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Abstract

This paper develops a practical numerical method for locating the zeros and
poles of a meromorphic function, based upon the generalized argument princi-
ple. Sensitivity is analysed carefully to assure the algorithm stability. A novel
approach to the error estimation is also proposed. Numerical examples are given
to illustrate the effectiveness and practicability, with emphasis on applications
to plasma physics.
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1. Introduction

In this paper, we study the problem of how to locate the zeros and poles of a
meromorphic function f in a given region D, by using the generalized argument
principle. This class of problems can be traced back to the classic work of Harry
Nyquist in 1932 [1], which determines the stability of a dynamical system by
searching zeros in the upper-half plane, now known as Nyquist stability criterion
and widely used in many fields. However, it can only tell us the number of
zeros, without any information about their precise locations. Delves and Lyness
suggested a more modern approach to locate the zeros of an analytic function [2].
They construct a polynomial whose zeros coincide with the zeros of f , with its
coefficients calculated via the moments Gk in Eq.(1). This work was extended
to the problem of finding the zeros and poles of a meromorphic function by Abd-
Elall et al. [3]. The stability is hard to be guaranteed in this approach. Kravanja
et al. [4] generalized the approach of Delves and Lyness by using the theory of
formal orthogonal polynomials and Prony’s method[5]. Their approach involves
a complicated procedure of constructing the so-called Gram matrix, and refers
the sensitivity to the condition of a Yule-Walker system.
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The major drawback of these earlier works on this problem is a lack of
rigorous theoretical analysis of the sensitivity and error estimation. From this
perspective, a stable, easy-to-implement method is still in needed. The main
motivation of this work is to find a simple and practical answer to the problem,
based on an active restriction on the condition of the Prony system.

The remainder of this paper is organized as follows. In Section 2 we present
the mathematical background of finding zeros and poles by argument principle,
and review the algorithm referred to as Prony’s method. In Section 3 we analyse
the sensitivity of this algorithm, and give an explicit expression for the condition
number, which enables us to control the algorithm stability proactively. In
Section 4 we prove a theorem for our singular pencil corrupted by noise, then
apply it to estimate the error level. Section 5 provides three numerical examples
to support our results. We state our conclusions in Section 6.

2. Argument principle method for locating the zeros and poles

As with the earlier works, we consider a meromorphic function f(z) in a
closed complex domain D, bounded by a Jordan curve C. Assume f(z) has N

zeros and poles in D but no zeros or poles on C, from the well-known generalized
argument principle in complex analysis, we have

Gk ≡ 1

2πi

‰

C

f ′(z)

f(z)
gk(z)dz =

N
∑

j=1

gk(aj)nj , (1)

where the summation is over all the zeros and poles aj of f(z) counted with
their multiplicities nj , and gk(z) is the ‘probe’ function analytic in D. Given the
possibility to evaluate f(z), gk(z) along C numerically, the argument principle
method wishes to recover (aj , nj) from a series of Gk.

Clearly, the key point is to choose suitable probe functions gk. Although
many sophisticated schemes have been suggested as mentioned above, the fun-
damental elements are of the form

gk(z) = zk, k = 0, 1, 2, · · · , (2)

from which general polynomial probe functions can be constructed[6]. In the
present work, for the purpose of practical applications, we restrict our attention
to the scaled probe functions

gk(ξ) = ξγ0+k∆γ , (3)

here γ0,∆γ ∈ N, and ξ is the scaled variable,

ξ =
z − z0

ρ
, (4)

with a shift z0 and scaling radius ρ will be determined later. By using the scaled
variable, we redefine the moments as

Ḡk ≡ 1

2πi

‰

C

f ′(ξ)

f(ξ)
gk(ξ)dξ =

N
∑

j=1

gk(ξj)nj . (5)
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Once the moments Ḡk have been calculated, following the approach in [7],
we can construct two Hankel matrices H̄0,N , H̄1,N ,

H̄0,N =













Ḡ0 Ḡ1 . . . ḠN−1

Ḡ1 Ḡ2 . .
.

ḠN

... . .
.

. .
. ...

ḠN−1 ḠN . . . Ḡ2N−2













and

H̄1,N =













Ḡ1 Ḡ2 · · · ḠN

Ḡ2 Ḡ3 . .
.

ḠN+1

... . .
.

. .
. ...

ḠN ḠN+1 . . . Ḡ2N−1













.

Since an arbitrary Hankel matrix of finite rank admits a Vandermonde decom-
position, these matrices can be factorized as[8]:

H̄0,N = VD0V
T , (6)

and
H̄1,N = VD1V

T , (7)

where

V =











1 1 . . . 1

ξ
∆γ
1 ξ

∆γ
2 . . . ξ

∆γ
N

...
...

...
...

ξ
(N−1)∆γ
1 ξ

(N−1)∆γ
2 . . . ξ

(N−1)∆γ

N











,

is a Vandermonde matrix,

D0 = diag(ξγ0

1 n1, ξ
γ0

2 n2, · · · , ξγ0

N nN), (8)

and

D1 = diag(ξγ0+∆γ
1 n1, ξ

γ0+∆γ
2 n2, · · · , ξγ0+∆γ

N nN). (9)

We then have the following theorems ( Theorem 3.2.1 and 3.2.2 of [7]):

Theorem 1. Let N be the number of zeros and poles, then N = rank(H̄0,N+p)
for every p ∈ N.

Theorem 1 gives us the number of the zeros and poles N .

Theorem 2. The eigenvalues of the generalized eigenvalue problem

H̄1,N~x = λH̄0,N~x (10)

are given by λi = ξ
∆γ
i , with the corresponding eigenvectors ~xi = V−T êi, êi is

the unit vector in i-direction.
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Theorem 2 is actually a reformulated Prony’s method[5], which has been ex-
tensively applied into many fields. The generalized eigenvalue problem, Eq.(10),
can be solved by a QZ algorithm with O(N3) operations[9], and this will give
us the zeros and poles ξj . Once ξj are known, the multiplicities can be obtained
through a Vandermonde system Eq.(5). As the multiplicities must be integers,
this step is relatively robust. With such a procedure, we can recover all the
information of zeros and poles in D, at least in theory.

3. Sensitivity Analysis

In this section, we discuss the sensitivity of the algorithm presented in the
previous section. Since both Vandermonde and Hankel matrices can be very
ill-conditioned, it’s impossible to assert the algorithm stability in any universal
sense. However, we can focus on the questions that what factors will affect the
sensitivity significantly in our case, and how to find a stable parameter interval
in the practical application.

To simplify the problem and facilitate theoretical analysis, we assume (with-
out loss of generality) that the complex domain D is bounded by a circle C with
the center ξ = 0 and radius rc, and there are N zeros and poles ξj in it. We
take a similar approach to [6], and perturb the generalized eigenvalue problem,
Eq.(10), as

[(H̄1,N + ǫĤ1,N )− (λ + ǫλ̂)(H̄0,N + ǫĤ0,N)](~x + ǫx̂) = 0, (11)

where ǫ is a small number, Ĥ0,N , Ĥ1,N are normalized perturbations with Han-
kel structures. Then to the first order, we have

(H̄1,N − λH̄0,N )x̂ = (λĤ0,N + λ̂H̄0,N − Ĥ1,N)~x, (12)

for specific eigenvalue λi and its corresponding eigenvector ~xi, in consideration
of the symmetry of Hankel matrices, we have

~xT
i (H̄1,N − λiH̄0,N) = 0, (13)

pre-multiply Eq.(12) by ~xT
i and take the norm, we get

|λ̂i| =
|~xT

i Ĥ1~xi| − |λi~x
T
i Ĥ0~xi|

|~xT
i H̄0~xi|

, (14)

ǫλ̂i will give the error estimation. In view of ~xi = V−T êi, we have

|~xT
i H̄0,N~xi| = |~xT

i VD0V
T ~xi| = |ξγ0

i ni|, (15)

thus the sensitivity can be estimated by

|λ̂i| ≤ ‖~eTi V−1‖2∞
‖Ĥ1,N‖∞ + |ξ∆γ

i |‖Ĥ0,N‖∞
|ξγ0

i ni|
. (16)
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By assuming ‖Ĥ1,N‖∞ = ‖H̄1‖∞, ‖Ĥ0,N‖∞ = ‖H̄0‖∞, and noticing that nj ≃
O(1),

‖V‖∞ ≤ N
N

max
k,j=1

{|ξ(j−1)∆γ

k |}, (17)

‖H̄0,N‖∞ ≤ ‖V‖2 N
max
j=1

{|njξ
γ0

j |}, (18)

‖H̄1,N‖∞ ≤ ‖V‖2 N
max
j=1

{|njξ
γ0+∆γ
j |}, (19)

and the well-known matrix norm of inverse of Vandermonde matrix [10],

‖~eTi V−1‖∞ ≤
∏

j 6=i

1 + |ξ∆γ
j |

|ξ∆γ
i − ξ

∆γ
j |

, (20)

it’s easy to tell that small γ0 can improve the condition of the problem, therefore
we should take γ0 = 0. Now Eq.(16) becomes

|λ̂i| ≤ κ2
∞(

N
max
j=1

{|ξ∆γ
j |}+ |ξ∆γ

i |), (21)

with the condition number κ2
∞ = ‖~eTi V−1‖2∞‖V‖2∞. Furthermore, if we define

r+ =
N

max
j=1

(|ξj |), r− =
N

min
j=1

(|ξj |), (22)

we obtain
‖V‖∞ ≤ Nr

(N−1)∆γ
+ , with r+ ≥ 1, (23)

and

‖~eTi V−1‖∞ ≤ r
−(N−1)∆γ
−

∏

j 6=i

1 + |ξ∆γ
j |

|eiθi∆γ − eiθj∆γ | , (24)

here we have adopted the polar form ξj = |ξj |eiθj . Therefore the condition
number becomes

κ2
∞ ≤ N2r

2(N−1)∆γ
+ [1 + r

∆γ
+ ]2(N−1)(

∏

j 6=i

1

|ξ∆γ
i − ξ

∆γ
j |

)2

≤ N2(
r+

r−
)2(N−1)∆γ [1 + r

∆γ
+ ]2(N−1)(

∏

j 6=i

1

|eiθi∆γ − eiθj∆γ | )
2. (25)

So we find small ∆γ results in better conditioned problems, and set ∆γ = 1.
Beyond that, Eq.(25) indicates that the sensitivity of the algorithm presented

in previous mainly depends on the number and positions of zeros and poles in
D. Although large N,

r+
r
−

and the clusters may make the condition dramatically

worse, in the case of zeros and poles distributed uniformly around the unit circle,
the algorithm can be stable, even for relatively large N .
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This inspires us to adopt a subdivision-transformation scheme to guarantee
the algorithm stability. Such a scheme asks a basic numerical question: Once
a set of zeros and poles (ξi, ni) is preliminarily calculated, how large is the
condition number of the Prony system? If we encounter a condition number
larger than the preassigned, we should subdivide the region into smaller subre-
gions and do the transformation Eq.(4) in each subregion. z0 and ρ are chosen
according to preliminary (ξi, ni), such that the zeros and poles are unifromly
distributed around the unit circle in new varible if possible. In more concrete
terms, a recommended subdivision strategy is to construt subregions bounded
by two concentric circles or squares, and a reasonable ρ should make r+ = 1
and r− close to 1, z0 should be taken to avoid the appearance of clusters. Then
the question is asked repeatedly, untill we get an acceptable condition number.
Therefore, Eq.(25) gives us the possibility to decide when and how to subdivide
the region and transform to new variable without any need for human super-
vision. Since the required computation time majorily depends on the number
of subregions, and such a subdivision-transformation scheme can bear compar-
atively large N with the premise of ensuring the algorithm stability, it can save
time considerably.

4. Error Analysis

As the generalized eigenvalue problem, Eq.(10), can be solved in well-condition,
the algorithm still suffers from an inherent error source, i.e., the numerical errors
arised from the contour integration Eq.(5).

Note that the numerical differentiation is time-consuming and error-prone,
we perform an integration by parts in Eq.(5) and exploit the logarithmic deriva-
tive to avoid evaluating f ′. In doing this, the main difficulty is the multivalue-
ness of the complex logarithm. So in order to recognize the same branch of ln f
numerically, we rewrite

ln f(ξ) = ln |f |(ξ) + iΘ(ξ), (26)

with
Θ = Arg(f) + 2πm,with m ∈ Z,Θ ∈ R, (27)

and keep track of the numerical calculated principal value Arg(f) and select
appropriate ms to ensure the extended argument Θ is continuous with ξ. Then
Eq.(5) becomes

Ḡk =
1

2πi
{[ξk ln f ]ξeξs −

‰

C

kξk−1 ln fdξ}, (28)

with ξs and ξe artificial starting-point and end-point of the contour integration.
Introducing the complex logarithm in this way provides several benefits. First, it
avoids the evaluating of f ′. Second, since 1

2πi [ξ
k ln f ]ξeξs is known to be an integer,

it can be specified very accurately as with the Nyquist stability criterion. Third,
the complex logarithm is more robust against the overflow and underflow issues.
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When the algorithm yields the final result ξi, a very relevant question is:
What’s the error level? The next theorem and the following discussion allows
us to tackle this problem easily.

Theorem 3. For small p ∈ N
+, the eigenvalues of the singular pencil H̄1,N+p−

λH̄0,N+p which is corrupted by noise fall into two categories:

1. {ξ1, ξ2, · · · , ξN}, i.e., the eigenvalues of the pencil H̄1,N − λH̄0,N , which

are independent of p;

2. {η1, η2, · · · , ηp}, which depend on p.

Proof. First, we redefine Eq.(3) as

g
(m)
k (ξ) = ξk+m,m ∈ N, (29)

and denote the (i, j) minor matrices of H̄
(m)
0,N+1, H̄

(m)
1,N+1 as M

(m)
0,ij and M

(m)
1,ij ,

respectively.
Then we obtain the decompositions:

M
(m)
0,ij = ViD0V

T
j , (30)

and
M

(m)
1,ij = ViD1V

T
j , (31)

where

D0 = diag(ξm1 n1, ξ
m
2 n2, · · · , ξmNnN ), (32)

D1 = diag(ξm+1
1 n1, ξ

m+1
2 n2, · · · , ξm+1

N nN ). (33)

and

Vi =

























1 1 . . . . . . . . . . . . 1
ξ1 ξ2 . . . . . . . . . . . . ξN
...

...
...

...
...

...
...

ξi−2
1 ξi−2

2 . . . . . . . . . . . . ξi−2
N

ξi1 ξi2 . . . . . . . . . . . . ξiN
...

...
...

...
...

...
...

ξN1 ξN2 . . . . . . . . . . . . ξNN

























,

which is just the result of removing i-th row from a (N + 1)×N Vandermonde
matrix V. Analogously, we can get VT

j by removing j-th column from a N ×
(N + 1) matrix VT .

Now we construct a new generalized eigenvalue problem M
(m)
1,ij~x = λM

(m)
0,ij~x.

By noting that

M
(m)
1,ij~x = λM

(m)
0,ij~x (34)

⇔ ViD1V
T
j ~x = λViD0V

T
j ~x

⇔ diag(ξ1, ξ2, · · · , ξN )(VT
j ~x) = λ(VT

j ~x),
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we find that the pencil M
(m)
1,ij − λM

(m)
0,ij have the same eigenvalues with H̄

(m)
1,N −

λH̄
(m)
0,N , i.e., {ξi} are also solutions to det(M

(m)
1,ij − λM

(m)
0,ij ) ≡ M

(m)
ij = 0. Fur-

thermore, by reference to the previous section, we see their condition numbers
are in the same order for small p.

Then the cofactor expansion along a row gives

det(H̄1,N+p − λH̄0,N+p) =
∑

j,k

aj,kM
(m)
ij,k , (35)

where k represents the number of (N + 1)× (N + 1) minor matrices . Since we
have restricted our calculation to near the unit circle, we find | aj,k

M
(m)
ij,k

| ≫ 1 around

{ξi} for small p. It follows that {ξi} are also eigenvalues of the corrupted pencil
H̄1,N+p−λH̄0,N+p. Also notice the QZ-algorithm does not involve the problems
of rank determination and matrix inversion, indeed we can get {ξi} from the
ill-conditioned pencil H̄1,N+p − λH̄0,N+p by a QZ-algorithm in well-condition.

This proves the theorem.

Theorem.(3) provides a method to estimate the order of numerical errors

at little cost. Specifically, let ξ
(0)
i and ξ

(1)
i be the same eigenvalue calculated,

respectively, from H̄1,N −λH̄0,N and H̄1,N+1−λH̄0,N+1, then the error can be
estimated by

δi = |ξ
(0)
i − ξ

(1)
i

2
|. (36)

Owing to N + 1 cofactors involved and |aj,1| ∼ O(1), ξ
(1)
i implies a weighted

average over the results of N + 1 equivalent pencils, Eq.(34).

5. Numerical examples

In this section, we summarize the algorithm and apply it to three numerical
examples to illustrate the main points of this paper.

The algorithm discussed above can be executed as follows:

Step 1 Set a critical condition number κ2
c and an error tolerance of the contour

integration ǫi;

Step 2 Choose a region D of interest and transform to the scaled variable using
Eq.(4);

Step 3 Construct Hankel matrices, determine their ranks and solve the pencil
H̄1,N − λH̄0,N ;

Step 4 Calculate the condition number κ2
∞ using Eq.(25), if κ2

∞ > κ2
c , subdivide

D into smaller subregions Di and go back to Step 2, otherwise, continue;

Step 5 Solve H̄1,N+1 − λH̄0,N+1 to give the error estimation;

8



Step 6 Obtain the multiplicities through the Vandermonde system, Eq.(5).

Now we present three practical examples to show the effectiveness of the
algorithm. In particular, the first two examples give the zeros and poles of
two specific meromorphic functions, while in the third example, we apply the
algorithm to the nonlinear eigenvalue problem. All these examples demonstrate
that Theorem.(3) estimates the order of error reasonably.

5.0.1. Example 1:

Let

f =
(z − 0.8− 0.9i)(z − 0.7 + 0.8i)(z + 0.6 + 0.7i)

(z + 0.5− 0.6i)2
, (37)

and set κ2
c = 128, ǫi = 1.49 × 10−8, we obtain the zeros and poles of f shown

in Table.(1). We use δi,t and δi,a represent the error estimated by Theorem.(3)
and the actual error. The multiplicities are recovered successfully.

zi δi,t δi,a
−0.5999999999753678− 0.6999999999322971i 1.36× 10−10 7.20× 10−11

0.7000000004745937− 0.7999999997652205i 3.91× 10−10 5.29× 10−10

0.7999999995583811+ 0.9000000002491819i 3.55× 10−10 5.07× 10−10

−0.5000000000007568+ 0.5999999999992878i 3.12× 10−12 1.04× 10−12

Table 1: zeros and poles of (z−0.8−0.9i)(z−0.7+0.8i)(z+0.6+0.7i)
(z+0.5−0.6i)2

.

5.0.2. Example 2:

In this example, we consider the zeros of plasma dispersion function[11],
which occurs repeatedly in the kinetic theory of hot plasmas. This function is
defined as

Z(z) =
1√
π

ˆ +∞

−∞

dv
e−v2

v − z
, with Im(z) > 1, (38)

and as the analytic continuation of this for Im(z) ≤ 0, with a symmetry property
Z(z∗) = −[Z(−z)]∗. By choosing the same κ2

c , ǫi as before and focusing on the
zeros in the range Im(z) > −5, we get the simple zeros listed in Table.(2).
Moreover, from Figure.(1) we see that, as |zi| grows, the zeros become denser
and closer to Im(z) = −|Re(z)|, which is a typical characteristic of the error
function. In fact, an alternative representation of Z(z) is just

Z(z) = i
√
πe−z2

[1 + erf(iz)]. (39)
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zi δi,t δi,a
1.99146684283858− 1.35481012808997i 2.17× 10−11 2.25× 10−11

2.69114902411825− 2.17704490608676i 1.40× 10−11 1.33× 10−11

3.23533086843928− 2.78438761010462i 3.13× 10−9 6.44× 10−9

3.69730970246813− 3.28741078938962i 1.22× 10−14 4.14× 10−13

4.10610728467995− 3.72594871944305i 6.08× 10−12 3.83× 10−12

4.47681569296707− 4.11963522761023i 2.60× 10−13 1.57× 10−12

4.81848829189866− 4.47983279758210i 2.47× 10−10 1.50× 10−10

5.13706727240611− 4.81380668333976i 2.73× 10−10 1.73× 10−9

Table 2: zeros of Z(z).

−4 −2 0 2 4
Re(z)

−5

−4

−3

−2

−1

0

Im
(z
)

zeros
Im(z) = − |Re(z)|

Figure 1: zeros of Z(z).
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5.0.3. Example 3:

Nearly all of the eigenvalue problems in plasma physics are nonlinear. How-
ever, no general effective solution method is yet available. From the analy-
sis given above, we observe that the algorithm described in this paper has
the advantages of being stable and easy-to-parallel, together with the fast-
increasing computational power, it might be used to handle these awkward
problems. As an example, we solve a transcendental eigenvalue problem[12]:
det((eλ − 1)A2 + λ2A1 −A0) = 0, with

A2 =





17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725



 ,A1 =





7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658



 ,

A0 =





12.1 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5



 .

We list in Table.(3) a summary of the simple zeros in the range |Im(zi)|, |Re(zi)| ≤
10 and their associated errors, with their distribution is depicted in Figure.(2).
More plasma physics related nonlinear eigenvalue problems solved by the pro-
posed algorithm will be reported in future publications.

zi δi,t δi,a
0.065949131387977− 1.10× 10−12i 2.70× 10−12 1.33× 10−12

0.853377172251995+ 2.12× 10−12i 5.39× 10−12 2.48× 10−12

3.638975634806435+ 3.22× 10−11i 6.81× 10−11 3.59× 10−11

−5.587398329471895+ 9.17× 10−13i 1.62× 10−14 9.17× 10−13

−1.940259421974321+ 4.22× 10−12i 7.76× 10−12 4.61× 10−12

−0.936953776134564+ 4.39× 10−12i 7.02× 10−12 4.43× 10−12

4.750269139855016− 5.443800760044676i 1.74× 10−14 2.24× 10−13

3.061926419734661− 5.265134384625599i 1.06× 10−12 4.38× 10−12

3.858870604351882− 4.985782136928656i 1.83× 10−13 4.00× 10−12

3.858870604352364+ 4.985782136922126i 9.89× 10−13 7.21× 10−12

3.061926419737111+ 5.265134384628629i 6.44× 10−12 3.17× 10−12

4.750269139854812+ 5.443800760044741i 2.07× 10−14 1.16× 10−13

Table 3: zeros of det((eλ − 1)A2 + λ2A1 −A0) = 0. Same κ2
c , ǫi are taken as Table.(1)

6. Conclusions

In this paper we have presented a numerical method for locating the zeros
and poles of a meromorphic function in a given region, with easy implemen-
tation. Sensitivity is analyzed in detail, and an explicit formulation for the
condition number is found, which is the core of the algorithm. Such an explicit
formulation is utilized to limit the condition number and maintain the algorithm
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−10 −5 0 5 10
Re(z)

−5

0

5

10

Im
(z

)

eigenvalues

Figure 2: zeros of det((eλ − 1)A2 + λ2A1 −A0) = 0.

stability. In addition, the proposed algorithm can estimate the numerical errors
automatically, supported by Theorem.(3).

In summary, the proposed algorithm has the following advantages:

Stability : It can locate the zeros and poles in a given region stably. Bad
convergence may be encountered when handling complicated functions by
Newton-type methods, due to the Newton fractal phenomenon;

Suitability for parallelization : Intricate problems can be solved accurately
by massively-parallel calculations;

Automatic result verification : It can estimate the error level;

Wide applicability : Meromorphic functions are very common in physics.

Given these advantages, this algorithm may have many applications in physical
problems, particularly those difficult for other efficient methods.
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