

Simultaneous destabilization of GA M and GAM-like modes in the prese nce of energetic particles with finite orbit width effects

Young-Hoon Lee and Jungpyo Lee

Hanyang University, Department of Nuclear Engineering, Seoul 04763, South Korea

The 4th Trilateral International Workshop on EP physics

LiuTong hotel (Hangzhou), October 27th, 2024

CONTENTS

1 Introduction

2 Gyrokinetic EGAM dispersion relation with FOW effects

- a. Derivation
- b. Type of EGAM
- c. Comparison with gyrokinetic simulations

3 Multiple EGAMs destabilization by FOW effects

- a. Destabilization pattern
- b. Type of δEGAM
- c. Destabilization mechanism

4 Summary and conclusion

Introduction

Energetic particle driven geodesic acoustic modes (EGAMs) and finite orbit width (FOW) effects

- Energetic particles (EPs) are a robust source of GAM-like modes.
- In the 2000s, DIII-D has reported energetic particle driven GAM (EGAM).
- EGAM is featured with mode bursting with frequency chirping.
- Each burst have a few millisecond duration and accompanied by EP loss.
- Fu first found that the EGAM is driven by anisotropic distribution of EPs using hybrid MHD-kinetic model.
- Later, Zarzoso* derived the gyrokinetic EGAM dispersion relation.
- Mismatches between theory and simulations were observed.
- In this study, the EGAM dispersion relation considering FOW effects has been derived.

Gyrokinetic EGAM dispersion relation with FOW effects

- Gyrokinetic EGAM dispersion relation considering FOW effects has been derived* !
- In the limit of zero-FOW $\delta \equiv k_r \rho_{ti} q) \rightarrow 0$, the dispersion relation reduces to the results by Zarzoso.

$$\begin{aligned} & \underset{[\text{Larzoso et al 12' POP]}{\text{EGAM by EPs}} \quad G(\omega) + \frac{\delta^2}{8} F(\omega) = 0 & \underset{(hermal set al se$$

Type of EGAM: (i) EGAM from GAM, (ii) Landau-EGAM

EGAM has two different types:

(i) for low q ↓ and high u_{||EP}↑,
the GAM becomes an EGAM: *EGAM from GAM* (EGAM-fG);
(ii) for high q ↑ and low u_{||EP}↓,
a strongly damped Landau pole become an EGAM: *Landau EGAM* (Ld-EGAM).

* : NEMORB: electromagnetic version of ORB5 code (nonlinear GK, δf , PIC).

(2.0, 2.8) EGAM-fG case 1

- The FOW effects on EGAM was observed to be very weak.
- Real frequency is almost unchanged.
- Only a slightly enhanced damping of the EGAM is observed with increasing $k_r \rho_{ti}$.

(3.0, 2.8) Ld-EGAM case 2

- Enhanced damping of the EGAM become more significant.
- The **GAM become highly stabilized** with increasing $k_r \rho_{ti}$.
- However, when $k_r \rho_{ti}$ exceeds a certain value, suddenly the **GAM also becomes unstable**.

(NOTE: NEMORB data for 1 and 2 are taken with permission from [Zarzoso et al 14' NF])

* : NEMORB: electromagnetic version of ORB5 code (nonlinear GK, δf , PIC).

(2.0, 3.5) EGAM-fG case 3

- The FOW does not affect the frequency, while it gives a slightly enhanced damping to the EGAM.
- Surprisingly, a new unstable EGAM branch can be also found in this new EGAM-fG case.
- The new EGAM branch comes from a damped Landau pole with a frequency close to the GAM.

- A good match between gyrokinetic simulations and theoretical predictions is demonstrated.
- In both EGAM types, FOW enhanced damping of EGAM can be observed (more significant for Ld-EGAM).
- In both EGAM types, a **new unstable EGAM branch** is identified when the FOW become larger than a certain value.
- We have named this newly discovered unstable EGAM branch δ EGAM (δ : FOW of passing thermal ions).

14

Simultaneous destabilization of EGAM and δEGAM

- Depending on the EGAM type, δEGAM also have two different kinds:
 (i) Ld-EGAM case, the GAM becomes a δEGAM: δEGAM from GAM (δEGAM-fG);
 (ii) EGAM-fG case, a Landau pole becomes a δEGAM: Landau-δEGAM (Ld-δEGAM).
- δEGAM has a frequency similar to or higher than the GAM depending on the type:
 (i) δEGAM-fG case, ω_{δEGAM} ~ ω_{GAM}; (ii) Ld-δEGAM case, 1.5ω_{GAM} < ω_{δEGAM} < 2.0ω_{GAM}.

Type of EGAM/ δ EGAM on *q*-*u*_{||*EP*} surface with different *k*_{*r*} ρ_{ti}

- The δ EGAM begins to emerge when $k_r \rho_{ti} \gtrsim 0.05$ (threshold).
- With higher $k_r \rho_{ti}$, the space of EGAM+ δ EGAM zone expands.
- For a given type of EGAM, the δ EGAM prone to be unstable with higher $q \uparrow$ and $u_{\text{IIEP}} \uparrow$.

▲ EGAM-fG ▼ Ld-EGAM ◆ EGAM-fG+Ld-δEGAM ◆ Ld-EGAM+δEGAM-fG

How the FOW effects destabilizes the δ EGAM?

We will show how the $F(\omega)$ destabilizes the δ EGAM by comparing δ EGAM

"*unstable*" case with higher $u_{||EP}$ "*stable*" case with lower $u_{||EP}$.

(NOTE: Results will be shown as below)

 $\rightarrow \delta$ EGAM-fG is destabilized by *inverse Landau damping* arisen from *EP-FOW* effects

→Ld-δEGAM is also destabilized by *inverse Landau damping* arisen from *EP-FOW* effects

Summary and conclusion

- Gyrokinetic EGAM dispersion relation considering FOW effects is newly derived.
- **FOW enhanced damping of EGAM** is predicted with the dispersion relation and shows a good match with NEMORB simulations.
- If FOW is large enough, another unstable EGAM branch appears, referred to as δ EGAM.
- δEGAM have two different types:
 (i)δEGAM from GAM (δEGAM-fG), (ii)Landau δEGAM (Ld-δEGAM).
- Depending on the type, δ EGAM has different thresholds and frequency range as follows:

	$\delta EGAM$ from GAM	Landau δEGAM
Threshold	$n^{EP,\ th}_{\delta { m EGAM}} \ll n^{EP,\ th}_{ m EGAM}$	$n^{EP,\ th}_{\delta { m EGAM}} \gg n^{EP,\ th}_{ m EGAM}$
Frequency	$\omega_{\mathrm{\delta EGAM}}$ ~ ω_{GAM}	$1.5\omega_{ m GAM} < \omega_{ m \delta EGAM} < 2.0\omega_{ m GAM}$

 δEGAM is driven by inverse Landau damping, which arises from the higher harmonic transit resonance caused by FOW effects.