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Abstract: The penetration properties of the n = 1 resonant magnetic perturbations (RMPs) with 7 

toroidal rotation are systematically studied by the upgraded three-dimensional toroidal 8 

magnetohydrodynamic code CLTx. Through both linear and nonlinear simulations, it is found that 9 

in the presence of toroidal plasma rotation, the saturation state for high resonant harmonics is 10 

obtained in linear simulations due to the mode becoming unlocked from the internal magnetic 11 

islands. While in nonlinear simulations, nonlinear effects become important when the toroidal 12 

plasma rotation is not included. The zonal component resulted from the nonlinear mode coupling is 13 

necessary for the saturation of the whole system including the internal kink mode and the m/n = 2/1 14 

tearing mode. The simulations on RMP penetration demonstrate that the mode coupling is associated 15 

with the toroidal effect rather than a consequence of nonlinear effects. With a low resistivity, the 16 

single-harmonic-RMP is hard to penetrate the mode-rational surface because of the plasma 17 

screening effect, resulting in a truncation on the radial mode structure. On the other hand, the non-18 

resonant components in the multiple-harmonic-RMP could largely reduce the effect of the plasma 19 

shielding and result in that the RMP is able to penetrate deeply into the central plasma region through 20 

the poloidal harmonics coupling. 21 
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1 Introduction 31 

Resonant magnetic perturbation (RMP) is very efficient for controlling the edge localized mode 32 

(ELM) [1] in H-mode [2] discharge in Tokamaks. However, MHD (magnetohydrodynamic) 33 

theoretical analysis [3, 4], numerical simulations [5-18], and plasma experiments [19-21] have 34 

demonstrated that RMP penetration theory based on the vacuum model is inaccurate or even 35 

completely invalid. Meanwhile, RMP penetration is especially sensitive to plasma response in the 36 

presence of dynamical effects, like plasma rotation [11, 22], two-fluid effects [9, 12, 23, 24], screen 37 

current [25, 26], nonlinear mode coupling [6, 9, 17, 27], etc. 38 

Linearized models in analytical and numerical studies of the influence of plasma response on 39 

RMP penetration have been widely adopted and have shown high efficiency in calculation speed 40 

and great feasibility compared with plasma experimental results. Results obtained by the MARS-F 41 

code based on a linearized single-fluid MHD model have successfully explained the offset of the 42 

optimal coil phase in edge localized mode (ELM) control experiments with the n = 1 and 2 RMPs 43 

in EAST (Experimental Advanced Superconducting Tokamak) [10, 28] and the n = 2 RMP in the 44 

ASDEX Upgrade (Axially Symmetric Divertor Experiment) [28, 29], where n represents the 45 

toroidal mode number. The simulation results from the M3D-C1 code adopting a linearized two-46 

fluid model have demonstrated that the penetrated RMP field reaches its maximum value when the 47 

perpendicular electron rotation vanishes at the mode-rational surface [12, 24]. However, nonlinear 48 

simulations of RMPs have indicated that nonlinear effects are crucial and exhibit some dynamical 49 

features that are not present in purely linear simulations, such as the density pumpout due to the n 50 

= 0 component coupled with n = 2 perturbations [6] and the generation of high-order magnetic 51 

islands from the coupling of different harmonics [9]. In addition, the resonant amplification of RMPs 52 

due to the coupling between the non-resonant kink component (|m| > |nq|, where m is the poloidal 53 

mode number, and q is the safety factor) and the resonant m component has been observed in both 54 

linear and nonlinear modelings, respectively, by the MARS-F code [30] and the JOREK code [6], 55 

The validity criterion for the linear model can be written simply as the overlap condition 56 

/ 1r r     (where r   is the plasma displacement normal to the equilibrium magnetic field) 57 

after considering plasma response [27, 28]. Although the linear model has the advantages of being 58 

numerically and analytically efficient while still maintaining great validity in RMP calculations, 59 

nonlinear mode couplings, however, should not be ignored in some cases [27, 28]. 60 

In our previous work [18], the code CLT was upgraded to CLTx for studying RMP penetration 61 
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in EAST based on the linear and nonlinear resistive MHD equations. Results from linear simulations 62 

of RMPs applied to studies regarding ELM mitigation discharge 52340 in EAST have agreed well 63 

with those obtained from the MARS-F code. However, subsequent numerical simulation studies 64 

with different adopted resistivities suggest that the amplitude reduction and the phase shift of the 65 

resonant harmonics due to plasma response increase with decreasing resistivity. In this work, the 66 

nonlinear terms are retained in the CLTx code for studying the nonlinear effects on RMP penetration. 67 

The influences of toroidal rotation, nonlinear mode coupling, and toroidal effect on RMP penetration 68 

will be analyzed and discussed. The outline of the present paper is as follows: Section 2 introduces 69 

the simulation model used in the CLTx code; Section 3 presents the results of the linear and 70 

nonlinear simulations for RMP penetration and the influences of toroidal rotation; Section 4 gives 71 

the toroidal effect on RMP penetration in detail; and finally, the results of the present paper are 72 

summarized in Section 5. 73 

 74 

2 Simulation model for CLTx 75 

In the CLTx code, we adopted the full set of single fluid, resistive MHD equations including 76 

dissipations [18, 31], i.e., 77 

    0t D          v , (1) 78 

  0t p p p p p          v v , (2) 79 

    /t p             0v v v J B v v , (3) 80 

 t  B E , (4) 81 

with 82 

       0E v B J J , (5) 83 

 J B , (6) 84 

where   , p  , v  , B  , E  , and J   are the plasma density, thermal pressure, plasma velocity, 85 

magnetic field, electric field, and current density, respectively. The subscript ‘0’ denotes equilibrium 86 

quantities.  ( = 5/3) is the ratio of specific heat of the plasma. The variables are normalized as: 87 

00/ B B B  , / ax x  , 00/    , / Av v v  , / At t   ,  2
00 0/ /p B p   , 88 

 00 0/ /B a J J ,  00/ Av B E E , and  2
0/ / Aa    , where a  is equal to one meter, 89 

00 0 00/Av B    is the Alfvén speed, and /A Aa v   is the Alfvén time. 00B  and 00  are the 90 

initial magnetic field and plasma density at the magnetic axis, respectively. Note that the Hall term 91 

[32] in the generalized Ohm’s law is not included, thus diamagnetic drifts due to two-fluid effects 92 
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are not present in the current model. 93 

The simulation domain constructed in the CLTx code has been extended beyond the last closed 94 

magnetic surface to the scrape-off layer (SOL) with the inclusion of the X-point. The normalized 95 

parameters used in all simulations herein are fixed to be 61 10D    , 55 10    , and 96 

61 10   . The spatial distribution of the time-independent resistivity is determined by the initial 97 

normalized plasma temperature T   with 
3/2

0 T     , where 0   is the resistivity at the 98 

magnetic axis and corresponds to a resistivity minimum since the temperature is maximum at this 99 

axis. A mesh consisting of 256 16 256   points in  , ,R Z  is utilized for all simulations. In the 100 

CLTx code, the basic straight field line coordinates ( , , )n s    [18, 33] are used for spectrum 101 

analysis, where n   is the square root of the normalized poloidal flux n  , s   is the 102 

generalized poloidal angle, and   is the toroidal angle. 103 

The initial equilibria are reconstructed from EAST discharge 52340 at 3150 ms [10] and 104 

discharge 62585 at 3800 ms [34] by EFIT (Equilibrium Fitting code) [35]. The safety factor q 105 

profiles for each discharge and the toroidal rotation t  profile of discharge 52340 are given in 106 

Figure 1. 107 

 108 

Figure 1. Initial profiles of the safety factor q for EAST discharge 52340 at 3150 ms and 62585 at 109 

3800 ms, and the toroidal rotation t  for EAST discharge 52340 at 3150 ms. 110 

 111 

3 Linear and nonlinear saturations with the presence of RMP 112 

In our previous linear benchmark study for the equilibrium of discharge 52340, the magnetic 113 

island at high rational surfaces (q > 1) reaches a level of significant saturation, however the inner 114 

unstable m/n = 1/1 kink mode is still in the linear growth stage [18]. To understand the detailed 115 

saturation mechanisms of magnetic islands in linear simulations, comparisons between linear and 116 

nonlinear simulations with a relatively large resistivity 7
0 5 10    are performed in the present 117 

paper. The RMP coils set up in the CLTx code is Icoil = 10 kAt (kilo-Amp-turns), n = 1, 0  , 118 
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where   is the relative phase difference between the upper and lower coils [28]. The role of the 119 

plasma toroidal rotation on mode saturation is also studied in the present paper by artificially 120 

including plasma rotation, however, the artificial toroidal rotation speed is constrained to be sub-121 

sonic. Under these conditions, the resultant inertial force on the equilibria due to toroidal rotation is 122 

less than one percent of the entire pressure gradient force and is not included in the governing 123 

equations of the CLTx code initially. The same considerations are taken for discharges 52340 and 124 

62558 discussed below. 125 

 126 

Figure 2. Time evolutions of resonant harmonics /
r
m nb   at different rational surfaces with both 127 

linear (dashed lines with circles, indicated by ‘L’, the same below) and nonlinear (solid lines, 128 

indicated by ‘NL’, the same below) simulations for discharge 52340 (a) with toroidal rotation (the 129 

m/n = 1/1 harmonics are artificially reduced by multiplying a factor of 0.02) and (b) without toroidal 130 

rotation, as well as for discharge 62585 (c) with toroidal rotation (the m/n = 2/1 harmonics are 131 

artificially reduced by multiplying a factor of 0.25) and (d) without toroidal rotation. The vertical 132 

axes of the left-hand side panels are scaled linearly, while the vertical axes of the right-hand side 133 

panels are scaled logarithmically. 134 

 135 
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Time evolutions of resonant harmonics ,
r
m nb  driven by RMP for the equilibrium of discharge 136 

52340 with the toroidal rotation are shown in Figure 2 (a). Nonlinear effects in the pedestal region 137 

(m ≥ 5, n = 1) are ignorable but the chosen resistivity 7
0 5 10    is artificially enlarged by two 138 

orders of magnitude compared with the experimental parameter. Evidently, the only significant 139 

difference between the linear and nonlinear simulations is that the unstable m/n = 1/1 kink mode 140 

becomes saturated due to nonlinear mode coupling after 2100 A  . These results suggest that 141 

nonlinear effects are not important before the internal kink instability begins to play a role in the 142 

overall plasma dynamics, although it should be noted that the islands overlap condition 143 

/ 1r r    [27, 28] is not satisfied in the pedestal after taking the plasma response into account 144 

[18]. 145 

Figure 2 (b) shows the simulation results for discharge 52340 without the toroidal rotation. No 146 

saturation for any harmonic is observed in the linear result without toroidal rotation. While in the 147 

nonlinear case, the m/n = 1/1 kink mode becomes saturated as expected due to nonlinear mode 148 

coupling, which also contributes to the reduction of higher harmonics (m ≥ 2, n = 1). 149 

The second set of simulations with EFIT reconstructed equilibrium for EAST discharge 62585 150 

at 3800 ms [34] is carried out both with and without the toroidal rotation. All parameters and the 151 

RMP configurations are the same as those in the preceding simulations. The safety factor profile of 152 

discharge 62585 is monotonous with minq   = 1.59 and 95q   = 4.87 as shown in Figure 1. The 153 

toroidal rotation profile of discharge 52340 in Figure 1 is artificially added in the static equilibrium 154 

of discharge 62585 due to the lack of a self-consistent rotation profile. The results of discharge 155 

62585 in Figure 2 (c) and (d) show similar tendencies in comparison with those of discharge 52340. 156 

All resonant harmonics with high poloidal mode number (m ≥ 3, n = 1) become saturated both with 157 

and without toroidal rotation in both the linear and nonlinear simulations. Uniquely, the lowest 158 

resonant m/n = 2/1 tearing mode exhibits a continuous growth (the oscillation of the m/n = 2/1 159 

tearing mode is due to the mode rotating with the toroidal flow) in its linear simulation, while in the 160 

nonlinear simulation this particular mode becomes saturated due to the generation of the n = 0 zonal 161 

component through nonlinear mode coupling [36, 37]. 162 

Similar saturated time-independent solutions for stable equilibria were reported in the 163 

linearized MHD simulations carried out with the M3D-C1 code [24]. However, in our simulations 164 

of unstable equilibria with the toroidal rotation, the linearly saturated solutions for the n = 1 RMP 165 

are obtained for the harmonics with m ≥ 2 in discharge 52340 and m ≥ 3 in discharge 62585 with 166 
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the presence of toroidal rotation. The same saturated results for high harmonics obtained in both 167 

linear and nonlinear simulations with the toroidal rotation further demonstrate the validity of the 168 

linear model used in the previous researches of the MARS-F and CLTx code [10, 18]. 169 

With different amplitudes of RMP Icoil = 5kAt, 10kAt, and 20kAt, the time evolutions of the 170 

m/n = 4/1 harmonic at the q = 4 rational surface for EAST discharge 52340 with the toroidal rotation 171 

are given in Figure 3. The shielding effects due to plasma response are almost identical for all cases 172 

with the shielding ratio ( /r r
response vacuumb b ) approaching approximately 60%. Meanwhile, the overall 173 

qualitative evolutions among all cases are almost identical, that is, the modes for all cases become 174 

saturated after 3000 A  . The saturation amplitude of the high resonant harmonic with plasma 175 

response is linearly proportional to the intensity of the vacuum RMP. Also, the increase of the RMP 176 

intensity does not lead to breakdown of high resonant harmonics. 177 

 178 

Figure 3. Time evolutions of resonant harmonics /
r
m nb   at the q = 4 rational surface for EAST 179 

discharge 52340 with toroidal rotation. The amplitude of the RMP is adjusted by 5 kAt (blue), 10 180 

kAt (red), and 20 kAt (green). The hexagrams along the vertical axis mark out the amplitudes of the 181 

resonant m/n = 4/1 harmonic in vacuum for each case. 182 

 183 

4 Toroidal effect on the penetration of RMP 184 

In this section, we mainly focus on toroidal coupling effect on penetration of RMP in the 185 

interior resonant surfaces. Thus, the SOL region is not included in this study. In order to reduce the 186 

impact of boundary treatment, the safety factor for discharge 52340 is truncated to a finite value at 187 

the plasma boundary and the q = 6 rational surface is slightly shifted inward. The reconstructed 188 

equilibrium from the QSOLVER code [38] is shown by the red line of Figure 7. The RMP field is 189 

applied inside the plasma boundary where the generalized poloidal angle s   can be defined 190 

accurately. Usually, RMP fields generated by realistic coils contain multiple resonant and non-191 
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resonant harmonics and the penetration of a specific harmonic could be influenced by others [6, 30]. 192 

In this section, instead of the RMP fields directly calculated from the realistic coils, we chose the 193 

RMP to be artificially composited with different harmonics of the perturbed magnetic flux RMP194 

as follows, 195 

      , 0

,

cos ( ) 1 tanh / /m n s n n RMP

m n

m n d m        RMP , (7) 196 

where ,m n  is on the order of 10-5, corresponding to currents of several kiloamperes (kA), n  197 

is the normalized poloidal flux, 0 0.90  , and 0.02RMPd  . 198 

With varying combinations of different RMP harmonics, the response of the radial perturbation 199 

of the resonant magnetic field / 2/1
r
m nb   at the q = 2 rational surface is investigated. The reason for 200 

choosing the q = 2 surface is that the penetration mechanisms for different harmonics should be 201 

qualitatively consistent and the spectrum analysis is more accurate for lower harmonics. In the first 202 

subsection below, we discuss the simulation results of the single-harmonic-RMP and the double-203 

harmonic-RMP, in which the different roles played by resonant and non-resonant components will 204 

be illustrated. In the second subsection, the poloidal harmonics filtering analysis and the multiple-205 

harmonic-RMP simulation results are presented to confirm the importance of poloidal harmonics 206 

coupling on RMP penetration. 207 

 208 

4.1 The single-harmonic-RMP and the double-harmonic-RMP 209 

In this subsection, the single-harmonic-RMP is chosen to be two different amplitudes with 210 

5
2,1 2 10    and 5

2,1 2) 4( 10     while the double-harmonic-RMP consists of the m/n = 211 

2/1 harmonic and another higher m harmonic (m > 2, n = 1) with the same amplitude 212 

5
, 2 10m n   . A large resistivity ( 6

0 10  ) is used and all simulations are carried out based on 213 

the fully nonlinear simulation code CLT. Figure 4 shows time evolutions for / 2/1
r
m nb   with two 214 

different harmonic compositions of RMP. It is evident that, compared with the single m/n = 2/1 215 

harmonic RMP with 5
2,1 2 10   , an extra higher harmonic (m > 2) of RMP results in a larger 216 

tearing mode response at the q = 2 rational surface. In particular, the amplitude of / 2/1
r
m nb   under 217 

the m/n = 2/1+4/1 RMP is the largest among all cases with higher harmonic superposition (m > 2), 218 

but still remains less than that of the m/n = 2/1 ( 2) RMP with 5
2,1 2) 4( 10    . Consequently, 219 

the higher harmonics (m > 2) of the RMP could generate considerable driving effects at the q = 2 220 

rational surface. 221 

 222 
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 223 

Figure 4. Time evolutions of / 2/1
r
m nb   with different harmonic compositions of RMP. The double-224 

harmonic-RMP is combined with the m/n = 2/1 harmonic and an extra one with the same amplitude. 225 

 226 

Figure 5. Time evolutions for amplitudes of / 2/1
r
m nb   with different harmonic compositions of RMP. 227 

The results from single-harmonic-RMP ( 5
2,1 4 10   ) are plotted using blue lines, while red 228 

lines represent results from the double-harmonic-RMP ( 5
2,1 2 10    , 5

6,1 6 10    ). The 229 

resistivities used in each simulation are (a) 8
0 10   , (b) 

7
0 10   , (c) 6

0 10   , and (d) 230 

5
0 10  , respectively. 231 

 232 
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In order to further understand how the higher harmonic to enhance the tearing mode response 233 

at the q = 2 rational surface, another comparison study is carried out by using different values of the 234 

resistivity based on two sets of RMP configuration with (a) 5
2,1 4 10   (the single-harmonic-235 

RMP), (b) 5
2,1 2 10     and 5

6,1 6 10    (the double-harmonic-RMP), respectively. A 236 

relatively large m = 6 component is applied to the double-harmonic-RMP to strengthen its driving 237 

effect. The time evolutions of / 2/1
r
m nb   at the q = 2 surface with different RMP configurations are 238 

plotted in Figure 5. When the resistivity is small, such as 8
0 10   shown in Figure 5 (a), the 239 

driving effect of the m = 6 harmonic at the q = 2 rational surface is relatively weak, resulting in the 240 

amplitude of / 2/1
r
m nb    becoming smaller in the double-harmonic-RMP compared to that in the 241 

single-harmonic-RMP. However, when the resistivity increases, the driving effect from the higher 242 

harmonic becomes more important. After the resistivity increases to 6
0 10   shown in Figure 5 243 

(c), the amplitude of / 2/1
r
m nb   in the double-harmonic-RMP exceeds that of the single-harmonic-244 

RMP. 245 

Figure 6 exhibits the 1
r
nb   spectra corresponding to the cases in Figure 5 (a) and (c). For the 246 

low resistivity 8
0 10  , as shown in Figure 6 (a) and (b), the penetration depth of m = 2 harmonic 247 

is limited outside the q = 2 rational surface for both types of RMPs. The m = 6 harmonic vanishes 248 

quickly before reaching the q = 2 surface. Consequently, the resultant m = 2 and m = 6 perturbations 249 

from the double-harmonic-RMP are almost independent of each other, and the / 2/1
r
m nb   is mainly 250 

driven by the m = 2 harmonic of the RMP. The spectrum is consistent with that shown in Figure 5 251 

(a), where the amplitude of / 2/1
r
m nb    from the double-harmonic-RMP is lower than that of the 252 

single-harmonic-RMP. However, after the resistivity increases to 6
0 10  , the penetration depths 253 

from both types of RMP are greatly boosted, which suggests that the large resistivity can largely 254 

reduce the current shielding and enhance the penetration of RMPs. Meanwhile, the results from the 255 

double-harmonic-RMP also become completely different. Due to the toroidal effect, the strong m = 256 

6 harmonic in RMP generates a sequence of lower ,
r
m nb   harmonics from m = 5 to m = 2 and 257 

propagates inward to the central plasma region. The longest arrow in Figure 6 (d) indicates the 258 

inward propagation direction of the RMP from the m = 6 harmonic to the m = 2 harmonic due to the 259 

toroidal effect. After successful penetration by the higher harmonic, the considerable m = 3 and m 260 

= 4 components are generated at the q = 2 rational surface, which could indirectly drive / 2/1
r
m nb  . 261 

In addition, the / 2/1
r
m nb   component inside the q = 2 rational surface is also much larger than that 262 

of the single-harmonic-RMP. Therefore, for the double-harmonic-RMP, the inside and outside 263 
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resonant driving (m = 2) and the non-resonant driving (m > 2) together result in the final amplitude 264 

of / 2/1
r
m nb    to exceed that of the single-harmonic-RMP, even though the direct m = 2 driving 265 

strength from the double-harmonic-RMP is only a half of the single-harmonic-RMP. 266 

 267 

Figure 6. The radial distributions of the 1
r
nb   spectra at 423 At   for (a) the single-harmonic-268 

RMP ( 5
2,1 4 10    , 8

0 10   ), (b) the double-harmonic-RMP ( 5
2,1 2 10    , 269 

5
6,1 6 10   , 8

0 10  ), (c) the single-harmonic-RMP ( 5
2,1 4 10   , 6

0 10  ), and (d) the 270 

double-harmonic-RMP ( 5
2,1 2 10   , 5

6,1 6 10   , 6
0 10  ). 271 

 272 

The influences from the intrinsic kink and tearing instabilities (m/n = 1/1 resistive kink mode 273 

and m/n = 2/1 tearing mode) on the RMP penetration process is further examined by using artificially 274 

setting-up resistivity distribution. Two types of artificial resistivity distributions are shown in Figure 275 

7. With the type-1 distribution, the small resistivity value ( 8
0 10  ) is applied inside the q = 1 276 

rational surface to reduce the growth rate of the m/n = 1/1 resistive kink mode, while the resistivity 277 

in the outer region (q > 1) remains at a high level ( 6
0 10  ). It is found that, in comparison with 278 

the results of Figure 5 (c), the lower resistivity inside the q = 1 surface has a little effect on the 279 

evolution of / 2/1
r
m nb   at the q = 2 surface. As shown in Figure 8, the only difference resulted from 280 

the type-1 resistivity distribution is that / 1/1
r
m nb   at the q = 1 rational surface becomes much weaker 281 
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because magnetic reconnection is suppressed due to the small resistivity. While the global mode 282 

structures of /
r
m nb  outside the q = 1 rational surface are almost identical between these two cases. 283 

Consequently, the fast growth of the m/n = 1/1 harmonic is the result of the external driving process 284 

rather than the intrinsic resistive kink instability. 285 

 286 

Figure 7. Profile of the safety factor (red line) reconstructed for discharge 52340 with the 287 

QSOLVER code and the two different types of the resistivity 0  distributions: Type-1 (black line), 288 

the small resistivity value ( 8
0 10  ) is applied inside the q = 1 rational surface, but the resistivity 289 

in the outer region (q > 1) remains at a high level ( 6
0 10  ); Type-2 (blue line), the small resistivity 290 

value ( 8
0 10  ) is applied inside the q = 2 rational surface, but the resistivity in the outer region 291 

(q > 2) keeps at a high level ( 6
0 10  ). 292 

 293 

Figure 8. The radial structures of ,
r
m nb  at 800 At   with the double-harmonic-RMP for (a) the 294 

uniform 0   resistivity distribution, 6
0 10   , (b) the type-1 resistivity distribution with 295 

1 8
0 10q    and 

1 6
0 10q   . 296 

 297 
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With the type-2 resistivity distribution (the lower resistivity inside the q = 2 rational surface), 298 

the penetration properties of the single-harmonic-RMP and the double-harmonic-RMP become 299 

totally different. Firstly, due to the generation of the screen current, a strong shielding effect is 300 

observed in the mode structures of / 2/1
r
m nb   in Figure 9 (a) and E  in Figure 10 (a). Thus, the 301 

single-harmonic-RMP penetration is blocked at the q = 2 rational surface, and the amplitude of the 302 

/ 2/1
r
m nb   component inside the q = 2 surface is much weaker than that outside the surface. In contrast, 303 

with the double-harmonic-RMP applied as shown in Figure 9 (b), a series of intermediate non-304 

resonant harmonics (m from 3~5) are greatly generated across the entire space. As a result, with the 305 

double-harmonic-RMP, the penetrated / 2/1
r
m nb   component inside the q = 2 surface is comparable 306 

with that outside the surface. With the indirect driving from non-resonant harmonics (m > 2) at the 307 

rational surface and the direct driving from resonant harmonic (m = 2) both inside and outside, the 308 

value of / 2/1
r
m nb   at the q = 2 surface far exceeds that of the single-harmonic-RMP, even though 309 

the external m = 2 driving strength in the single-harmonic-RMP case is doubled. Meanwhile, as 310 

shown in Figure 10 (b), the m/n = 1/1 perturbation resulted from the double-harmonic-RMP 311 

penetrates deeply into the central core region, and consequently, a strong kink mode is excited inside 312 

the q = 1 rational surface.  313 

 314 

Figure 9. The radial structures of ,
r
m nb   at 800 At    with the type-2 resistivity distribution 315 

(
2 8

0 10q    and 2 6
0 10q   ) for (a) the single-harmonic-RMP, (b) the double-harmonic-RMP. 316 
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 317 

Figure 10. The mode structures of E   at 800 At    with the type-2 resistivity distribution, 318 

2 8
0 10q    and 2 6

0 10q    for (a) the single-harmonic-RMP, and (b) the double-harmonic-RMP. 319 

 320 

4.2 Poloidal harmonic filtering analysis and the multiple-harmonic-RMP  321 

A supplementary study concerning the toroidal effect on RMP penetration was carried out using 322 

poloidal filtering analysis. The filtering analysis is applied in the linear EAST RMP simulation 323 

where the SOL has been retained and the vacuum RMP field is calculated based on the realistic 324 

RMP coils [18]. Because the Cartesian grids in the poloidal section are used in the CLTx code, 325 

poloidal filtering analysis demands two coordinate transformations with interpolations among 326 

Cartesian grids and magnetic flux grids inside the plasma boundary for carrying out the Fourier 327 

transformations while an asymptotic transition is applied between the plasma and SOL regions for 328 

numerical continuity. The original radial structure of ,
r
m nb  under the n = 1 EAST RMP is plotted in 329 

Figure 11 (a). To analyze the numerical errors resulting from the interpolations from coordinate 330 

transformations, we conducted a controlling simulation by employing the interpolations and Fourier 331 

transformations while all harmonics are retained in the inverse Fourier transformation. The results 332 

shown in Figure 11 (b) indicate that the numerical errors due to these processes only lead to a limited 333 

decline of the m = 2 harmonic, but the errors’ influences on higher harmonics (m ≥ 3) are ignorable. 334 

After we removed the m = 4 component in the inverse Fourier transformation, the global amplitude 335 

of m = 3 is greatly reduced and its maximum value is almost only a half of its original level as shown 336 

in Figure 11 (c). Next, as shown in Figure 11 (d), after we removed more intermediate harmonics 337 
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(m = 4, 5, 6), the amplitude of the global m = 3 perturbation is further reduced. Another interesting 338 

phenomenon is that after removing the intermediate harmonics in the simulation, the amplitudes of 339 

the higher harmonics exhibit an enhancement, examples of which can be seen for the m = 5, 6 340 

harmonics in Figure 11 (c), and the m = 7 harmonic in Figure 11 (d). By removing the intermediate 341 

harmonics, the inward propagation channel from higher harmonics to lower harmonics is stifled, 342 

this results in amplitude decline of the inside lower harmonics and flux accumulation at the outside 343 

higher harmonics. 344 

 345 

Figure 11. The radial structures of ,
r
m nb  in the EAST n = 1 RMP simulation (a) without any specific 346 

treatment, (b) employing interpolations and Fourier transformations (all harmonics are retained), (c) 347 

artificially removing the m = 4 harmonic, and (d) artificially removing the m = 4, 5, 6 harmonics. 348 
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 349 

Figure 12. The distributions of the generalized poloidal angle s   of basic straight field line 350 

coordinate and the uniformly distributed poloidal angle c . 351 

 352 

Based on the above results about effects of the poloidal harmonics coupling, it is suggested 353 

that, in comparison with the single-harmonic-RMP, the multiple-harmonic-RMP could efficiently 354 

drive the development of MHD instabilities in the central plasma region. Therefore, a set of 355 

simulations is carried out to investigate roles of the multiple-harmonic-RMP on dynamic process of 356 

the tearing mode instabilities. The simulations are carried out with the equilibrium shown in Figure 357 

7 and the RMPs are applied inside the plasma boundary with the formula of Eq. (7). The multiple-358 

harmonic-RMP is implemented by changing the generalized poloidal angle s  of the basic straight 359 

field line coordinate in Eq. (7) into the uniformly distributed poloidal angle c . Note that magnetic 360 

field lines are no longer straight in the c   plane. The distributions of s  and c  are shown 361 

in Figure 12 (a) and (b), respectively. The RMP with 5
2,1 4 10    applied with the s  or c  362 

dependency produced the radial distributions of the 1
r
nb   spectra as shown in Figure 13. The RMP 363 

depending on s  contains only the single m/n = 2/1 harmonic as shown in Figure 13 (a), while the 364 

latter one with the c  dependency contains multiple harmonics ranging from m = 2 ~ 7 as shown 365 

in Figure 13 (b). Apparently, the multiple-harmonic-RMP with the c   dependency creates the 366 

multiple harmonic perturbations at the pedestal region, which results in a large enhancement of the 367 

non-resonant components (|m| > |nq|) at the q = 2 rational surface due to the successful penetration 368 

of high harmonic perturbations. Consequently, the resulted tearing mode response at the q = 2 369 

rational surface from the multiple-harmonic-RMP is much larger than that from the single-370 

harmonic-RMP as shown by Figure 14. 371 

 372 
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 373 

Figure 13. The radial distributions of the 1
r
nb   spectra at 423 At   for (a) the single-harmonic-374 

RMP and (b) the multiple-harmonic-RMP. 375 

 376 

Figure 14. Time evolutions for amplitudes of / 2/1
r
m nb   with different RMPs: the red squares for the 377 

single-harmonic-RMP and the blue circles for the multiple-harmonic-RMP. 378 

 379 

We also find from these present simulations that nonlinear effects on the inward penetration of 380 

higher harmonic RMPs are negligible due to the overlap condition / 1r r     being well 381 

satisfied. Concurrently, the linear simulations also give the same results as above. This indicates that 382 

the toroidal effect on RMP penetration is associated with the intrinsic symmetry breaking of the 383 

toroidal equilibrium magnetic field in the poloidal direction. Nevertheless, nonlinear effects may 384 

still be important when the magnetic islands grow large enough to affect the adjacent rational 385 

surfaces. 386 

 387 

5 Conclusion and discussion 388 

In the present paper, the CLTx code is used to study the n = 1 RMP penetration. The comparison 389 

study between linear and nonlinear modeling finds that with the presence of toroidal plasma rotation, 390 

the final steady state or saturated state for high resonant harmonics could be obtained in the initial 391 
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value simulations of the CLTx code using the linearized MHD equations only. With this being the 392 

case, nonlinear effects are negligible since the magnetic islands evolve into a linearly saturated state 393 

due to plasma response and shielding. Therefore, the nonlinear simulations for discharge 52340 give 394 

the same results for rational surfaces around the pedestal as the linear results calculated by the 395 

MARS-F code [10, 20] and the linearized CLTx code [18]. However, without toroidal rotation, the 396 

linear MHD modeling performed by the CLTx code breaks down. This is because, without plasma 397 

rotation and nonlinear effects, the inside resonant harmonics in purely linear simulations give 398 

evolution dynamics with continuous growth where the final saturated state is not obtained unless 399 

the nonlinear terms are included. Consequently, this leads to the failure of predicting the shielding 400 

effect by plasma response. Therefore, for future Tokamaks with zero or low-speed toroidal rotation, 401 

such as ITER [39], the inclusion of nonlinear effects in the CLTx code will be necessary. 402 

The simulations focusing on the toroidal effect in RMP penetration demonstrate that poloidal 403 

harmonics coupling [6, 30] is a consequence of the toroidal effect instead of nonlinear effects. With 404 

low resistivity, the single-harmonic-RMP is hard to penetrate the mode-rational surface because of 405 

the plasma screening effect, resulting in a truncation on the radial mode structure. On the other hand, 406 

the non-resonant components in the multiple-harmonic-RMP could avoid the plasma shielding, and 407 

thus play an effective role in the RMP penetration through the poloidal harmonics coupling. 408 

Consequently, with the inclusion of higher harmonics in RMP, the penetration by lower harmonics 409 

could become larger. The removal of the intermediate harmonics prevents the inward penetration of 410 

the outside higher harmonics, which results in an amplitude decrease (increase) of the inner lower 411 

(outer higher) harmonics. Finally, the observed mode coupling is mainly caused by the 412 

inhomogeneity of the toroidal equilibrium magnetic field rather than from nonlinear mode coupling. 413 

Consequently, nonlinear effects are unimportant for mode coupling when the toroidal effect 414 

dominates. This indicates a possible explanation for the similar results obtained by both the linear 415 

and nonlinear simulations. 416 

 417 

Acknowledgments 418 

This work was supported by the National Natural Science Foundation of China under Grant 419 

No. 11775188 and 11835010, the Special Project on High-performance Computing under the 420 

National Key R&D Program of China No. 2016YFB0200603, and the Fundamental Research Fund 421 

for Chinese Central Universities.  422 

 423 

javascript:void(0);


 19 / 20 
 

References 424 

1. Zohm, H., Edge localized modes (ELMs). Plasma Physics and Controlled Fusion, 1996. 425 

38(2): p. 105-128. 426 

2. Wagner, F., et al., Regime of Improved Confinement and High-Beta in Neutral-Beam-427 

Heated Divertor Discharges of the Asdex Tokamak. Physical Review Letters, 1982. 49(19): 428 

p. 1408-1412. 429 

3. Boozer, A.H. and C. Nuhrenberg, Perturbed plasma equilibria. Physics of Plasmas, 2006. 430 

13(10): p. 102501. 431 

4. Boozer, A.H., Perturbation to the magnetic field strength. Physics of Plasmas, 2006. 13(4): 432 

p. 044501. 433 

5. Nardon, E., et al., Magnetohydrodynamics modelling of H-mode plasma response to 434 

external resonant magnetic perturbations. Physics of Plasmas, 2007. 14(9): p. 092501. 435 

6. Orain, F., et al., Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade. 436 

Nuclear Fusion, 2017. 57(2): p. 022013. 437 

7. Liu, F., et al., Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D. Nuclear 438 

Fusion, 2015. 55(11): p. 113002. 439 

8. Becoulet, M., et al., Mechanism of edge localized mode mitigation by resonant magnetic 440 

perturbations. Phys Rev Lett, 2014. 113(11): p. 115001. 441 

9. Orain, F., et al., Non-linear magnetohydrodynamic modeling of plasma response to 442 

resonant magnetic perturbations. Physics of Plasmas, 2013. 20(10): p. 102510. 443 

10. Yang, X., et al., Modelling of plasma response to 3D external magnetic field perturbations 444 

in EAST. Plasma Physics and Controlled Fusion, 2016. 58(11): p. 114006. 445 

11. Li, L., et al., Screening of external magnetic perturbation fields due to sheared plasma flow. 446 

Nuclear Fusion, 2016. 56(9): p. 092008. 447 

12. Wade, M.R., et al., Advances in the physics understanding of ELM suppression using 448 

resonant magnetic perturbations in DIII-D. Nuclear Fusion, 2015. 55(2): p. 023002. 449 

13. Wingen, A., et al., Connection between plasma response and resonant magnetic 450 

perturbation (RMP) edge localized mode (ELM) suppression in DIII-D. Plasma Physics and 451 

Controlled Fusion, 2015. 57(10): p. 104006. 452 

14. Moyer, R.A., et al., Validation of the model for ELM suppression with 3D magnetic fields 453 

using low torque ITER baseline scenario discharges in DIII-D. Physics of Plasmas, 2017. 454 

24(10): p. 102501. 455 

15. Izzo, V.A. and I. Joseph, RMP enhanced transport and rotational screening in simulations 456 

of DIII-D plasmas. Nuclear Fusion, 2008. 48(11): p. 115004. 457 

16. Pankin, A.Y., et al., Modelling of ELM dynamics for DIII-D and ITER. Plasma Physics and 458 

Controlled Fusion, 2007. 49(7): p. S63-S75. 459 

17. Becoulet, M., et al., Screening of resonant magnetic perturbations by flows in tokamaks. 460 

Nuclear Fusion, 2012. 52(5): p. 054003. 461 

18. Zhang, H.W., et al., Penetration properties of resonant magnetic perturbation in EAST 462 

Tokamak. Physics of Plasmas, 2019. 26(11): p. 112502. 463 

19. Xiao, W.W., et al., Propagation Dynamics Associated with Resonant Magnetic Perturbation 464 

Fields in High-Confinement Mode Plasmas inside the KSTAR Tokamak. Phys Rev Lett, 465 

2017. 119(20): p. 205001. 466 

20. Sun, Y., et al., Edge localized mode control using n= 1 resonant magnetic perturbation in 467 



 20 / 20 
 

the EAST tokamak. Nuclear Fusion, 2016. 57(3): p. 036007. 468 

21. Xiao, W.W., et al., Location of the first plasma response to resonant magnetic 469 

perturbations in DIII-D H-mode plasmas. Nuclear Fusion, 2016. 56(6): p. 064001. 470 

22. Lyons, B.C., et al., Effect of rotation zero-crossing on single-fluid plasma response to 471 

three-dimensional magnetic perturbations. Plasma Physics and Controlled Fusion, 2017. 472 

59(4): p. 044001. 473 

23. Strauss, H.R., et al., Extended MHD simulation of resonant magnetic perturbations. 474 

Nuclear Fusion, 2009. 49(5): p. 055025. 475 

24. Ferraro, N.M., Calculations of two-fluid linear response to non-axisymmetric fields in 476 

tokamaks. Physics of Plasmas, 2012. 19(5): p. 056105. 477 

25. Reiser, D. and D. Chandra, Plasma currents induced by resonant magnetic field 478 

perturbations in tokamaks. Physics of Plasmas, 2009. 16(4). 479 

26. Kaveeva, E. and V. Rozhansky, Screening of resonant magnetic perturbations taking into 480 

account a self-consistent electric field. Nuclear Fusion, 2012. 52(5). 481 

27. Ferraro, N.M., et al., Role of plasma response in displacements of the tokamak edge due 482 

to applied non-axisymmetric fields. Nuclear Fusion, 2013. 53(7): p. 073042. 483 

28. Liu, Y.Q., et al., ELM control with RMP: plasma response models and the role of edge 484 

peeling response. Plasma Physics and Controlled Fusion, 2016. 58(11): p. 114005. 485 

29. Liu, Y.Q., et al., Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, 486 

q(95) dependence, and toroidal torques. Nuclear Fusion, 2016. 56(5): p. 056015. 487 

30. Ryan, D.A., et al., Toroidal modelling of resonant magnetic perturbations response in 488 

ASDEX-Upgrade: coupling between field pitch aligned response and kink amplification. 489 

Plasma Physics and Controlled Fusion, 2015. 57(9): p. 095008. 490 

31. Zhang, H.W., et al., Acceleration of three-dimensional Tokamak magnetohydrodynamical 491 

code with graphics processing unit and OpenACC heterogeneous parallel programming. 492 

International Journal of Computational Fluid Dynamics, 2019. 33(10): p. 393-406. 493 

32. Zhang, W., Z.W. Ma, and S. Wang, Hall effect on tearing mode instabilities in tokamak. 494 

Physics of Plasmas, 2017. 24(10): p. 102510. 495 

33. Pustovitov, V.D., Flux coordinates for tokamaks. Plasma Physics Reports, 1998. 24(6): p. 496 

510-520. 497 

34. Zheng, Z., et al., Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode 498 

plasma on EAST tokamak. Plasma Science & Technology, 2018. 20(6). 499 

35. Lao, L., et al., Reconstruction of current profile parameters and plasma shapes in tokamaks. 500 

Nuclear fusion, 1985. 25(11): p. 1611. 501 

36. Zhu, J., et al., Nonlinear dynamics of toroidal Alfvén eigenmodes in the presence of tearing 502 

modes. Nuclear Fusion, 2018. 58(4): p. 046019. 503 

37. Zhang, W., et al., Core-crash sawtooth associated with m/n = 2/1 double tearing mode 504 

in Tokamak. Plasma Physics and Controlled Fusion, 2019. 61(7): p. 075002. 505 

38. DeLucia, J., S.C. Jardin, and A.M.M. Todd, An iterative metric method for solving the 506 

inverse tokamak equilibrium problem. Journal of Computational Physics, 1980. 37(2): p. 507 

183-204. 508 

39. Becoulet, M., et al., Numerical study of the resonant magnetic perturbations for Type I 509 

edge localized modes control in ITER. Nuclear Fusion, 2008. 48(2): p. 024003. 510 

 511 


