

Simulations of nonlinear interaction between beta-induced Alfven eigenmode and tearing mode

Huishan Cai¹

Sizhe Duan¹, Ding Li²

¹University of Science and Technology of China

²Chinese Academy of Sciences

Background and Motivation

> M3D-K model and parameters setup

> Nonlinear interaction between BAE and TM

- Influence of TM activity on BAE
- Influence of BAE on magnetic island evolution

> Discussion and summary

Background and Motivation

- Synergistic effect of AE and TM enhance EP redistribution and losses (B. Madsen *et al* 2020 *Nucl. Fusion* 60 066024).
- Interactions between BAEs and TM were found on FTU, MAST, EAST, JET, HL-2A...

Physics Interpretation

> Simple Physics Picture

Notes: BAEs and TM are both localized near the rational surface. They can interact strongly. Resistive MHD equations:Momentum equation with particle $\partial \rho$ stress tensor*:

$$\frac{1}{\partial t} + \nabla \cdot (\rho v) = 0$$

$$\rho \frac{dv}{dt} = J \times B - \nabla P - \nabla \cdot P_{h}$$

$$\frac{\partial B}{\partial t} = -\nabla \times E$$

$$\frac{dp}{dt} = -\gamma p \nabla \cdot v + \rho \nabla \cdot \kappa \cdot \nabla \frac{p}{\rho}$$

$$J = \nabla \times B$$

$$E + v \times B = \eta J$$

$$\nabla \cdot B = 0$$

$$P_{h} = P_{\perp}I + (P_{\parallel} - P_{\perp})bb$$

$$P_{\parallel}(x) = \int Mv_{\parallel}^{2}\delta(x - X - \rho_{h})F(X, v_{\parallel}, \mu)d^{3}Xdv_{\parallel}d\mu d\theta$$

$$\frac{dX}{dt} = \frac{1}{B^{**}} \left[\frac{2}{v_{\parallel}} \left(B^{*} - b_{0} \times \left(\langle E \rangle - \frac{1}{e} \mu \nabla \langle B_{0} + \langle \delta B \rangle \right) \right) \right) \right]$$

$$m \frac{dv_{\parallel}}{dt} = \frac{e}{B^{**}}B^{*} \cdot \left(\langle E \rangle - \frac{1}{e} \mu \nabla \langle B_{0} + \langle \delta B \rangle \right) \right)$$

$$*G. Fu, et al, POP, 2006$$

Simulation setup

Simulation setup and pure BAE & TM structures

- (a) linear growth rate of TM versus resistivity η ;
- (b) growth rate of BAE versus Δψ without/with resistivity (green/red curves);
- *(c) Pure TM mode structure of stream function (U)*
- (d) Pure BAE mode structure

(a): TM scaling law: γ ∝ η^{3/5}
(b): γ_{BAE} dependens on EP radial gradient
(c)&(d): BAE structure (d) is wider than TM structure (c)

BAE + TM simulations

> TM evolves to a saturation stage even BAE dominates.

- > Linear stable BAE is excited in nonlinear stage with TM activity.
- > The excitation threshold about $\Delta \psi$ is decreased by TM.

BAE linearly-dominant-unstable

mode structure of velocity stream function U

- > TM coexists with BAE in the nonlinear phase.
- > When island grows, mode structure of BAE moves inward.
 - q profile being flattened at rational surface by island.
 - EP radial gradient near island separatrix is enhanced.

BAE linearly-stable

- $> U_{cos,all} \rightarrow U_{cos,BAE} (\omega > 0.05\omega_A)$ $& U_{cos,TM} (\omega \le 0.05\omega_A)$
- BAE is triggered by TM around

$$t = 1500 au_A$$
 (with $\gamma_{BAE} = 0.0021$)

BAE: weakly downward chirping

Time evolution of stream function cos component U_{cos} at r=0.60, and the corresponding frequency spectrum

Evolution of one-dimensional distribution $f(P_{\phi})$

 $f(P_{\phi})$ around $E = 0.51E_0$ and $\Lambda = 0.0$, the ions with $P_{\phi} > 0.346$ are lost by prompt loss. The red region denotes radial location of BAE.

> After TM saturation (~1500TA):

- I. q profile becomes flattened at q=2 surface.
- II. f is partially flattened inside the island and shifted outward to O point of the island

III. $\partial f / \partial P_{\phi}$ near 2/1 island separatrix is increased.

> Combination of I- III drive BAE being destabilized.

For a second se

EPs redistribution induced by BAE and TM

Time evolution of redistribution level g of energetic ions with $f(P_{\phi})$ around $E = 0.51E_0$ and $\Lambda = 0.0$ $g = \int |f(t = t_1) - f(t = 0)| dP_{\phi} / \int f(t = t_1) dP_{\phi}$

- **(1)** Firstly, EPs are redistributed by TM;
- (2) Then, *g* increases significantly after the excitation of BAE;
- **③** Finally, large g value: excessive EP redistribution/losses.

Mode coupling between BAE and TM

 $\Delta \psi = 0.70 \& \eta = 4e - 5$

Periodic oscillation of 2/1 island width

width, (b)&(c) n=1structure of U, (d)&(e) Poincare plots of magnetic surface and $\Delta C_{n_{0,HF}}$

(a) magnetic island

- > 2/1 island width exhibits periodic oscillation ($T \sim 70\tau_A \sim 25\mu s$).
 - change rate is over 10%
 - causes inner BAE and outer TM to exhibit a periodic variation

> ΔC of BM component in (d)&(e):

- mainly located inside 2/1 magnetic island.
- changes periodically (periodic current modification).

ΔC_{BM} causes synchronized oscillation of $W_{2/1}$

Pearson correlation coefficient:

$$P(x,y) = \frac{\sum_{i} (x(t_{i}) - \bar{x})(y(t_{i}) - \bar{y})}{(\sqrt{\sum_{i} (x(t_{i}) - \bar{x})^{2}})(\sqrt{\sum_{i} (y(t_{i}) - \bar{y})^{2}})}$$

> $P(W_{2/1}, \Delta C_{BM,R=3.557}) = 0.947$

Time evolution of ΔC_{BM} *component at* Z=0 *and* 2/1 *island width.*

Discussion and summary

- > TM activity can lead to:
 - significant redistribution of EPs
 - increase of excitation threshold of BAE.
 - destabilization of BAE.
- Excessive EPs redistribution/losses caused by BAE&TM.
- *n*_{0,*HF*} component generated by nonlinear coupling between
 BAE and TM :
 - $\omega_{BM} = \omega_{BAE} \omega_{TM}$.
 - mode structure (ΔC_{BM}) mainly located inside 2/1 magnetic island.

Discussion and summary

- Periodic oscillation of 2/1 magnetic island width
 - generated by high-frequency oscillation of ΔC of BM component.
 - small period ($T \sim 25 \mu s$).
 - evolves in synchronization with the BM component.
 - ΔW is dependent on the strength of the BM component.
 - a larger ΔW can cause the stochasticity of magnetic field.

Thank you !