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Background and Motivation

» Synergistic effect of AE and TM enhance EP redistribution

and losses (B. Madsen et al 2020 Nucl. Fusion 60 066024 ).
» Interactions between BAEs and TM were found on FTU,

MAST, EAST, JET, HL-2A...
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Physics Interpretation

» Simple Physics Picture

suppress/

drive destabilize
redistribute

[ BAE ——= 1™ ]
interaction/

mode coupling

Notes: BAEs and TM are both localized near the rational surface.
They can interact strongly.




M3D-K model

Resistive MHD equations:

Momentum equation with particle
stress tensor®:
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*G. Fu, et al, POP,. 2006




Simulation setup
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> Based/on the HL-2A shot 30759 ( = 0.9%, = — =050)

> = — : mode coupling




Simulation setup and pure BAE & TM structures
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BAE + TM simulations
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» TM evolves to a saturation stage even BAE dominates.
» Linear stable BAE is excited in nonlinear stage with TM activity.

» The excitation threshold about is decreased by TM.




BAE linearly-dominant-unstable
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mode structure of velocity stream function U

» TM coexists with BAE in the nonlinear phase.
» When island grows, mode structure of BAE moves inward.
* ( profile being flattened at rational surface by island.

 EP radial gradient near island separatrix is enhanced.




BAE linearly-stable
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Evolution of one-dimensional distribution
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» After TM saturation (~1500TA):

I. q profile becomes flattened at q=2 surface.

Il. is partially flattened inside the island and shifted outward to O
point of the island

I11. / near 2/1 island separatrix is increased.

» Combination of I- III drive BAE being destabilized.
> Inner fattened region of is induced by BAE.
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EPs redistribution induced by BAE and TM
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@ Firstly, EPs are redistributed by TM;

® Then,

increases significantly after the excitation of BAE;

@ Finally, large g value: excessive EP redistribution/losses.




Mode coupling between BAE and TM
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Periodic oscillation of 2/1 island width
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» 2/1 island width exhibits periodic oscillation ( ~ ~ ).

>
>

>

change rate is over 10%
causes inner BAE and outer TM to exhibit a periodic variation

of BM component in (d)&(e):
mainly located inside 2/1 magnetic island.
changes periodically (periodic current modification).
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causes synchronized oscillation of
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component:
oscillates periodically

around q=2 surface
(AC , component: remain
almost unchanged)

> Pearson correlation coefficient:
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P(z,y) =

component at Z=0 and 2/1 island width.

periodic current
modification

)

2/1 island width:

synchronized
oscillation
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Discussion and summary

» TM activity can lead to:
* significant redistribution of EPs
* increase of excitation threshold of BAE.
* destabilization of BAE.
» Excessive EPs redistribution/losses caused by BAE&TM.
> ~ component generated by nonlinear coupling between
BAE and TM :
* mode structure ( ) mainly located inside 2/1

magnetic island.
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Discussion and summary

» Periodic oscillation of 2/1 magnetic island width

generated by high-frequency oscillation of  of BM
component.

small period ( — )

evolves in synchronization with the BM component.

is dependent on the strength of the BM component.

a larger can cause the stochasticity of magnetic field.
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Thank you !



