4.th International Trilateral Workshop on Energetic Particle Physics – October 26-27, 2024

Universal behaviour of frequency chirping fluctuations in magnetized plasmas

The 4th International Workshop on Energetic Particle Physics Hangzhou, China, October 26-27, 2024

Fulvio Zonca^{1,2}, Liu Chen^{2,3,1}, Matteo V. Falessi¹, Xin Tao⁴, and Zhiyong Qiu^{5,1}

¹Center for Nonlinear Plasma Science and ENEA C.R. Frascati, 00044 Frascati, Italy ²IFTS, School of Physics, Zhejiang University, Hangzhou, 310027 P.R. China ³Department of Physics and Astronomy, University of California, Irvine, CA, USA ⁴University of Science and Technology of China, Hefei, P.R. China ⁵CAS Center of Excellence in Comparative Planetology,

Acknowledgments: Sergio Briguglio, Gregorio Vlad and Xin Wang

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

This work was supported in part by the Italian Ministry of Foreign affairs and International Cooperation, grant number CN23GR02

Ministero degli Affari Esteri e della Cooperazione Internazionale

Institute for Fusion Theory and Simulation, Zhejiang University

Frequency-chirping fluctuations are ubiquitous and are one of the most studied problems in plasma physics:

- What was done: self consistent solution of chirped wave packet with narrow spectrum
- What is novel: solution of the nonlinear phase space structure evolution, consistent with chirped wave packet
- Why is this universal: consistent description of nonlinear chirped wave packet dynamics within one single unifying framework

Ubiquitous chirping in plasmas

- NPS of a starting scheme 3
- Frequency-chirping fluctuations are ubiquitous in magnetized plasmas and are routinely observed in space and laboratory environments:
 - Space plasmas: whistler mode chorus and electromagnetic ion cyclotron (EMIC) waves in the Earth's magnetosphere
 - Laboratory fusion plasmas: fishbone oscillations and energetic particle modes (EPM)
 - Quasi coherent spectrum: not turbulence, with important role of wave-particle resonances

Chorus chirping

 Earth's magnetosphere can, in certain circumstances, amplify e.m. wave frequency bursts, which are known as chorus for their characteristic chirping
 Angelopoulos V. 2008. Space Sci Rev, 141: 5–34

Magnetic field from Themis-A

Hangzhou, Oct. 27th, 2024

Importance of frequency chirping

- Whistler mode chorus excitation and nonlinear dynamics is one of the long-studied physics problems of the Earth's magnetosphere due to its implications for particle acceleration and distribution in the radiation belts
- In fusion plasmas, as fishbone/EPM mode frequency sweeps, energetic particles (EP) are transported outward to maximize wave-EP power transfer (maximized mode growth and EP transport)

Earth's radiation belts

Diagram of Earth's magnetosphere

Source:<u>https://en.wikipedia.org/wiki/Magnetosphere</u> Original: <u>NASA</u> Vector: <u>Aaron Kaase</u>, <u>Medium69</u> - <u>Structure of the magnetosphere numbered.svg</u>

Significant MeV electron population Formation mechanism?

'NP

Earth's radiation belts

Source: https://www.issibern.ch/teams/radbeltphysics/

Whistler mode chorus is responsible for electron acceleration to MeV energy in Earth's radiation belts (R. B. Horne, Nature 2005)

Resonant transport in laboratory

Crucial role of resonant transport in collision less burning plasmas, particularly of supra-thermal particles

[from Pitts, Buttery & Pinches, PhysicsWorld 2006]

- □ Loss of MeV particles (fusion alphas, supra-thermal), naturally resonating with || propagating Alfvén waves ($v \simeq \omega/k_{\parallel}$), may impact material walls and:
 - Key Issues!!

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND

SUSTAINABLE ECONOMIC DEVELOPMEN

- Reduce fusion reactivity
- Damage plasma facing components

Hangzhou, Oct. 27th, 2024

「「「」」「「「」」」 「「」」」「「」」」」 Institute for Fusion Theory and Simulation, Zhejiang University

Fishbone observation

□ Experimental observation of fishbones in PDX [McGuire et al. 83] with macroscopic losses of ⊥ injected fast ions

Hangzhou, Oct. 27th, 2024

Transport enhanced by EPM

□ Toroidal Alfvén Eigenmodes (TAEs) [Cheng, Chen and Chance 1985] and Energetic Particle Modes (EPMs) [Chen 1994] observed in toroidal devices

- □ On left, bursting, chirping EPM-like modes. → Enhanced transport
- □ Evolutions to nearly coherent, TAE-like modes on right.

Hangzhou, Oct. 27th, 2024

Frequency-chirping fluctuations are ubiquitous and are one of the most studied problems in plasma physics:

- What was done: self consistent solution of chirped wave packet with narrow spectrum
- What is novel: solution of the nonlinear phase space structure evolution, consistent with chirped wave packet
- Why is this universal: consistent description of nonlinear chirped wave packet dynamics within one single unifying framework

Hangzhou, Oct. 27th, 2024

Earth's chorus chirping

Adopt the general approach to construct the nonlinear growth rate and frequency shift [FZ et al, RMPP/JGR]

$$\frac{\partial \omega}{\partial t} = \pm \frac{1}{2} \frac{\left\langle \left\langle \omega_{\mathrm{tr}k}^4 \right\rangle \right\rangle^{1/2}}{\left(1 - v_{r\omega}/v_{g\omega}\right)^2}$$
Evonvoridis et al 1982

CNPS

11

X. Tao, F. Zonca, L. Chen, A "Trap-Release-Amplify" model of Chorus Waves, JGR: Space Physics, 126, e2021JA029585

F. Zonca, X. Tao, L. Chen, Nonlinear dynamics and phase space transport by chorus emission RMPP 5, 8; A theoretical framework of chorus wave excitation, JGR 127, e2021JA029760

Hangzhou, Oct. 27th, 2024

浙江大學豪愛理論與模擬中心。

Institute for Fusion Theory and Simulation, Zhejiang University

Chorus chirping at Mars

PIC simulations based on the same theoretical framework predict chorus chirping at MARS [Teng et al, Nat. Comm. 2023]

EPM chirping rate

□ PIC simulations of EPM in tokamaks show linear scaling of chirping rate with amplitude [X. Wang et al, EPS-DPP invited 2023]

Output Content of C

FOR NEW TECHNOLOGIES, ENERGY

SUSTAINABLE ECONOMIC DEVELOPM

Institute for Fusion Theory and Simulation, Zhejiang University

CNPS

13

Frequency-chirping fluctuations are ubiquitous and are one of the most studied problems in plasma physics:

- What was done: self consistent solution of chirped wave packet with narrow spectrum
- What is novel: solution of the nonlinear phase space structure evolution, consistent with chirped wave packet
- Why is this universal: consistent description of nonlinear chirped wave packet dynamics within one single unifying framework

Solution of the Dyson-like equation (15) 15

□ The whistler chorus DSE (as illustration) reads $\partial_{\tau} f_0 = \omega_{tr}^2 \omega / (2k^2) \bar{\partial}_{\mathcal{E}} \partial_{\tau} \left[(\omega - \omega_{res})^2 + \partial_{\tau}^2 \right]^{-1} \bar{\partial}_{\mathcal{E}} (\omega_{tr}^2 \omega / k^2) f_0$

- □ Here, $\partial_{\tau} = (1 v_r/v_g)\partial_t$, $\bar{\partial}_{\varepsilon} = (k/\omega)\partial_{v_{\parallel}} + (1 kv_{\parallel}/\omega)/v_{\perp}\partial_{v_{\perp}}$ and ω_{res} is the resonance frequency. This equation has 1degree of freedom as $B\omega\dot{\mu} = \Omega\dot{\varepsilon}$, with $\varepsilon = v^2/2$, and a nonlinear invariant exists.
- From existing theory, a wave packet solution of the wave equation can be constructed, satisfying the chorus chirping expression, provided that

$$\mathcal{E}_{res} = \mathcal{E}_{res,0} + \int_0^\tau R\omega_{tr}^2 \omega/k^2 d\tau'$$

□ The DSE can be solved for weakly varying wave packet amplitude, changing variables from (\mathcal{E}, τ) to (x, T) (moving in the wave packet moving frame)

Solution of the Dyson-like equation (16) 16

$$x = \frac{k^2}{\omega\omega_{tr}} \left(\frac{2}{(2-4R^2)^{1/2}}\right)^{1/2} \left(\mathcal{E} - \mathcal{E}_{res,0} - \int_0^\tau R\omega_{tr}^2 \omega/k^2 d\tau'\right) T = \omega_{tr} \tau \frac{(2-4R^2)^{1/4}}{2^{1/2}}$$

□ The solution is expressed as series of orthonormal Hermite functions

Phase space structure rotation is slowed down by chirping
 PHASE LOCKING

□ Wave particle power exchange is maximized for $R \cong 1/2$, consistent with previous analysis of wave packet propagation.

Frequency-chirping fluctuations are ubiquitous and are one of the most studied problems in plasma physics:

- What was done: self consistent solution of chirped wave packet with narrow spectrum
- What is novel: solution of the nonlinear phase space structure evolution, consistent with chirped wave packet
- Why is this universal: consistent description of nonlinear chirped wave packet dynamics within one single unifying framework

Universal behavior of frequency chirping

- □ Use action angle coordinates for general tokamak geometry: q_c and ζ_c such that $\omega_b = \dot{\theta}_c$ and $\overline{\omega}_d = \dot{\zeta}_c$ are, respectively, the bounce/transit and the magnetic drift precession frequency; $\tilde{\Xi}_c$ parameterizing the equilibrium particle motion as $\zeta = \zeta_c + \tilde{\Xi}_c$ at constant actions (µ, J, P_φ)
- Use the notion of nonlinear equilibrium in the presence of flows to selfconsistently compute wave-particle resonant interaction with EPM/fishbone

$$\dot{P}_{\phi} = en \left| \overline{e^{-in\zeta - im\bar{\theta}_{c} + i\bar{Q}} \frac{\omega_{dn}}{\omega} \left\langle \delta\psi_{ng} \right\rangle} \right| \sin\left(\Theta + \beta\right)$$
$$\dot{E} = e\omega \left| \overline{e^{-in\zeta - im\bar{\theta}_{c} + i\bar{Q}} \frac{\omega_{dn}}{\omega} \left\langle \delta\psi_{ng} \right\rangle} \right| \sin\left(\Theta + \beta\right)$$
$$i\bar{Q} = \frac{RB_{\phi}}{d\psi/dr} \frac{v_{\parallel}}{\Omega} \frac{\partial}{\partial r} + \tilde{\Xi}_{c} \frac{\partial}{\partial\zeta} ; \qquad \overline{(\ldots)} = \frac{\omega_{b}}{2\pi} \oint(\ldots) \frac{d\theta}{\dot{\theta}}$$

Universal behavior of frequency chirping

❑ Near resonance of (m,n) poloidal harmonics ← phase locking
$$\Theta = n\zeta_c - m\bar{\theta}_c + \frac{1}{\omega_b} \int^{\theta_c} \Delta_1 d\theta'_c - \int^t \omega dt'$$

$$\dot{\Theta} = \omega_{\rm res} - \omega = n\bar{\omega}_d + n\bar{q}\sigma\omega_b - m\dot{\bar{\theta}}_c + \Delta_1 - \omega$$

$$\ddot{\Theta} = -\dot{\omega} + \frac{\partial\omega_{\rm res}}{\partial P_{\phi}}\dot{P}_{\phi} + \frac{\partial\omega_{\rm res}}{\partial E}\dot{E} \simeq 0 \quad \leftarrow \text{ phase locking}$$

□ Predicted frequency chirping for EPM/fishbones scales linearly with fluctuation amplitude. Effect of zonal flows is embedded in Δ_1 .

$$\Delta_1 = -i \overline{\left[e^{i ar{Q}} \left(\delta \dot{X}_z \cdot \nabla + \delta \dot{\mathcal{E}}_z \partial_{\mathcal{E}} \right)
ight]} ,$$

$$\dot{\omega} \simeq \omega_{\rm tr}^2/2 = \frac{1}{2} \left| \left(en \frac{\partial \omega_{\rm res}}{\partial P_{\phi}} + e\omega \frac{\partial \omega_{\rm res}}{\partial E} \right) \overline{e^{-in\zeta - im\bar{\theta}_c + i\bar{Q}} \frac{\omega_{dn}}{\omega} \left\langle \delta \psi_{ng} \right\rangle} \right.$$

Hangzhou, Oct. 27th, 2024

Concluding remarks and discussion (NPS) 20

- Explicit expression of frequency chirping is derived, showing it is a consequence of maximized wave-particle power transfer and phase locking.
- Explicit expression of frequency chirping illuminates the important role of zonal field structures.
- Explicit expression of chirping rate also shows linear scaling with fluctuation amplitude, demonstrating the universal behavior of frequency chirping in space and laboratory plasmas, consistent with the Vomvoridis expression.
- Detailed quantitative numerical verifications of these predictions are in progress.

General bibliography: <u>https://doi.org/10.1103/RevModPhys.88.015008</u>

https://doi.org/10.1007/s41614-021-00057-x

https://doi.org/10.1038/s41467-023-38776-z

Hangzhou, Oct. 27th, 2024

Institute for Fusion Theory and Simulation, Zhejiang University