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Various gyrokinetic simulations suggest that the kinetic ballooning mode instability is 

sensitive to the numerical implementation of equilibrium magnetic configuration in 

tokamaks. In this work, the gyrokinetic code GTC is employed to investigate the 

KBM’s sensitivity to equilibrium plasma profiles. An outward radial shift of the radial 

mode is found for the normal magnetic shear case, but there is no shift if the shear is 

negative. The simulation results are explained by a linear eigenmode theory. It is 

found that the observed phenomenon is an effect of the perturbed parallel ion current. 

  

 

I. INTRODUCTION 

The ideal MHD ballooning mode (IBM) in tokamak plasmas is one of the most 

thoroughly investigated MHD instabilities. It imposes an upper limit for the maximum 

pressure gradient in the first IBM stability regime, and suggests the existence of a 

second stability regime arising from the Shafranov shift of the magnetic axis when the 

plasma pressure gradient is sufficiently high. A closely related mode the kinetic 

ballooning mode (KBM), which include important kinetic modifications to the IBM 

code, e.g., the diamagnetic flow, finite Larmor radius effect and wave particle 

resonance. [1] The KBM physics has been investigated for many years [2, 3] and its 

physics is still not fully clear. Earlier efforts have been focused on the low-beta, 

large-aspect-ratio s-α equilibrium model, under the assumptions 𝜔 ≫ 𝑘∥𝑣𝑇𝑖  and 
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𝜔 ≪ 𝜔∗𝑒 , where ω is the characteristic frequency of KBM,  k∥  represents the 

parallel wavelength, vTi  is the ion thermal speed, and ω∗e  is the electron 

diamagnetic frequency .[4] Subsequent works have include the effects of trapped 

electrons, passing ions, parallel magnetic perturbation etc.. The stability of the KBM 

has been investigated in the parameter regimes relevant to internal transport barriers 

(ITB) with negative magnetic shear [5, 6].  

Even after one decade of gyrokinetic simulation of KBM [7, 8, 9, 10], detailed 

understanding and verification between different codes remain challenging. Recently, 

the properties of the linear the KBM as predicted by different gyrokinetic codes such 

as GS2, GTC, GYRO, BOUT++ and GENE have been compared [11, 12, 13]. It is 

realized that the linear KBM, in contrast to the electrostatic modes such as ion 

temperature gradient (ITG) mode and trapped electron mode (TEM), is extremely 

sensitive to the equilibrium magnetic configurations implemented in the different 

codes [13].  

In this work, we carry out the KBM simulations using GTC code. It is found that 

both linear growth rate and real frequency depend on the width of the gradient profile, 

i.e., effectively the simulation window implemented in the code. In particular, the 

radial mode structure suffers an outward shift in the normal magnetic shear (i.e., the 

shear monotonically increases with r, or the poloidal flux ψp) case, but there is no 

shift in the reversed-shear case. We also propose an eigenmode theory that explains 

this shear-dependent radial mode shift.  The perturbed parallel ion current is found to 

be responsible for the radial mode shift observed in the simulation. 

In Section II, we carry out KBM simulations using the GTC code and find the 

locality of the plasma profile has a strong effect on the linear KBM properties. In 

Section III, we develop an eigenmode theory and numerically solve the eigenvalue 

problem to study the linear KBM physics. . In Section IV, we show that the perturbed 

parallel ion current has a stabilizing effect on the KBM for normal shear, which is 

responsible for the radially outward shift of the KBM mode structure. In Section V we 

show that, depending on the magnetic shear, the perturbed parallel ion current can 
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have quite different effects on the KBM. In Section VI, the relation between the 

magnetic shear effect and the perturbed parallel ion current effect is verified by the 

GTC simulation. Section VII gives conclusion and discussion. 

 

II. Plasma Profile Effect on the KBM  

As mentioned, the KBM is extremely sensitive to the numerical implementation 

of the equilibrium magnetic configuration [14]. Here we use the GTC code[14, 15, 16, 

17, 18] to study the KBM sensitivity to the numerical implementation of the plasma 

profile. The GTC code is a global particle-in-cell (PIC) gyrokinetic code which can 

directly import experimental magnetic equilibrium and profiles as the simulation 

setup. In order to investigate the numerical plasma profile effect on the KBM 

instability, an analytical flat gradient profile has been used in the simulation as a 

reference local model for the plasma profile, as shown in Fig 2(b)-(d) by the dashed 

lines. The q profile used in the GTC simulations is 𝑞(ψp) = 𝑞1 + 𝑞2 (
𝜓𝑝

𝜓𝑤
) +

𝑞3 (
𝜓𝑝

𝜓𝑤
)

2

, where q is the safety factor, ψp is the poloidal flux, ψw is the poloidal 

flux on the wall, 𝑞1 = 0.81, 𝑞2 = 1.1, and 𝑞3 = 1.0. A local (flat gradient) plasma 

profile is generally used by the global simulations for verifying the corresponding 

local theory or the simulation results from the local codes. In the GTC simulation, the 

temperature and density gradient profiles are assumed to be flat in the central region 

of the radial domain, namely 𝐿𝑛
−1, 𝐿𝑇 −1 ∝ exp [− (

𝑟−0.5𝑎

𝑟𝑤
)

6

] , where a is the minor 

radius, 𝑟𝑤  represents the width of the flat region for the gradients, and 𝐿𝑛
−1 =

−dlnn/dr , 𝐿𝑇
−1 = − dlnT/dr  are the scale lengths of density and temperature, 

respectively..  

Fig. 1 shows the simulation results for three typical toroidal mode numbers and  

the simulation parameters evaluated at 𝑟 = 𝑎/2 are: 𝛽 = 2.0%, 𝜖 = 0.35, 𝑘𝜃𝜌𝑠 =

0.2  and 𝑞 = 1.4 , 𝑠 = 0.81 , 
𝑅

𝐿𝑛
= 2.2 , 

𝑅

𝐿𝑇
= 7.0 , where 𝑠 = 𝑑𝑙𝑛𝑞/𝑑𝑙𝑛𝑟  is the 

magnetic shear, β is the ratio of the plasma pressure to the magnetic pressure.. One 

can clearly see that the KBM linear frequency and growth rate are sensitive to the 
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width 𝑟𝑤 of the local profile. In Fig. 1, the point 𝑟𝑤 =0 corresponds to a global 

analytic profile for the temperature and density, as shown by the dashed line in Fig. 

2(a), where only the peak gradient at 𝑟 = 𝑎/2 is the same as the other three local 

profiles. Both linear frequency and growth rate depend on the width of the local 

profile and the dependence is more pronounced for larger toroidal mode numbers.  

 

 

Figure 1: The growth rate and frequency from GTC simulation for 𝑛 = 10,15,20 and  𝑟𝑤 =

0.2𝑎, 0.3𝑎, 0.4𝑎. 

 

Fig. 2 shows the GTC simulation results for the radial mode structure for 

different widths of the temperature and density gradient profiles. The toroidal mode 

number is n=10 and the peak positions corresponds to that of the mode rational 

surfaces for different poloidal mode numbers. We see that the radial mode structure 

moves outward as the gradient width 𝑟𝑤 increases. It is therefore of interest to find 

out the cause of this outward shift. 

 

 

(a)                                (b) 
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(c)                                (d) 

Figure 2: Radial mode structure of KBM (blue solid curves) for different density/temperature 

gradient profiles: (a) global profile, (b) 𝑟𝑤 = 0.2a, (c) 𝑟𝑤 = 0.3a, (d) 𝑟𝑤 = 0.4a 

 

III. Linear Theory of the KBM 

Here we introduce a linear theory for explaining the sensitivity of the KBM instability 

and its mode structure to the width of the local plasma radial gradient. Using the 

ballooning representation and s − α equilibrium model, we can write the normalized 

eigenmode equation for the KBM [4, 6]:  
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 (1) 

Where only the lowest order of the parallel ion current is retained, and θ is the 

ballooning angle with respect to the field line, q is the safety factor, 𝜏 = 𝑇𝑒/𝑇𝑖 is the 

electron/ion temperature ratio, 𝜖𝑛 =
𝐿𝑛

𝑅
 is the inverse of the normalized density 

gradient, 𝜂𝑒 =
𝑑𝑙𝑛𝑇𝑒

𝑑𝑙𝑛𝑛𝑒
 and Ω =

𝜔

𝜔∗𝑒
 is the mode frequency normalized by the electron 

diamagnetic frequency 𝜔∗𝑒 =
𝑘𝜃𝑐𝑇𝑒

𝑒𝐵𝐿𝑛
,  and 𝛿𝛹 is the perturbed field which is an 

even function of θ. The functions 𝑓(𝜃), I and H are defined by 
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where Λ𝑖  , 𝜔∗𝑖̂, and 𝜔𝑑𝑖̂  can be expressed as 

 
2
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Here 𝐹𝑖 is the Maxwellian distribution function for the ions, 𝑣𝑇 = √
2𝑇𝑖

𝑚𝑖
 is the ion 

thermal velocity, 𝜌𝑖 =
𝑣𝑇

𝜔𝑐𝑖
=

𝑣𝑇𝑚𝑖𝑐

𝑒𝐵
 is the ion Larmor radius of ion, 𝐽0 is the zeroth 

order Bessel function, and ⟨⋯ ⟩𝑣 denotes the velocity space integral. For simplicity, 

we assume τ=Te/Ti=1, and 𝜂 = 𝜂𝑒 = 𝜂𝑖. Note that the perturbed parallel ion current, 

essentially given by the term H in Eq. (1), is inversely proportional to 𝑞2.  

To solve Eq. (1), a numerical nonlinear eigenvalue code is developed to find the 

eigenvalue, i.e., the normalized frequency Ω. The perturbed field 𝛿𝛹  is then 

represented by a discrete vector, and thus Eq. (1) could be transformed to a  matrix 

form. The resulting discrete nonlinear eigenmode equation can be solved iteratively. 

The integral I(θ) and H(θ) are related to the standard plasma dispersion relation 

function 

 
 2exp

Z d
z

z
z







 , (8) 

which can be expressed in terms of the complex error function, which can be 
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evaluated accurately and rapidly using the basis function method and the Fast Fourier 

Transformation (FFT) [19, 20]. 

IV. Effect of the Perturbed Parallel Ion Current 

In order to show the effect of the perturbed parallel ion current, we use the 

preceding theory to compare the KBM results for with or without the perturbed 

parallel ion. Fig. 3 shows the resulting growth rates and real frequencies normalized 

by the electron diamagnetic frequency ω∗e for: 𝑠 = 0.4, 𝑏0 = (𝑘𝜃𝜌𝑖)2 = 0.01, 𝜂 =

2, 𝑞 = 2, 𝜖𝑛 = 0.175. Fig. 3 also shows that the parallel ion current provides a 

stabilizing effect that reduces the growth rate of the KBM in the IBM (ideal MHD 

ballooning mode) unstable regime. 

 

  

(a)                                   (b) 

Figure 3: The growth rate and real frequency vs. α for cases with or without the perturbed parallel 

ion current term (red dashed and the black solid curves, respectively), and of the ideal MHD 

ballooning mode (blue dotted curve). 

Fig. 4 shows the eigenfunctions along the parallel direction for the cases with or 

without the perturbed parallel ion current, where only half the eigenfunction is shown 

since the mode structures are even in 𝜃.  The value of the perturbed field at 𝜃 = 0 

is set to unity for simplicity and the simulation parameters are the same as in Fig. 3. In 

the MHD unstable region, the eigenfunction is confined around the outside middle 

plane with θ=0. We also note that the most unstable region is around that with the bad 

curvature, or 𝜃 = 0, 2𝜋, 4𝜋, …, and the least unstable region is around that with the 
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good curvature, or 𝜃 = 𝜋, 3𝜋, …, which is consistent with the ballooning assumption 

of the theory. The parallel perturbed ion current can broaden the mode structure, i.e., 

more perturbed field energy moves away from the most unstable ballooning angles, 

which means the perturbed energy moves away from the bad curvature region, 

thereby leading to stabilization by the perturbed parallel ion current. 

 

 

Figure 4: Comparison of eigenmode structure with or without perturbed parallel ion current in 

ballooning space, with α=0.8. 

As mentioned, the perturbed parallel ion current is inversely proportional to the 

square of the safety factor and it can stabilize the KBM. The safety factor profile used 

here has normal shear. At larger radial position the safety factor q is larger, and the 

stabilization effect of the perturbed parallel ion current becomes weaker. Thus the 

growth rate of the linear eigenmode increases in the radially outward direction, which 

induces the outward shift of the radial mode structure in Fig.2.  

V. Magnetic Shear Effect on the KBM 

It has also been found that the KBM will be unstable due to the interchange drive 

when magnetic shear is small and pressure gradient is sufficiently small []. In the 

preceding section, we have studied the normal shear. In this section, we examine the 

KBM mode structure with reversed magnetic shear. The q profile in our GTC 

simulation is a parabolic function of r [21], or 𝑞(𝑟)  =  𝑞𝑚𝑖𝑑 + 𝑐 (
𝑟

𝑎
− 0.5)

2

. So the 

magnetic shear increases monotonically with r and poloidal flux ψp near 𝑟 = 𝑎/2, 
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where s=0 and 𝑞 = 𝑞𝑚𝑖𝑑 at 𝑟 = 𝑎/2. The density and temperature gradient profile 

still have the flat profile with 𝑟𝑤 = 0.3. The GTC simulation result is shown in Fig. 5, 

for  𝛽 = 2.0%, α = 0.73, 𝑘𝜃𝜌𝑠 = 0.2, 𝑛 = 10 and 𝑞 = 1.4, 𝑠 = 0.81, 
𝑅

𝐿𝑛
= 2.2, 

𝑅

𝐿𝑇
= 7.0 at 𝑟 =

𝑎

2
, with the q profile given by 𝑞𝑚𝑖𝑑 = 1.4 and 𝑐 = 4.0. Consistent 

with previous studies[6], the linear mode from the GTC simulation is mostly unstable 

around r=0.5a, where the magnetic shear s is very small and the growth rate is much 

larger than that in other radial positions, as can be seen in Fig. 5. 

 

 

(b)                                   (b) 

Figure 5: (a) Mode structure with n=10 in poloidal plane and (b) radial mode structure obtained by 

the GTC simulation for a reversed shear configuration. 

 

Our eigenvalue solver can also be used to investigate the magnetic shear effect on the 

KBM for cases with and without the perturbed parallel ion current. Fig.6 shows 

results for 𝛼 = 0.3, kθ 𝜌𝑠 = 0.1, 𝜂𝑖 = 𝜂𝑒 = 0.175,  𝐿𝑛/𝑅 = 0.175, 𝑞 = 2.  It is 

found that the linear frequency and growth rate are strongly affected by the magnetic 

shear. When the perturbed parallel ion current is ignored, the growth rate increases 

rapidly with s when s<0, and decreases relatively slowly for s>0. This result is 

consistent with that from our GTC simulation in Fig. 5, where the radial mode 

structure is restrained around zero-shear point. The growth rate of the unstable 

poloidal mode increases sharply for s<0, and decreases slowly for s>0. 
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(a)                                  (b) 

Figure 6: Dependence of the frequency and growth rate on the magnetic shear 𝑠 for with or 

without perturbed parallel ion current 

 

VI. Effect of Perturbed Parallel Ion Current for Different Magnetic Shears  

In this section, we discuss the effect of perturbed parallel ion current for different 

magnetic shears. Fig. 6 also shows that in the positive shear region the perturbed 

parallel ion current can provide stability for the KBM, but it doesnot affect the linear 

frequency and growth rate in the negative shear region. To verify this phenomenon, 

we consider two different q profiles for our GTC simulation, that have constant 

positive and negative shears in the central region of the simulation domain. Setting 

𝑞 (
𝑎

2
) = 1.4 and using the relationship 𝑠 =

𝑟

𝑞

𝑑𝑞

𝑑𝑟
, we can obtain the q profile from the 

magnetic shear profile  𝑠(𝑟)：:  
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, (9) 

where 𝑠𝑚𝑖𝑑 is the constant magnetic shear in the central region for simulating the 

local limit, 𝑟𝑙 < 𝑟 < 𝑟𝑟 ,  𝑟𝑙 + 𝑟𝑟 = a, 𝑟𝑟 − 𝑟𝑙 = 𝑟𝑤  indicateing the width of local 

profile, and 𝑠𝑚𝑎𝑥  is the magnetic shear at 𝑟 = 𝑎  position. The density and 

temperature gradient profiles are still the local profile used earlier. To show the 

perturbed parallel ion current effects with positive and negative shears, the GTC 
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simulation is carried out for 𝑠𝑚𝑖𝑑 = 0.81 and 𝑠𝑚𝑖𝑑 = −0.2, respectively, with the 

other parameters the same as that in Sec. V.  

 

 

(a) (b) 

 

(c)                          (d) 

Figure 7: Mode structure in poloidal plane and radial mode structure with (a) (b) 𝑠𝑚𝑖𝑑 = −0.2, (c) 

(d) 𝑠𝑚𝑖𝑑 = 0.81. 

 

As shown in the Fig. 7(c-d), the radial mode structure centered at 𝑟 = 𝑎/2 for 

the negative shear case, but it moves outward for the positive shear case. The different 

behaviors of the KBM mode structure for different magnetic shears are fully 

consistent with that predicted by the theory given in the last section, namely, the 

perturbed parallel ion current provides stability for the KBM mode for s>0, and it 

doesn’t affect the KBM stability when s<0.  

VII. CONCLUSION AND DISCUSSION 

In this work, we have investigated the KBM instability using the gyrokinetic 

simulation with the GTC code. We found that the linear growth rate and frequency are 
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affected by the locality of the plasma profile, or the size of the simulation window. 

The poloidal mode structure moves outward in the radial direction for the normal 

magnetic shear while it doesnot move for the negative magnetic shear. A linear eigen 

mode theory is proposed to explain this radial shift of the KBM. It is found that the 

perturbed parallel ion current, ignored in the existing theories, [4] affects the growth 

rate differently for positive and negative shears. For positive magnetic shear, it 

provides stability to the KBM and decreases its growth rate. However, for negative 

magnetic shear, the perturbed parallel current does not affect the growth rate at all. 

These theoretical results fully explain that of the GTC simulation.  
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