed
above, Eq. (12) indicates that the frequency downshift only
occurs when d0 ∼ λcts.

In Fig. 3(a), Eq. (12) can reasonably reproduce the trend
observed in the PIC simulations and thus be used for rough esti-
mations. The discrepancy mainly comes from the approximation
of constant thickness d′0|a0 . We have verified that Eq. (12) agrees
precisely with the PIC results in the low-intensity regime a2

0 � 1.
Figure 3(b) shows the electric fields of the scattered x-rays for
a0 = 3.5. It is obvious that the x-ray wavelength at T = 0.8τ0
is longer than that at T = 5τ0. The x-ray pulse is shorter than
10as and has a peak intensity 1.3× 1016W/cm2 at T = 0.8τ0. For
an emission spot of 5µm in radius, the peak power can reach
10GW.

Now, we discuss the efficiency of energy conversion from
laser to x-ray. As shown in Fig. 4(a), for a0 = 5, the efficiency
increases by about 46% when T → 0.5τ0, although the peak
amplitude acts decreases with T (see Fig. 1(a)). This can be at-
tributed to the frequency downshift appearing in Fig. 3(a). If
the signal contains the same number of light cycles, it will be
elongated due to the frequency downshift. For a0 = 3.5 in Fig.
4(b), amplitude enhancement together with frequency down-
shift boost the efficiency by more than two orders of magnitude.
Above all, for a realistic electron sheet (finite thickness), one
can utilize a single-cycle pulse to enhance the x-ray generation.
Finally, we stress that the nonadiabatic effects in Eq. (11) and Eq.
(12) also apply for the linear case a2

0 � 1.
In conclusion, we have found two nonadiabatic phenom-

ena of nonlinear coherent Thomson scattering in the few-cycle
regime: amplitude enhancement and frequency downshift. The



Letter Optics Letters 4

5 4 3 2 1 0
1 . 0

1 . 2

1 . 4

5 4 3 2 1 0
0

4 0

8 0

1 2 0( a )
 

Eff
icie

nc
y (

no
rm

aliz
ed

)

T / τ 0

( b )
 

T / τ 0

Fig. 4. Scattering efficiency (normalized to the values at T =
5τ0) vs. pulse duration T for a0 = 5 (a) and a0 = 3.5 (b).

former is caused by mitigation of destructive interference in the
scattering process and the latter is due to the optimum frequency
selection from the ultrabroad spectra of the few-cycle pulses.
These nonadiabatic effects can boost the scattering efficiency by
more than one hundred times, when the electron sheet is thicker
than the wavelength of produced x-rays. These findings can
be useful for developing more intense, shorter attosecond x-ray
sources based on relativistic electron sheets.
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