Global simulation of drift-Alfvenic instability based on Landau fluid-gyrokinetic hybrid model in general geometry

J. Bao, X. R. Xu, L. Z. Guo, W. J. Sun and Z. K. Wang Institute of Physics, Chinese Academy of Sciences

The 4th Trilateral International Workshop on Energetic Particle Physics 2024.10.26-10.27

- Background
- Discretized eigenmode
- Continuous spectrum
- Resonance condition in phase space
- Summary

G. Brochard 2022 NF

S. Taimourzadeh 2019 NF

I. Holod 2015 NF

G. Kramer & R. Nazikian

J

Main plasma instabilities

Drift-wave instability

- ➢ ES: ITG, CTEM
- ► EM: IBM/KBM

MHD mode

➤ EM: kink, tearing

Alfven eigenmode

- ► EM: TAE, RSAE, KBAE
- ➢ EM/ES hybrid: BAAE

Modify/Drive

<u>EP kinetic response</u> (Wave-particle resonance)

Reactive (fluid-type)

Dissipative (kinetic-type)

Goals of MAS eigenvalue code:

- Cross-scale drift-Alfvenic instabilities
- MHD/kinetic continuous spectrum
- Resonance condition in phase space
- Capability of realistic geometry

- Background
- Discretized eigenmode

➤Various bulk plasma instabilities

➤Energetic electron excitation of BAE

>Energetic ion responses to arbitrary wavelength fluctuations

- Continuous spectrum
- Resonance condition in phase space
- Summary

Landau fluid model for bulk plasmas Bao et al, Nucl. Fusion 63 076021 (2023) $\underbrace{\frac{\partial}{\partial t} \frac{c}{V_{A}^{2}} \nabla_{\perp}^{2} \delta\phi}_{\partial t} \underbrace{+ \frac{\partial}{\partial t} \left(0.75 \rho_{i}^{2} \nabla_{\perp}^{2}\right) \frac{c}{V_{A}^{2}} \nabla_{\perp}^{2} \delta\phi}_{\mathcal{I}} \underbrace{+ i \omega_{p,i}^{*} \frac{c}{V_{A}^{2}} \nabla_{\perp}^{2} \delta\phi}_{\mathcal{I}} + \mathbf{B_{0}} \cdot \nabla \left(\frac{1}{B_{0}} \nabla_{\perp}^{2} \delta A_{||}\right) - \frac{4\pi}{c} \delta \mathbf{B} \cdot \nabla \left(\frac{J_{||0}}{B_{0}}\right)}_{\mathcal{I}}$ Vorticity equation $\{Ion-FLR\}$ $\{Drift\}$ $-8\pi\left(\nabla\delta P_i+\nabla\delta P_e\right)\cdot\frac{\mathbf{b_0}\times\boldsymbol{\kappa}}{R_c}=0$

 $\{Ion-Landau\}$

 $\{Ion-FLR\}$

 ${Drift}$

Thermal ion
pressure Eq.
$$\frac{\partial \delta P_{i}}{\partial t} + \frac{c\mathbf{b_{0}} \times \nabla \delta \phi}{B_{0}} \cdot \nabla P_{i0} + 2\Gamma_{i\perp}P_{i0}c\nabla \delta \phi \cdot \frac{\mathbf{b_{0}} \times \boldsymbol{\kappa}}{B_{0}} + \Gamma_{i||}P_{i0}\mathbf{B_{0}} \cdot \nabla \left(\frac{\delta u_{||i}}{B_{0}}\right) \underbrace{-i\Gamma_{i\perp}\omega_{p,i}^{*}Z_{i}n_{i0}\rho_{i}^{2}\nabla_{\perp}^{2}\delta \phi}_{\{Ion-FLR\}} + 2\Gamma_{i\perp}P_{i0}\frac{c}{Z_{i}}\nabla \delta T_{i} \cdot \frac{\mathbf{b_{0}} \times \boldsymbol{\kappa}}{B_{0}} + 2\Gamma_{i\perp}T_{i0}\frac{c}{Z_{i}}\nabla \delta P_{i} \cdot \frac{\mathbf{b_{0}} \times \boldsymbol{\kappa}}{B_{0}} + n_{i0}\frac{2}{\sqrt{\pi}}\sqrt{2}v_{thi}|k_{||}|\delta T_{i} = 0$$

Parallel
m_in_{i0}
$$\frac{\partial \delta u_{||i}}{\partial t} = -\mathbf{b_0} \cdot \nabla \delta P_e - \frac{1}{B_0} \delta \mathbf{B} \cdot \nabla P_{e0} - \mathbf{b_0} \cdot \nabla \delta P_i - \frac{1}{B_0} \delta \mathbf{B} \cdot \nabla P_{i0}$$

momentum Eq.

$$\underbrace{-Z_i n_{i0} \frac{m_e}{e} \sqrt{\frac{\pi}{2}} v_{the} |k_{||} |\delta u_{e||}}_{\{Electron-Landau\}} \underbrace{-Z_i n_{i0} \eta_{||} \frac{c}{4\pi} \nabla_{\perp}^2 \delta A_{||}}_{\{Resistivity\}}}_{\{Resistivity\}}$$
Thermal ion
density Eq.

$$\frac{\partial \delta n_i}{\partial t} + \frac{c\mathbf{b_0} \times \nabla \delta \phi}{B_0} \cdot \nabla n_{i0} + 2cn_{i0} \nabla \delta \phi \cdot \frac{\mathbf{b_0} \times \kappa}{B_0} + n_{i0} \mathbf{B_0} \cdot \nabla \left(\frac{\delta u_{||i}}{B_0}\right) \underbrace{-i\omega_{p,i}^* \frac{Z_i n_{i0}}{T_{i0}} \rho_i^2 \nabla_{\perp}^2 \delta \phi}_{\{Ion-FLR\}} \underbrace{+\frac{2c}{Z_i} \nabla \delta P_i \cdot \frac{\mathbf{b_0} \times \kappa}{B_0}}_{\{Drift\}} = 0$$

 $\{Drift\}$

Field equations $or_{e} = \delta n_{e} T_{e0} + n_{e0} \delta T_{e}$ $e \delta n_{e} = Z_{i} \delta n_{i} + \frac{c^{2}}{4\pi V_{A}^{2}} \nabla_{\perp}^{2} \delta \phi$ $\underbrace{\text{Drift}}_{\text{Drift}}$ $\mathbf{b}_{0} \cdot \nabla \delta T_{e} + \frac{1}{B_{0}} \delta \mathbf{B} \cdot \nabla T_{e0} = 0$ $e n_{e0} \delta u_{||e} = Z_{i} n_{i0} \delta u_{||i} + \frac{c}{4\pi} \nabla_{\perp}^{2} \delta A_{||}$ $\underbrace{\text{Drift}}_{\text{Drift}},$ $\delta P_e = \delta n_e T_{e0} + n_{e0} \delta T_e$ $\delta T_i = rac{1}{n_{i0}} \left(\delta P_i - \delta n_i T_{i0}
ight).$

Important features of Landau-fluid model

- Braginskii model using drift-ordering
- ➤ Kinetic effects on top of full-MHD
 - ✓ Ion/electron diamagnetic drifts
 - ✓ Ion/electron Landau damping (Hammett-Perkins closure)
 - ✓ Ion finite Larmor radius
 - ✓ Parallel electric field
- Reduce to full-MHD by dropping labelled kinetic terms

Algorithm: eigenvalue approach

 $\widetilde{\delta \phi}$

 $\widetilde{\delta A_{||}}$

 $\widetilde{\delta P_i}$

 $\delta u_{i||}$

 δn_i

100

300

400

500

- Five-field Landau-fluid model can be converted to a generalized eigenvalue problem
- $AX = \omega BX$
- $\mathbf{X} = (\delta \phi, \delta A_{||}, \delta P_i, \delta u_{i||}, \delta n_i)^T$
- Operator discretization
- Radial: finite difference
- Poloidal/toroidal: Fourier expansion
- Language/library
- matlab/eigs
- Computational speed/cost
- Less than 1 mins for AE problems on Laptop

Multi-layer block matrices

8

Normal modes: Alfven wave and acoustic wave

LF: $\begin{bmatrix} \frac{\omega^2}{k_{||}^2 V_A^2} - 1 \end{bmatrix} \begin{bmatrix} R_e^{\text{LF}}(\xi_e) + \frac{T_{e0}}{T_{i0}} \frac{Z_i^2 n_{i0}}{e^2 n_{e0}} R_i^{\text{LF}}(\xi_i) \end{bmatrix} = \frac{Z_i^2 n_{i0}}{e^2 n_{e0}} k_{\perp}^2 \rho_s^2 + R_e^{\text{LF}}(\xi_e) = \frac{1}{1 - i\sqrt{\frac{\pi}{2}} |\xi_e|} R_i^{\text{LF}}(\xi_i) = \frac{|\xi_i| + i\frac{2}{\sqrt{\pi}}}{-2\xi_i^2 |\xi_i| - i\frac{4}{\sqrt{\pi}}\xi_i^2 + \Gamma_{i||} |\xi_i| + i\frac{2}{\sqrt{\pi}}} \\ \text{DK:}$

$$\begin{bmatrix} \frac{\omega^2}{k_{||}^2 V_A^2} - 1 \end{bmatrix} \left[R_e^{\text{DK}}(\xi_e) + \frac{T_{e0}}{T_{i0}} \frac{Z_i^2 n_{i0}}{e^2 n_{e0}} R_i^{\text{DK}}(\xi_i) \right] = \frac{Z_i^2 n_{i0}}{e^2 n_{e0}} k_\perp^2 \rho_s^2$$
$$R_e^{\text{DK}}(\xi_e) = 1 + \xi_e Z(\xi_e)$$

 $R_i^{\rm DK}(\xi_i) = 1 + \xi_i Z(\xi_i)$

✓ Comparison of coupled KAW-ISW dispersion relation between drift-kinetic model and Landaufluid model, which show good agreement for typical tokamak plasma beta (β ~0.01 − 0.1). 9

MHD mode: internal kink mode

Brochard et al, Nucl. Fusion 62 036021 (2022)

- Cross-code verification of kink mode (NOVA, XTOR-K, M3D-C1, GTC, MAS)
- ✓ Necessity of full-MHD: finite ion acoustic compression stabilization

MHD mode: resistive-tearing/drift-tearing modes

✓ The RTM growth rate scaling is close to $\gamma_c \sim \eta_{||}^{5/3}$ in the small $\eta_{||}$ regime.

✓ DTM dispersion relation in MAS agrees with local theory in the small ω_e^* regime, while deviates from local theory when $\omega_e^* \sim \gamma_c$ due to the non-local mode structure. Bao et al, under review in Nucl. Fusion 11

Drift-wave instabilities: ITG/KBM

RSAE: upward frequency sweeping

TAE radiative damping

- Tunneling interaction
 between TAE and Alfven
 continua due to kinetic
 effects (FLR, finite E|| etc)
- Short-wavelength KAW
 arises and couples to TAE,
 enhanced by increasing n
 number
- ✓ Radiative damping

Polarizations of KBAE and BAAE

▶ KBAE : Alfvenic polarization for all poloidal harmonics (E_{||}^{Net} ≪ E_{||}^{ES}).
 ▶ BAAE : Alfvenic polarization (E_{||}^{Net} ≪ E_{||}^{ES}) for predominant poloidal harmonics, electrostatic polarization (E_{||}^{Net} ≈ E_{||}^{ES}) for sidebands m ± 1.

- Background
- Discretized eigenmode

➤Various bulk plasma instabilities

Energetic electron excitation of BAE

>Energetic ion responses to arbitrary wavelength fluctuations

- Continuous spectrum
- Resonance condition in constant of motion phase space
- Summary

Drift-kinetic energetic electrons

Linearized drift-kinetic equation

Adiabatic response ✓ convective effect

resonance

δ δ v Non-adiabatic response ✓ Precessional-drift δ

$$\begin{split} L_{0}\delta f_{h} + \delta L^{L}f_{h0} &= 0\\ L_{0} &= \frac{\partial}{\partial t} + \left(v_{||}\mathbf{b_{0}} + \mathbf{v_{d}}\right) \cdot \nabla - \frac{\mu}{m_{e}B_{0}}\mathbf{B}_{0}^{*} \cdot \nabla B_{0}\frac{\partial}{\partial v_{||}}\\ \delta L^{L} &= \left(v_{||}\frac{\delta \mathbf{B}}{B_{0}} + \mathbf{v_{E}}\right) \cdot \nabla - \left[\frac{\mu}{m_{e}B_{0}}\delta \mathbf{B} \cdot \nabla B_{0} + \frac{q_{e}}{m_{e}}\left(\frac{\mathbf{B}_{0}^{*}}{B_{0}} \cdot \nabla \delta \phi + \frac{1}{c}\frac{\partial \delta A_{||}}{\partial t}\right)\right]\frac{\partial}{\partial v_{||}},\\ \delta f_{h} &= \delta f^{A} + \delta K\\ \delta f^{A} &= \underbrace{-\frac{q_{e}}{T_{h0}}\left(\delta \phi - \delta \psi\right)f_{h0}}_{\{I\}} - \underbrace{-\frac{q_{e}}{T_{h0}}\delta \psi\left[\frac{\omega_{*n,h}}{\omega} + \left(\frac{m_{e}v_{||}^{2} + 2\mu B_{0}}{2T_{h0}} - \frac{3}{2}\right)\frac{\omega_{*T,h}}{\omega}\right]f_{h0}}_{\{II\}}\\ v_{||}\mathbf{b}_{0} \cdot \nabla \delta K^{p} &= -i\frac{q_{e}}{T_{h0}}\omega\left(1 - \frac{\omega_{*p,h}}{\omega}\right)\left(\delta \phi - \delta \psi\right)f_{h0} - i\frac{q_{e}}{T_{h0}}\omega_{d}\left(1 - \frac{\omega_{*p,h}}{\omega}\right)\delta \psi f_{h0}\\ \delta K^{t} \simeq \delta K_{b}^{t} \simeq \underbrace{\frac{\omega}{\omega - \overline{\omega_{d}}}\frac{q_{e}}{T_{h0}}\left(1 - \frac{\omega_{*p,h}}{\omega}\right)\left(\overline{\delta \phi} - \overline{\delta \psi}\right)f_{h0}}_{\{II\}} + \underbrace{\frac{1}{\omega - \overline{\omega_{d}}}\frac{q_{e}}{T_{h0}}\left(1 - \frac{\omega_{*p,h}}{\omega}\right)\overline{\omega \delta \psi} f_{h0}}_{\{II\}} = t_{e}^{II} \end{split}$$

EE moments integrated from kinetic responses

$$\begin{split} \delta n_h^A &= \int \delta f^A \mathbf{d} \mathbf{v} = -\frac{q_e n_{h0}}{T_{h0}} \left(\delta \phi - \delta \psi \right) - \frac{q_e n_{h0}}{T_{h0}} \frac{\omega_{*n,h}}{\omega} \delta \psi \\ \delta P_{||h}^A &= \int m_e v_{||}^2 \delta f^A \mathbf{d} \mathbf{v} = -q_e n_{h0} \left(\delta \phi - \delta \psi \right) - q_e n_{h0} \left(\frac{\omega_{*n,h}}{\omega} + \frac{\omega_{*T,h}}{\omega} \right) \delta \psi \\ \delta P_{\perp h}^A &= \int \mu B_0 \delta f^A \mathbf{d} \mathbf{v} = -q_e n_{h0} \left(\delta \phi - \delta \psi \right) - q_e n_{h0} \left(\frac{\omega_{*n,h}}{\omega} + \frac{\omega_{*T,h}}{\omega} \right) \delta \psi \end{split}$$

- Density
- ✓ Pressure

$$\begin{split} \delta n_h^{NA} &= -f_t \frac{q_e n_{h0}}{T_{h0}} \left[\left(1 - \frac{\omega_{*n,h}}{\omega} + \frac{3}{2} \frac{\omega_{*T,h}}{\omega} \right) \zeta R_1 \left(\sqrt{\zeta} \right) - \frac{\omega_{*T,h}}{\omega} \zeta R_3 \left(\sqrt{\zeta} \right) \right] (\delta \phi - \delta \psi) \\ &- f_t \frac{q_e n_{h0}}{T_{h0}} \left[\left(1 - \frac{\omega_{*n,h}}{\omega} + \frac{3}{2} \frac{\omega_{*T,h}}{\omega} \right) R_3 \left(\sqrt{\zeta} \right) - \frac{\omega_{*T,h}}{\omega} R_5 \left(\sqrt{\zeta} \right) \right] \delta \psi \\ \delta P_h^{NA} &= -\frac{f_t}{2} q_e n_{h0} \left[\left(1 - \frac{\omega_{*n,h}}{\omega} + \frac{3}{2} \frac{\omega_{*T,h}}{\omega} \right) \zeta R_3 \left(\sqrt{\zeta} \right) - \frac{\omega_{*T,h}}{\omega} \zeta R_5 \left(\sqrt{\zeta} \right) \right] (\delta \phi - \delta \psi) \\ &- \frac{f_t}{2} q_e n_{h0} \left[\left(1 - \frac{\omega_{*n,h}}{\omega} + \frac{3}{2} \frac{\omega_{*T,h}}{\omega} \right) R_5 \left(\sqrt{\zeta} \right) - \frac{\omega_{*T,h}}{\omega} R_7 \left(\sqrt{\zeta} \right) \right] \delta \psi \end{split}$$

- Non-adiabatic response of trapped electrons
- ✓ Density
- ✓ Pressure
- Non-adiabatic response of passing electrons

Coupling scheme for EE and bulk plasmas

- ✓ δn_h modifies quasineutrality condition
- ✓ $\delta u_{||h}$ modifies parallel Ohms law
- ✓ δP_h modifies vorticity equation
- Enable accuracy for
 both EM and ES cases
 through density and
 pressure coupling

- Weakly ballooning mode structure, finite Ell in sidebands, precessionaldrift resonance of deeply-trapped EEs.
- Good agreements between MAS eigenvalue and GTC initial value results.
- 0.5 -0.5 -m=5 -m=6 -m=7 0.8 - 0.8 80 - 0.6 60 - 0.4 40 - 0.2 20 0.4 0.6 0.8 1.2 0.2 0 1 20 $\lambda = \mu B_a / E_{eV}$

Effects of different EE responses on e-BAE

	Case (I)	Case (II)	Case (III)	Case (IV)	- 1
- - 	$\begin{array}{c} 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\$	(b1)		(d1)	- 0.5 - 0 0.5
)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8 0.9 1 1.1 1.2 R/R_0	0.8 0.9 1 1.1 1.2 R/R_0	-1
-	Case (I)	Case (II)	Case (III)	Case (IV)	

Case	EE-IC	EE-KPC	$\omega_r(V_{Ap}/R_0)$	$\gamma\left(V_{Ap}/R_0 ight)$
(I)	No	No	0.160	-0.00707
(II)	No	Yes	0.175	0.00496
(III)	Yes	No	0.134	-0.00909
(IV)	Yes	Yes	0.149	0.009 04

- EE-IC (interchange convective response): broaden radial width, decrease frequency
- EE-KPC (kinetic particle compression response): anti-Hermitian contribution to dielectric constant, induce mode structure poloidal phase variation (triangle shape), increase frequency1

Experimental application in EAST discharges

- Dependences of m/n=4/1 e-BAE ω_r and γ on EE density and temperature in EAST shot #82589.
- EE non-perturbative effects \succ Decrease ω_r
 - Increase e-BAE sideband amplitudes
- Identify the β_h threshold for EE excitation of BAE.

Bao et al, Nucl. Fusion 64 (2024) 016004

- Background
- Discretized eigenmode

► Various bulk plasma instabilities

➤Energetic electron excitation of BAE

Energetic ion responses to arbitrary wavelength fluctuations

- Continuous spectrum
- Resonance condition in phase space
- Summary

Gyrokinetic energetic ions

Gyrokinetic equation for non-adiabatic response
$$\left(\frac{v_{\parallel}}{JB}\partial_{\theta} + i\frac{nqv_{\parallel}}{JB} - i(w-w_d)\right)\delta K_h = -i\frac{Z_h}{T_h}(\omega - \omega_{p,h}^*)J_0f_{h0}(\Delta\phi + \frac{\omega_d}{\omega}\delta\psi)$$

....

Solution1: well-circulating particle

$$J_{0}\delta K_{h} = -\frac{Z_{h}}{T_{h}}\left(1 - \frac{\omega_{p,h}^{*}}{\omega}\right)J_{0}^{2}f_{h0}\Sigma_{p,s,m}J_{p}(\lambda_{h})J_{s}(\lambda_{h})i^{p-s}e^{i(p-s)(\theta+\theta_{r})}e^{-im\theta} \times \checkmark \qquad \text{Trans}$$

$$\begin{cases} \frac{\Delta\phi_{m}}{R_{N+s}} + \frac{(k_{0}v_{d}/\omega)\delta\psi_{m}}{R_{N+s}} + \frac{(k_{1}v_{d}/\omega)\delta\psi_{m}e^{i\theta}}{R_{N+s+1}} + \frac{(k_{-1}v_{d}/\omega)\delta\psi_{m}e^{-i\theta}}{R_{N+s-1}} \end{cases} \checkmark \qquad \text{Prece}$$

$$= \mathbb{J}_{p} \times \mathbb{R} \times \mathbb{J}_{s} \times (\Delta\phi - i\mathbb{A} \times \delta\psi) \qquad \checkmark \qquad \text{Finite}$$

$$\text{where } \lambda_{h} = k_{f}\frac{JBv_{d}}{v_{\parallel}}, \ k_{f} = 2\sqrt{k_{1}k_{-1}} \text{ and } R_{N} = \frac{k_{\parallel}v_{\parallel}}{\omega} + \frac{k_{0}v_{d}}{\omega} - 1, k_{\parallel} = \frac{N}{JB} = \frac{nq-m}{JB} \qquad \text{Finite}$$

$$\mathbb{J}_{p} = \mathcal{L}_{p} J_{p}(\lambda_{h}) i^{p} e^{i\rho(\tau+r)} \quad \mathbb{J}_{s} = \mathcal{L}_{s} J_{s}(\lambda_{h}) i^{-\epsilon} e^{i\sigma(\tau+r)} = \mathbb{J}_{p}^{p}$$

$$\mathbb{R} = -\frac{Z_{h}}{T_{h}} (1 - \frac{\omega_{ph}^{*}}{\omega}) J_{0}^{2} f_{h0} \frac{v_{d}}{\omega} \frac{1}{R_{N}} \qquad \mathbb{A} = \frac{R_{0}}{JB_{0}} \left\{ (I\kappa_{\zeta} - g\kappa_{\theta})\partial_{\psi} - (\delta\kappa_{\zeta} - g\kappa_{\psi})\partial_{\theta} + (\delta\kappa_{\theta} - I\kappa_{\psi})\partial_{\zeta} \right\}$$

Solution2: deeply trapped particles

$$J_{0}\delta K_{h} = \frac{Z_{h}}{T_{h}} (1 - \frac{\omega_{p,h}^{*}}{\omega}) J_{0}^{2} f_{h0} \Sigma_{p,s,m} J_{p}(\lambda_{Bh}) J_{s}(\lambda_{Bh}) i^{p-s} e^{i(p-s)\eta} e^{-i(m-nq)\theta} \times \left\{ \Delta \phi_{m} T_{s} + \delta \psi_{m} \frac{\bar{\omega}_{d}}{\omega} T_{s} + \delta \psi_{m} \frac{-\frac{i}{2} \omega_{d}^{(1)} e^{i\eta}}{\omega} T_{s-1} + \delta \psi_{m} \frac{\frac{i}{2} \omega_{d}^{(1)} e^{-i\eta}}{\omega} T_{s+1} \right\}$$
where $T_{s} = \frac{\omega}{\omega - \bar{\omega}_{d} + s\omega_{b}}$, $\omega_{d}^{(1)} = \bar{\omega}_{d} \theta_{b} \xi$ and $\lambda_{Bh} = \frac{\bar{\omega}_{d}}{\omega_{b}} \theta_{b} \xi$

Numerically integrate El moments in velocity space from perturbed distributions with Bessel function

coefficients

- Transit resonance
- Precessional drift resonance
- Finite Larmor radius
- Finite orbit width

X. R. Xu et al 2024, submitted to PPCF

Verification of EI-driven RSAE

MAS simulation of EI-driven RSAE in DIII-D shot #159243 equilibrium

- El non-perturbatively modifies the RSAE mode structure with radially varied poloidal phase angle (i.e., triangle shape mode structure).
- ✓ FOW stabilization of RSAE in high-n regime, good argeements on RSAE dispersion relation with other codes.

- Background
- Discretized eigenmode
- Continuous spectrum
- Resonance condition in phase space
- Summary

Full-MHD results of n=4 continuum in DIII-D shot #159243

- Independent continuum module has been developed in MAS framework.
- ✓ Full-MHD calculations of Alfvenic and acoustic continua, with carefully identifying polarization and poloidal mode numbers.

Landau-fluid results with kinetic effects

Upper panel: polarization indicated by Alfvenicity Lower panel: damping rate

- ✓ Effects of ion diamagnetic drifts
- ✓ Landau damping and radiative damping from thermal plasmas

W. J. Sun, to submit has 28

- Background
- Discretized eigenmode
- Continuous spectrum
- Resonance condition in phase space
- Summary

Resonance condition of typical EPs in phase space

 $\Omega(\mathcal{E}, P_{\zeta}, \mu) = n \langle \omega_{\zeta} \rangle - l \langle \omega_{\theta} \rangle - \omega_n = 0,$

MAS compute poloidal and toroidal frequencies (ω_{ζ} and ω_{θ}) by tracing the particle motion.

Test particle module has been developed for calculating EP characteristic frequencies in general geometry.
 The small dimensionless orbit width of EEs in present-day tokamak (i.e., EAST) is close to alpha particles in future fusion reactor (i.e., ITER), which mainly interact with AEs through precessional-drift resonance.

- Background
- Discretized eigenmode
- Continuous spectrum
- Resonance condition in phase space
- Summary

Summary on MAS capability

- ✓ Five-field Landau-fluid model for bulk plasmas
 - Cover cross-scale plasma modes: low-n MHD, mediate-n AE, high-n drift wave instability
 - Diamagnetic drift, Landau damping, FLR, finite parallel electric field $E_{||}$
- ✓ Drift-kinetic EE and gyrokinetic EI
 - Precessional-drift resonance, transit resonance, FOW, FLR
- ✓ Continuous spectra
 - Ideal full-MHD continua: SAW and ISW
 - Landau-fluid continua: KAW and ISW (ion diamagnetic drift, Landau and radiative damping)
- ✓ <u>Resonance condition in phase space</u>
 - Numerical calculation of characteristic frequencies by tracing the particle orbit
 - Resonance line calculation for each harmonics
- ✓ Wide applications for AE stability analysis in EAST, HL-2A/3 and DIII-D experiments.

MAS research activities

Code developments and physical applications

[1] Bao J., Zhang W.L., Li D., Lin Z. et al, MAS: A versatile Landau-fluid eigenvalue code for plasma stability analysis in general geometry Nucl. Fusion 63 076021 (2023)

[2] <u>Bao J.,</u> Zhang W.L., Li D., Lin Z. et al, Global simulations of kinetic-magnetohydrodynamic processes with energetic electrons in tokamak plasmas Nucl. Fusion 64 016004 (2024)

[3] Bao J., Zhang W. L., Li D. and Lin Z. Effects of plasma diamagnetic drift on Alfven continua and discrete eigenmodes in tokamaks Journal of Fusion Energy 39 382-389 (2021)

[4] Bao J., Zhang W. L. and Li D. Global simulations of energetic electron excitation of beta-induced Alfven eigenmodes Acta Physica Sinica 72(21) 215216 (2023)

[5] <u>Bao J.</u>, Zhang W. L., Lin Z., Cai H. S. et al, Global destabilization of drift-tearing mode with coupling to discretized electron drift wave instability https://arxiv.org/abs/2407.10613, under review in Nucl. Fusion (2024)

[6] Xu X. R., Guo L. Z., Sun W. J., <u>Bao J.</u> et al., Gyrokinetic modelling of energetic ion response to arbitrary wavelength electromagnetic fluctuations in magnetized plasmas under review in Plasma Phys. Control. Fusion (2024)

V&V collaboration

[7] Brochard G., <u>Bao J., Liu C. et al Verification and validation of gyrokinetic and kinetic-MHD simulations for internal kink instability in DIII-D tokamak Nucl. Fusion 62 036021 (2022)</u>

[8] Jiang P. Y., Liu Z. Y., Liu S. Y., Bao J. and Fu G. Y. 2024 Development of a gyrokinetic-MHD energetic particle simulation code. I. MHD version Physics of Plasmas 31 (7) (2024)

Experimental collaboration

[9] Zhao N., <u>Bao J.,</u> Chen W. et al Multiple Alfven eigenmodes induced by energetic electrons and nonlinear mode couplings in EAST radio-frequency heated H-mode plasmas Nucl. Fusion 61 046013 (2021)

[10] Su P., Lan H., Zhou C. Bao J. et al, Bursting core-localized ellipticity-induced Alfven eigenmodes driven by energetic electrons during EAST ohmic discharges Nucl. Fusion 64 036019 (2024)

[11] Chen W., Yu L. M., Shi P. W., Hou Y. M., Shi Z. B., <u>Bao J.</u>, Qiu Z. et al Nonlinear Dynamics and Effects of Fast-ion Driven Instabilities in HL-2A NBI Heating High-βN H-mode Plasmas Physics Letters A, 129983 (2024) 33

[12] Zhu X., Qiu Z. Y., Bao J. et al, Toroidal Alfvén eigenmodes excited by energetic electrons in EAST low-density ohmic plasmas Nucl. Fusion 64 126023 (2024)

Thank you for your attention!