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Abstract 

It is important to integrate full particle orbit accurately to a long time in tokamaks when studying 
charged particle dynamics in electromagnetic waves with frequency higher than the cyclotron 
frequency. We derive the form of the Boris scheme using magnetic coordinates, which can be used 
effectively for long time scale integration of the cyclotron orbit in toroidal plasmas. The new 
method has been verified in a toroidal simulation with the absence of the high frequency waves. 
The full particle orbit calculation recovers the guiding center banana orbit. This method has better 
numeric properties than the conventional Runge-Kutta method in conserving particle energy and 
magnetic moment. The toroidal precession frequency is found to match that from the guiding 
center simulation. Many other important physics phenomena, such as the BE ×  drift, the Ware 
pinch effect and the neoclassical polarization drift are also verified by the full orbit simulation. 

I. Introduction 

Particle-in-cell (PIC) simulation is widely used to study the complicated plasma dynamics,1 
where the position and velocity of the charged particles as well as the electromagnetic fields are 
advanced in time simultaneously. Pushing particle in the phase space is an essential part of the PIC 
simulation. In order to simulate the particle motion in the slowly varying electromagnetic fields 
(with frequency lower than the cyclotron frequency), the formulation to push the guiding centers 
in magnetic coordinates has been developed and greatly advanced the gyrokinetic simulation. 2-5 
When the electromagnetic field frequency is comparable or higher than the cyclotron frequency, 
e.g., the radio frequency (RF) electromagnetic waves used for plasma heating, the full particle 
orbit instead of the guiding center orbit needs to be calculated accurately to a very long time 
scale.6-9 

 
Boris algorithm is an outstanding choice to integrate the cyclotron orbit of the charged particle 

with its explicit nature.10, 11 Although it is not symplectic, this algorithm conserves the phase space 
volume as has recently been discovered, making it very attractive in the long-time simulation.12, 13 
The conventional Boris algorithm works well in the Cartesian coordinates. However, the magnetic 
coordinates are more suited to describe the complicated magnetic geometry and electromagnetic 
fluctuations in the toroidal plasmas. Therefore it is desirable to work out a Boris scheme in the 
magnetic coordinates to accommodate the physics complexity in the magnetic fusion devices like 
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tokamaks. In addition, this algorithm should be able to handle the long time scale particle 
dynamics, which can be testified by the known particle dynamics with the low frequency waves. 

In this paper we derive the form of the Boris scheme in the magnetic coordinates which is 
used effectively to push particles to the long time scale in the toroidal plasmas. In Section II, the 
basic Boris scheme is introduced and the magnetic coordinates are used to advance the particle 
position in the Boris scheme. The complication in advancing velocity in magnetic coordinates is 
carefully examined in Section III. Section IV shows simulation verification results based on the 
new Boris formulation, including the bounce motion and toroidal precession of the banana orbits, 
the BE ×  drift, the Ware pinch effect and neoclassical polarization drift in the absence of high 
frequency waves. Summary and discussion are provided in Section V. 

II. Boris algorithm and position advance in toroidal system 

   The motion of a charged particle in the electromagnetic field is given by: 

 
d
dt

=
x v  (1) 

 ( )d e
dt m

= + ×
v E v B  (2) 

The leap-frog method has been widely used to advance this equation by shifting the position and 
velocity of the particle by 2/t∆  to make the scheme time-centered:: 
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In Eq.(4), the electric field E  and magnetic field B  are evaluated at the time of 2/tt ∆+ . In 
addition, Eq.(4) is implicit in nature. So advancing v is relatively troublesome. However, Boris 

introduced two intermediate velocities −v  and +v  to make Eq.(4) explicit. These two 

intermediate velocities connect with tv  and t t+∆v  respectively through the following equations 

 
2

t e t
m

− ∆
= +v v E  (5) 

 
2

t t e t
m

+ +∆ ∆
= −v v E  (6) 

Thus the acceleration effect of the electric field E  is split into two half accelerations. Between 

these two half accelerations, the velocity vector +v  at the time step 2tt ∆+  can be obtained 

from  −v  by the following vector rotation: 
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which approximates the Lorentz rotation in the magnetic field. We note that the preceding 
equation is still in the implicit form. However, it can be further transformed to the following 
explicit form.10 

 ( )+ − − −= + + × ×v v v v t s  (8) 

with 
( )2,

2 1 2
t t

t
Ω∆ Ω∆

= =
+ Ω∆

t b s b , the gyrofrequency 
eB
m

Ω = , and the unit vector along 

the magnetic field 
B

=
Bb . Here the symbol e  denotes the particle charge. Therefore, the 

procedure of advancing velocity is separated into three steps: half-acceleration by the electric field, 
rotation by the magnetic field, and another half-acceleration by the electric field. In the Cartesian 

coordinates, with zzyyxx vvv eeev ++= , the time advancing of velocity is straightforward by 

following Eqs.(5), (6) and (8) in the three fixed orthogonal directions. 
For a toroidal system like tokamak, it is usually more convenient to use magnetic flux 

coordinates ( ), ,ψ θ ζ  rather than the Cartesian coordinates, where πψ2 is the poloidal 

magnetic flux, ζ  and θ  are the effective toroidal and poloidal angle respectively. In the 

gyrokinetic description, the velocity v  is decomposed into three components: ||v , µ  and the 

phase angle ϕ , where ϕ  is an ignorable variable due to the fast gyromotion. Therefore the 

guiding center of the particle is pushed in the 5D phase space ( )µζθψ ,,,, ||v  by the guiding 

center equation of motion, which can be derived from the guiding center Hamiltonian principle 2. 

In the full-kinetic simulation, this decomposition of the velocity variable to ( )ϕµ,,||v  will lead 

to numerical difficulties since these variables are defined on a local orthogonal coordinate system 
which rotates with the particle motion and hence is not fixed in time and space, e.g., the phase 
angle will rotate along the magnetic field line in a sheared magnetic field even without any 
particle gyromotion.  

The velocity v  is then decomposed into three covariant basis vectors i
i

d
dα

=
re , with 

, ,iα ψ θ ζ=  for 3,2,1=i , which can be defined by the magnetic coordinates. Then  

3

1
( , , ) i

i
i

v v v vαψ θ ζ

=

= =∑v e , with the contravariant velocity component i
ivα α= ⋅∇v  The 

contravariant basis vector is defined as i
iα= ∇e , with 1i

ijk j kJ ε−= ×e e e , where ijkε  is the 

Levi-Civita symbol, 1=ijkε  if the indices ( )kji ,,  follow an even permutation of ( )3,2,1 ; 
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1−=ijkε  if the indices ( )kji ,,  follow an odd permutation of ( )3,2,1 ; otherwise 0=ijkε . The 

transformation Jacobian J  between the covariant form and contravariant form is 

1 2 3J = × ⋅e e e , and 1 1 2 3J − = × ⋅e e e . The position advance in the magnetic flux coordinates 

derived from Eq.(3) takes the form  

 tv ttt
i

tt
i i ∆+= ∆−∆+ ααα 2/2/  (9) 

Once the new particle position 2/tt
i

∆+α  is known, the contravariant basis vector 2/tit ∆+e  at 

this new time step can be computed.  

In the following section we show how to evolve from tv  to t t+∆v  in the magnetic flux 

coordinates according to the Boris algorithm. 

III. Advance velocity in toroidal systems 

Since the particle changes its position with time, the basis vectors ie  and ie  at the particle 

position also change with time. In the absence of inductive field, the electric field can be derived 

from the electrostatic potential φ= −∇E . The velocity evolution equation in Boris scheme, i.e., 

Eqs. (5) and (6), can be projected to the three contravariant basis vectors /2it t+∆e  for 1, 2,3i =  

at the new time step / 2t t+ ∆ . Define /2it t it tuα +∆= ⋅v e , /2it t t t it tuα +∆ +∆ +∆= ⋅v e ,  

/2i it tuα − − +∆= ⋅v e  and /2i it tuα + + +∆= ⋅v e , then Eqs. (5) and (6) can be rewritten as 

 ∑
∂
∂Ω∆

−=
=

− 3

12 j j

t ijii g
B

tuu αααα
α
φ

 (10) 

 

 ∑
∂
∂Ω∆

−=
=

+∆+ 3

12 j j

tt ijii g
B

tuu αααα
α
φ

 (11) 

where the geometric tensor /2 /2j i jt t it tgα α +∆ +∆= ⋅e e . If not mentioned explicitly, these geometric 

tensors in the following are evaluated at time step 2/tt ∆+ . Similarly, we can define the 

geometric tensor 
i j i jgα α = ⋅e e  and j

i

j
igα

α = ⋅e e . The contravariant component of Eq.(8) gives 

 ( )/2 /2i i it t it tu uα α+ − − +∆ − +∆= + × ⋅ + × × ⋅v s e v t s e  (12) 

Suppose that the magnetic field in toroidal system can be expressed in both covariant or 
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contravariant form,2  ψζθψζθψδ ∇×∇+∇×∇=∇+∇+∇= qgIB , where ( )ψqq =  

is the safety factor, ( )θψδδ ,= , ( )ψII =  and ( )ψgg = . Thus the magnetic field can also be 

written in terms of the basis vectors defined before:  

 
3 3

1 1

j i
j i

j i
B B

= =

= =∑ ∑B e e  (13) 

with ( )gIB j ,,δ= , ( )( )110, ,iB J q J −−=  and the Jacobian 2B
IqgJ +

= . With these 

notations, Eq. (12) can be further simplified as  

 
( ) ( )2 3

2
2

1

3

, , 1

1
2 2

                                              

ji i

k

k l

iB
B j

j

B
ijl j

j k l

t
u t u B B u

B
t B g u

J B

αα α

α
α α

γ γ

γ ε

−+ −

=

−

=

Ω∆ = − Ω∆ +  
Ω∆

−

∑

∑
 (14) 

with the constant 
( ) 41

1
2t

B
Ω∆+

=γ . This equation can be explicitly expressed for each 

component in the following way: 

 ( ) ( )
3

2

1
1

2
k

k k

B B

k

tu t u gg Ig u
J B

αψ ψ
α θ α ζ

γ γ −+ −

=

Ω∆ = − Ω∆ + −  
∑  (15) 
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1
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                                              k
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k

t qu t u u Iu gu
B J

t Ig g u
J B

ζ ζ ψ θ ζ

α
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−

=
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Ω∆
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The preceding equations can be used to compute +iuα ( 3,2,1=i ), which then can be further used 

to compute ttiu ∆+α  using Eq.(11). However, ttiv ∆+α   instead of ttiu ∆+α  is required to 

evolve 2/tt
i

∆+α  to 2/3 tt
i

∆+α , with  it t t t it tvα +∆ +∆ +∆= ⋅v e .  The basis vector 

it t t t
iα

+∆ +∆= ∇e  remains unknown since tt
i

∆+α  has not been evaluated in the Boris scheme. 

Here we use an estimate for tt
i

∆+α  : 
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2

2/ tu tttt
i

tt
i i

∆
+= ∆+∆+∆+ ααα  (18) 

Once tt
i

∆+α  is known, then ttiv ∆+α  can be calculated by  

 
3

/2

1

ji t tt t t t it t
j

j
v uαα +∆+∆ +∆ +∆

=

= ⋅∑ e e  (19) 

Thus the new position is given by tv tttt
i

tt
i

i ∆+= ∆+∆+∆+ ααα 2/2/3 , for 3,2,1=i , according to 

Eq.(12) . Then the velocity variable ttiu ∆+α~  in the next step of velocity evolution needs to know 

the basis vector 2/3 tti ∆+e  rather than 2/ tti ∆+e , which can be then obtained by  

 ∑
=

∆+∆+∆+∆+ ⋅=
3

1

2/32/~
j

tittt
j

tttt ji uu eeαα  (20) 

With the preceding steps, we can advance one full time step in the original Boris scheme. 
However, in Eqs.(19), (20) we need to calculate the dot product of the covariant and contravariant 
basis vectors at different time steps. It is mostly convenient for this calculation once we know the 

transform between ( )321 ,, ααα and the Cartesian coordinates ( )zyx ,, , since 

zyxe ˆˆˆ
zyx

iiii

∂
∂

+
∂
∂

+
∂
∂

=
ααα

 and zyxe ˆˆˆ
iii

i
zyx
ααα ∂
∂

+
∂
∂

+
∂
∂

= . Note the unit vectors ( )zyx ˆ,ˆ,ˆ  

do not change with the particle motion. It is often more convenient to introduce an intermediate 

toroidal coordinate system ( ) ( )φβ ,,ZRi = , and find the transformation between the magnetic 

flux coordinates ( )iα  and the toroidal coordinates ( )iβ  first. The transformation between ( )iβ  

and ( ), ,x y z  is straightforward. Then we can rewrite Eq.(19) and Eq.(20) in a more specific 

form 

 
3 3 3,new

1 1 1

,old
, , , ,m m m

m j m j m j

i i n i n i n

n n n

j

j m n

x y z

x y z
u uα α α β α β α ββ β β

β α β α β α β β β= = =

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∑ ∑ ∑

   
=    

  
(21) 

It is interesting to know that Eq.(19) and Eq.(20) can be regarded as a rotation of the basis 
vectors as the particle position changes from one time step to the next time step. Therefore in a 
locally orthogonal system, the transformation can be greatly simplified. For example, we can find 
the transformation analytically in the limit of concentric circular cross section, which is a very 

useful equilibrium model for many applications. When a particle moves from ( )1 1 1, ,ψ θ ζ  to 

( )2 2 2, ,ψ θ ζ  , the directions of the basis vectors change with time as shown in Fig. 1. This 

rotation can be separated into three steps: a first rotation about ζ axis by an angle 1θ− , a second 
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rotation about 'θ axis by an angle 2 1ζ ζ ζ∆ = − , a third rotation about the ''ζ  axis by an 

angle 2θ . Thus the initial basis vectors can be written by the linear sum of the final ones: 

 

 
[ ]{

[ ] }

old new
2 1 2 1 2

new new
2 1 2 1 2 2 1

1

sin sin cos cos cos

1sin cos cos sin cos sin cos

ψ ψ

θ ζ

ψ θ θ θ θ ζ

θ θ θ θ θ ζ ζ ζ θ
ψ

= ∇ + ∆ +

∇ − ∆ − ∇ ∆
∇

e e

e e
 (22) 

 
[ ]{

[ ] }
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2 1 2 1 2

new new
2 1 2 1 2 2 1

1

cos sin sin cos cos

1cos cos sin sin cos sin sin

θ ψ

θ ζ

ψ θ θ θ θ ζ

θ θ θ θ θ ζ ζ ζ θ
θ

= ∇ − ∆

+ ∇ + ∆ + ∇ ∆
∇

e e

e e
 (23) 

 old new old old
2 2 2 2 2

1

1cos sin sin sin cosζ ψ θ ζψ θ ζ θ θ ζ ζ ζ
ζ

 = ∇ ∆ − ∇ ∆ + ∇ ∆  ∇
e e e e  (24) 

The velocity does not change with the basis vectors, i.e. 

 ,old old ,new newi i
i iu u= =∑ ∑v e e   (25) 

The new components of velocity can then be written as 

 

( )

( )

,old
,new

2 1 2 1 2
1
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1 2 1 2 2
1 1

sin sin cos cos cos

cos sin sin cos cos cos sin

uu

u u

ψ
ψ

θ ζ

ψ θ θ θ θ ζ
ψ

θ θ θ θ ζ θ ζ
θ ζ


= ∇ + ∆ ∇


+ − ∆ + ∆ ∇ ∇ 

  (26) 
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2 1 2 1 2
1
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1 2 1 2 2
1 1

sin cos cos sin cos

cos cos sin sin cos sin sin

uu

u u

ψ
θ

θ ζ

θ θ θ θ θ ζ
ψ

θ θ θ θ ζ θ ζ
θ ζ


= ∇ − ∆ ∇


+ + ∆ − ∆ ∇ ∇ 

  (27) 

 
,old ,old ,old

,new
2 1 1

1 1 1

cos sin sin sin cosu u uu
ψ θ ζ

ζ ζ θ ζ θ ζ ζ
ψ θ ζ

 
= ∇ − ∆ + ∆ + ∆ ∇ ∇ ∇ 

  (28) 

The preceding three equations can be used to compute the ttiv ∆+α  and ttiu ∆+α~  in the Eq.(19) 

and (20) respectively for a concentric circular cross section tokamak. For other non-circular cross 
section tokamaks, one needs to resort to Eq. (21) for a general treatment. 

IV. Simulation Results 

The new algorithm is implemented in a full kinetic code and is being incorporated to the 
gyrokinetic particle simulation code GTC. Several simulations of the charged particle orbit in 



8 
 

tokamaks are carried out to demonstrate the validity and usefulness of this new Boris algorithm in 
magnetic coordinates. The typical orbits for trapped and passing particles are shown in the left 
panels of Fig.2. The right panels show the poloidal projection of the particles on the R-Z plane. 
The full particle trajectories are closed on themselves on the R-Z plane after several hundreds of 
gyroperiods as predicated by the analytical theory, which indicates good numerical conservation 
properties for this new algorithm. Although there is a coordinate transformation in every time step, 
this new algorithm does not lose accuracy in the long time scale. 
As a comparison, the 4th order Runge-Kutta algorithm (RK4) is also employed to simulate particle 

orbit in the tokamak. Fig.3 shows the time history for the kinetic energy kE  and magnetic 

moment µ  for Boris algorithm and RK4 respectively,  where the kinetic energy 2
2
1 mvEk =  

and magnetic moment 
B

mv
2

2
⊥=µ  are calculated from the velocity of the particle and local 

geometrical information at each time step. As seen in Fig. 3, for the same time step size 

1/ 32 ct T∆ =  with 2 /cT π= Ω , the RK4 algorithm fails to conserve kinetic energy and 

magnetic moment, while Boris algorithm conserves kinetic energy and magnetic moment over one 
thousand gyroperiods. In fact, since the magnetic field is static, only the direction of the particle 
velocity changes at each time step in the Boris scheme, which leads to a perfect conservation of 
the kinetic energy. The magnetic moment µ  in long time simulation shows variation in three 
different time scales. Firstly in the fastest time scale, the magnetic moment oscillates with the 
gyromotion. Secondly, the magnetic moment oscillates in the slower bounce time scale. Thirdly, in 
the even longer time scale the magnetic moment decreases very slowly due to the numerical 
dissipation.  
To test the convergence of this algorithm, we carry out several simulations for different time step 

sizes. We plot in Fig.4 the motion of the particle in toroidal direction. When cTt 321=∆ , the 

black solid curve denoting the Boris algorithm coincides with the cyan dashed curve denoting the 
RK4 algorithm, which means that these methods converge to the exact particle orbit in the small 
time step size limit as is expected. The RK4 curve begins to deviate from the converged one when 

cTt 161=∆  and gives a diverged orbit when cTt 81=∆ . However, it is surprising to see that 

the Boris algorithm maintains adequate accuracy even when cTt 81=∆ . If there are high 

frequency electromagnetic perturbations, 1<∆tonperturbatiω  sets an upper bound for the time 

step. 
We also simulate the guiding center orbits with the same initial parameters. As Fig. 5(a) shows, the 
guiding center orbit does not match exactly the full particle orbit. Although the same equilibrium 
magnetic field is used in the guiding center orbit simulation and full particle orbit simulation, there 
still unavoidably exists some higher order correction in the ε  expansion due the different 

formulations for these two algorithms, where ε is the inverse aspect ratio and 0/r Rε ≡ . The 
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difference for the bounce time of a trapped particle between these two simulation methods is 
calculated and plotted in Fig. 5(b). If the equilibrium magnetic field in guiding center simulation 
and full particle simulation is accurate to the first order of ε , the difference is found proportional 

to the order of 2ε . This result shows that the difference between the guiding center and full 

particle orbits is much smaller than the implementation difference of the equilibrium model. In 
addition, the toroidal precession of trapped particles14, 15 is investigated using both full particle and 
guiding center simulations. Fig. 6(a) shows toroidal angle versus time. The slope of the local 
maxima gives the toroidal precession speed, which can be used to compute the toroidal precession 
frequency. The toroidal precession frequencies for different pitch angles are shown in Fig. 6(b) 

with the normalized pitch angle λ=μB0/Ek, and 0B  the magnetic field at the magnetic axis, where 

the continuous curves are from full particle simulation and the discrete circles are from the 
guiding center simulation. The results from these two methods are consistent with each other, 
which verifies the B∇  drift and the curvature drift in the Boris scheme, and shows the 
effectiveness of the Boris algorithm in the very long time scale simulation. With an external 
poloidal electric field added, the particle will possess a radial BE ×  drift. The BE ×  drift is 
verified in Fig. 7. 

If there is a toroidal electric field, the Ware pinch16 can be recovered by the Boris full particle 
simulation. As illustrated in Fig.8 (a), the projection of the orbit on the R-Z plane is no longer 

closed and there is a radial drift with the speed / pv E Bφ= . The radial drift speed of the trapped 

particle can also be calculated by its orbit, as shown in Fig. 8(b), which matches the theoretical 
prediction. If a time-dependent radial electric field is introduced, there will be a radial drift 

proportional to 
t

Er

∂
∂

 given by 
2 2

0 0
2 2
pi r

p
ci p

BEv
ne t B

ωε
ω

∂
=

∂
, which is the neoclassical polarization 

drift.17 If a monotonically increasing electric field is applied, i.e. ( ) 0rE t E t= , a constant radial 

drift pv  is observed, as shown in Fig.9 (b). This neoclassical polarization drift can also be 

computed from the full particle orbit, which matches the theoretical prediction. 
 

V. Summary 

In this paper, we have derived the form of the Boris algorithm in the magnetic coordinates to 
push full particle (i.e., with cyclotron motion) orbits in the toroidal plasmas. The geometric tensor 
and Jacobian both appear in the equations of motions to advance the position and velocity, which 
need to be calculated at the beginning of the simulation. The contravariant component of the 
velocity needs to be recalculated at each step to advance the velocity since the basis vectors 
change at the particle position change as the particle moves. This new algorithm is implemented to 
calculate the full particle orbit of the charged particle in a tokamak, showing faithfully the bounce 
motion and toroidal precession in a long time scale. The kinetic energy and magnetic moment of 
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particle are well conserved in this new algorithm. 
The orbit from the full particle simulation by the Boris algorithm coincides with the orbit from 

the guiding center simulation. Although more computation time is needed for the Boris full 
particle pushing algorithm compared with the guiding center pushing algorithm, this Boris 
algorithm is still desirable since it can treat properly the crucial wave-particle interaction in the 
high frequency RF heating scenarios. With low frequency external perturbation fields, this new 
Boris algorithm can faithfully recover the well-known physics including toroidal precession, Ware 
pinch and neoclassical polarization. Finally we note that this method and formulation work well 
not only for the magnetic coordinate system, but also for any other curvilinear coordinate system, 

such as the widely used toroidal coordinates ( )φ,,ZR . 
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Figure 1: The rotation of unit basis vectors: ( )ˆˆˆ , ,ψ θ ζ  is the initial direction of three unit vectors; 

)'ˆ,'ˆ,'ˆ( ζθψ  is the three unit vectors after the first rotation; )ˆ,ˆ,ˆ( ζθψ ′′′′′′  is the three unit 

vectors after the second rotation; )ˆ,ˆ,ˆ( ζθψ ′′′′′′′′′  is the three unit vectors after the third 

rotation. 
 
 
 

 

 (a) (b) 
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Figure 2: (a) Orbit of a trapped particle in the tokamak. (b) Projection of the trapped orbit on the 
R-Z plane (c) Orbit of a passing particle. (d) Projection of the passing orbit on the R-Z plane. The 
projection is closed during several banana or transit periods. 
 
 

 

 

Figure 3: (a) Time history of the kinetic energy of a particle for the Boris algorithm and the 
four-order Runge-Kutta algorithm (RK4). (b) Time history of the magnetic moment of the particle 
for the Boris algorithm and RK4 algorithm. The width of the line shows the fluctuation caused by 
gyro-motion. The simulations last for about four bounce periods. 
 
 

(b) 

(d) (c) 

(a) 
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Figure 4: Time history of the toroidal angle of the particle with different sizes of time step.  

 

 

Figure 5: (a) Time history of the toroidal angle of a trapped particle for full particle(FULL) 
simulation and guiding center(GC) simulation. (b) The relative difference for the bounce time 
between the full kinetic simulation and the guiding center simulation. The red markers are from 
the simulation data, and the black line is a fitted straight line.  
 
 

(b) (a) 
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Figure 6: (a) Calculation of the toroidal precession frequency. The red curve shows the toroidal 
angle of a trapped particle. The black solid line connects several local maxima, i.e., the banana 
tips. Then the slope of the black solid line is the toroidal precession frequency. (b) The toroidal 
precession frequency of trapped particles vs pitch angle for different energies: the continuous 
curves with different colors are from the full particle orbit simulation by the Boris algorithm, and 
the discrete circular markers are from the guiding center simulation.  

 
Figure 7: The motion of a particle in the direction of ×E B  drift. The blue line is the position of 
the particle in simulation. The red line is the average drift predicted by theory. 
 
 

(b) (a) 
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Figure 8: (a) Ware pinch due to the presence of toroidal electric field. The magenta solid line is 
the gyrocenter orbit after smoothing out the particle gyromotion in the full particle simulation. 
The blue line stands for the particle orbit for the beginning time steps. (b) The radial motion of 
gyrocenter (magenta solid line) and the black line is the radial drift predicted by the Ware pinch 
theory. 

 

 

Figure 9: (a) Neoclassical polarization drift due to increasing radial electric field. The magenta 
solid line stands for the gyrocenter orbit after smoothing out the particle gyromotion in the full 
particle simulation. The blue solid line stands for the particle orbit for the beginning time steps. 
(b) Radial motion of gyrocenter(magenta line) and the black line is the neoclassical polarization 
drift predicted by theory. 
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(b) (a) 
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