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Abstract

Impurity is an important factor that can affect significantly the turbulent transport in tokamaks. In 

order to study the impurity physics, we implement a new impurity module in the gyrokinetic 

particle simulation code GTC. With an improved numerical scheme, we expand the validity of the 

gyrokinetic Poisson equation in the GTC to the short wavelength region, for both non-zonal and 

zonal part of the perturbed Poisson equation. Verifications of this new scheme is carried out on the 

linear instability and zonal flow response. The linear simulation of the ion temperature gradient

(ITG) instability including the impurity ions shows that the new Poisson solver can obtain the 

correct linear growth rate and frequency at the thermal ion gyro-radius scale. The residual zonal 

flow with impurities obtained via the new zonal flow solver is consistent with the numerical and 

analytical predictions in the large aspect-ratio limit. The nonlinear simulation of the ITG

turbulence shows that the turbulent transport is significantly reduced by the impurity ions through 

decreasing the linear growth rate of the instability.

I. Introduction

Impurity ions exist universally in magnetically confined plasmas, besides majority ions 

(thermal ions) and electrons. The impurity ions may come from the erosion of the device wall or 

the plasma sputtering in the divertor. Common kinds of impurity include Carbon, Oxygen and 

Tungsten. The thermalized alpha particles can also be regarded as one impurity species in the 

burning D-T plasmas. External impurity injection is observed to lead to long wavelength 

turbulence suppression, confinement improvement and ion thermal diffusivity reduction in the 

experiments in TEXTOR-941, DIII-D2, 3, JET4, and TFTR5. Various theories are raised to interpret

how the impurity can affect the plasma confinement and transport. As one candidate the impurity 

mode is excited when the impurity ions have a density profile that increases with the magnetic 



flux, in contrast with the thermal ion and electron density profile, even if there is no temperature 

gradient for thermal ions6. In the sheared slab geometry and the long wavelength limit ( 1ik   ), 

analysis shows that this mode can suppress (or enhance) ion temperature gradient (ITG) mode 

when the impurity ions have the outwardly (or inwardly) peaked density profile7. One numerical 

calculation using the kinetic impurity ions and adiabatic electrons shows that the impurity modes 

and the ITG mode are strongly coupled and can affect each other significantly8. The impurities can 

also affect various trapped electron modes9. A recent research based on the gyrokinetic integral 

equation and the eigenvalue approach finds that the coupled ITG and TEM can be affected by the 

impurity ions10. Under some special conditions, the impurity acoustic modes coupled with the drift 

modes can produce an outward transport for the impurity from a quasilinear calculation11, which is 

considered to explain the favorable improved lower confinement regime (the I-Regime)12, 13. On 

the other hand, the presence of the impurity ions may impact the level of zonal flow14, an 

important figure that suppresses the radial correlation length of the turbulent fluctuations, and thus 

regulates the turbulent transport15.

The gyrokinetic simulation has been successfully used to understand the nonlinear turbulent 

transport of the particle, momentum and energy in both ion and electron channels, particularly 

originated from the drift wave instabilities such as ITG15-22, ETG23-25, TEM26-28 and KBM29-31. In 

this work, we utilize the massively parallel 3D global particle simulation code GTC (Gyrokinetic 

Toroidal Code)15 to study the drift wave instability and turbulence with the impurity ions. We 

implement a novel numerical scheme that is capable to solve the perturbed and flux averaged 

gyrokinetic Poisson equation with the impurity ions for arbitrary perpendicular wavelength. We 

verify these capabilities by a linear instability benchmark with the HD7 code10 and simulating the 

correct zonal flow response with the impurity ions. Then, we show by the nonlinear simulation 

that the impurity ions can decrease the thermal ion heat diffusivity through reducing the linear 

drive, which favors the plasma confinement and is consistent with the current experimental 

observation1-5. 

This paper is organized as follows. In Section II, we describe the traditional approximation 

used in the GTC code to solve the perturbed Poisson equation with the impurity ions, which is 

suitable for the long wavelength modes. We then develop a new scheme to extend the traditional 

Poisson equation to cover arbitrary wavelength modes. In section III, we demonstrate the error of

the traditional method and verify the linear ITG instability including impurities by comparing the 

GTC simulation with previous numerical results. We convert the flux averaged Poisson equation

to a matrix problem in the large aspect-ratio limit to include the impurity ions properly in Section 

IV. In section V, we calculate the zonal flow response through the new zonal flow solver described 

in Section IV and show the agreement on the residual zonal flow level between the GTC 

simulation and the theoretical result. In section VI, we carry out the nonlinear simulation on the 

ITG mode with impurities, and investigate the effect of the impurities on the turbulent transport. 

Finally, the summary is made in Section VII.



II. New Poisson solver for impurity ions

The particle pushing algorithm for the impurity ions is identical to that for the thermal ions. 

The major complication in simulating impurity ions by a gyrokinetic code is about solving the 

gyrokinetic Poisson equation16, 32, 33. The gyrokinetic Poisson equation with impurity ions is given 

by
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where Z is the particle charge, T is the equilibrium temperature,
0n is the equilibrium density, e 

is the absolute value of electron charge, n is guiding center density, and ,e kineticn is 

non-adiabatic electron guiding center density. The subscripts i, e and z stand for ion, electron and 

impurity, respectively.  is the electric potential, and  denotes the second gyro-averaged 

potential16,
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Where ,M sF is the lowest order Maxwellian distribution for the particle species ‘s’,  is the 

gyrophase.  is defined as the first gyro-averaged potential,
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In the GTC code, the electrostatic Poisson equation (1) is solved through 4-point averaging 

method32, 34 or the Padè approximation method33. Both methods are to find a discrete matrix to 

express in terms of  to solve the differential-integral gyrokinetic Poisson equation in the 

real space. The differential equation is thus converted to a discrete difference equation and can be 

expressed in a compact matrix form. In the case of 4-point averaging method, the equation is 

given by

  .+zi  M M D (4)

The one-dimensional arrays  and  represent the electric potential and charge density on 

the simulation grid points. The left hand side of the Poisson equation, the polarization response on 

every grid point due to the perturbative potential field  , is expressed by the superposition of 



the on the adjacent grid points. This feature makes
iM and

zM sparse matrices. The 

matrix D is diagonal and induced by the adiabatic response of electrons. In the case of Padè 

approximation method, the discrete gyrokinetic Poisson equation takes another form
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Where sU and sL are sparse matrices.

In the long wave length limit, ,

22 1th sk  , we can expand  to the first order of
2 2

,th sk  ,

   2 2 2 2

, ,1th s th sk k      , and then the polarization response term becomes

 
22 2

20 0

2

,

2 2

0

2 02

,

ss s s s ths
s

s s th s

s s

s

Z
k

m vZ n n
n

T v e Z B
m

m
   ， (6)

where
0B is the magnetic field strength at magnetic axis, ,th sv is the thermal velocity for particle 

species s,

,

, ,

0

/ ,
s th s

th s s s th s

s

m v
T m

B
v

Z
  (7)

The polarization response term is proportional to the mass and equilibrium density for s=i, z. In 

this long wavelength limit, we can find
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Therefore, we can obtain the perturbative potential field by solving
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in using the 4-point averaging method32, 34, and solving

0

0 0

1

,=
+

i i
i i i

z z i i

m n

m n m n
  



 
 

 
U L D L (10)

in the Padè approximation method33. Although the size of these matrices is large, their sparse 

features make it easy to inverse the matrices. When the impurity part is removed, or the density of 



impurity
0 zn is set to 0, we recover the gyrokinetic Poisson equation for the single ion species case.

However, the above approximation is inaccurate when
2

,

2 ~ 1th ik  , 
2 2

, ~ 1th zk  , which can 

be the most unstable region for the drift wave instabilities. It is necessary to work out a scheme 

that can handle these short wavelength modes. We note that the calculation of
iM retains 

accurate when
2

,

2 ~ 1th ik  . So we can use this method to calculate
zM similarly, which shares 

the same interface in the code as that for calculating
iM . Knowing the particle mass, charge and 

equilibrium plasma profiles, we can obtain the gyrokinetic matrix for any kind of particle. Thus, 

the gyrokinetic Poisson equation with a second ion species can be solved directly by inversing the 

total gyrokinetic Poisson matrix
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Note that we do not need to use the Padè approximation method33 is that the quotient /U L is 

not necessarily a sparse matrix, unless a proper truncation method is introduced so that the 

quotient /U L is similar to M . For the current purpose, it is sufficient to focus on the 4-point 

averaging method.

III. Verification of new Poisson scheme with impurity

Figure 1 Linear growth rate in ITG instability with impurities v.s. perpendicular wave length for 

traditional gyrokinetic Poisson solver and new gyrokinetic Poisson solver, 2 /s i iT m  .

The traditional gyrokinetic Poisson solver in the GTC code uses an approximate impurity 

response
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to replace the actual impurity response ,
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short wavelengths, e.g.
2 2 2 2

, ,~ ~ 1th i th zk k   , can be significant, as is demonstrated by Fig. 1, 

where 
z iT T is assumed for simplicity and the Carbon ion 

6C 
is used as the impurity since it 

would be the major contaminant in the ITER plasmas35.  Thus
, , ,3 / 3th z th i th i    . The 

above analysis shows that the approximate impurity response traditionally employed in the GTC is 

smaller than its true value, and thus it will lead to a larger estimation for the potential  . The 

simulation result in Fig.1 indeed shows that the traditional gyrokinetic Poisson solver in GTC 

gives a larger growth rate than the newly modified gyrokinetic Poisson solver, which is fully 

consistent with our analysis.

Figure 2 Code consistency check for linear ITG dispersion with different impurity portions. Case 1 80% 

ions, 20% impurities; case 2 20% ions, 80% impurities.

For both gyrokinetic Vlasov equation and gyrokinetic Poisson equation, the ion and the 

impurity are symmetric or exchangeable. The code must satisfy this symmetry, and when we 

exchange ion and impurity portion in the code, the simulation results should not have any change 

according to this physics understanding. We carry out an ITG simulation with impurities for two 

cases, with case 1: 80% thermal ions, 20% impurities, i H
m m  ,

iZ e , 6z C
m m  ,

6zZ e , 0.2 , 2q  , ˆ 1.5s  ,
nz neL L , ln / dlnn / 2.0e ee ne Ted T L L    ,

z i eT T T  , 3.0i  ; and case 2: 20% thermal ions, 80% impurities, and all other parameters 



exchanged between ions and impurity. The simulation results are shown in Fig.2, where the linear 

growth rate and frequency is identical for these two cases. This confirms the numerical symmetry 

between the ions and the impurities in the GTC code after this new method is implemented to 

solve the gyrokinetic system with both ions and impurities.

Figure 3 Linear dispersion of ITG from GTC simulation and HD7.

Next we verify this new capability in GTC by comparing the linear ITG dispersion with 

impurities with the gyrokinetic eigenvalue code HD710. The simulation parameters are set as the 

same as case 1 in the preceding example. The simulation results in Fig.3, show that both linear 

frequency and growth rate from the GTC simulation are consistent with those from the HD7 

simulation10 in both value and tendency. Therefore, we can conclude that the new gyrokinetic 

Poisson solver can accurately address the impurity effect, even for the short wavelength modes 

with
2 2 2 2

, ,~ ~ 1th i th zkk    .

IV. New zonal solver

In order to carry out high fidelity turbulence simulation, it is important to confirm the 

accuracy of the zonal flow response. The formal derivation of zonal potential is through the flux 

surface average of the potential field,
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where      is solved by the gyrokinetic Poisson equation. The electrons are mainly 

adiabatic in response to the perturbative . However, they are non-adiabatic in response to the 

zonal potential. Thus, the gyrokinetic Poisson equation can be split into two equations, the 

non-zonal gyrokinetic Poisson equation (1), and zonal gyrokinetic Poisson equation that is given 

by
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Noting that
22 1ek  and ,i zc i z e kineticZ n Z n n    is the flux surface averaged 

perturbed charge density. In the limit of large aspect ratio, to the lowest order the equation can be 

reduced tothe following equation33, 
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The zonal potential can be obtained by integrating the preceding equation numerically twice.

If the impurity ions are included in the equation, the preceding zonal equation (15) will end 

up with a fourth order differential equation, which is much more complicated to be solved. 

Moreover, the fourth order derivative on the zonal charge density introduces much larger 

numerical noise. Here we provide a better way to solve the zonal gyrokinetic Poisson equation.

In fact we can solve the flux surface averaged gyrokinetic Poisson equation by the matrix 

method that we just used for the perturbed gyrokinetic Poisson equation. The matrix form of (14)

is
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Where U is the matrix form of the operator  2 2 2

0 ,/ th sn Z T   , and L is the matrix form of 

the operator
2 2

,1 th s  . Rather than multiply L on both sides of the preceding equation, we 

can directly combine the operator matrices acting on  into one single matrix. Define the total 

matrix
tM as

1 1

t i z i i z z

   M M M L U L U , the gyrokinetic Poisson equation can be 

further reduced to a linear matrix problem =t cM , which assumes that the variation 

scales for the matrix
tM and the potential  are different and has been shown to be accurate to 

the requisite order33. Although the matrix
tM is not necessarily a sparse matrix, the size of

tM is only related to the number of grid points in radial direction, which is usually several 

hundreds. The size of this linear problem is within the tolerance range of modern computers. 

Many numerical libraries can be used to solve this problem, such as PetSc36-38.



The matrix method introduced here has several advantages. First of all, this method expands 

the validity range of zonal solver from small gyro-radius limit to
2 2 2 2

, ,~ ~ 1th i th zk k   . Secondly, 

this method avoids the higher order derivatives of the array
c and thus suppresses the 

associated numerical noises. Furthermore, it is symmetric in form for the ion species and thus 

easier to code additional ion species through the interface that constructs
1

s s


L U , and the total 

matrix
tM is calculated by a simple summation.

V. Verification of zonal solver

Figure 4 Comparison between zonal field solved by traditional integration method in GTC and new 

zonal solver.

Without the impurity ions, the traditional integration method is accurate enough to obtain the 

correct zonal field response, even for the short wavelength modes
2 2 ~1ik  . Thus for the case of 

one single ion species, the simulation result from the matrix method and traditional integration 

method should be identical, which is confirmed by the following test. At any time step of the 

simulation, we can record the zonal density
c and the zonal field int  solved by the 

integration method according to Eq. (14). We also denote M  to the zonal field solved by the 

aforementioned matrix method. Then for this single species case,
1

= i cM
 


M . The 

matrix iM does not change with time. The left panel of Fig.4 shows the plots of radial zonal 

density
c and

inti  M at a certain time step. The consistency of two curves illustrates that 

iM indeed corresponds to the differential operator that acts on   , as shown in Eq. (14). On 



the other hand, the radial structure of 
M  calculated by the matrix method matches that of

int  , as is plotted in the right panel in Fig.4. It is further observed that this consistency holds for 

any time step in the simulation. 

Figure 5 (a) Time evolution of zonal flow. (b) Initial zonal flow and stationary residual zonal flow.

To investigate the impurity effect on zonal flow and to verify the new zonal field solver, we 

studied the classical Rosenbluth-Hinton zonal flow residual problem39 and have simulated the 

residual zonal flow response with impurities in the collisionless limit. Initially we load an external 

radial potential field to excite radial density fluctuation. After a certain time step which is set as 

t=0, the external field is removed and the time history of zonal flow is measured. Under the 

collisionless condition, the zonal flow damps away because of the shielding of the neoclassical 

polarization. After several bounce times, the zonal flow reaches a steady state. The time evolution 

of the radial structure of the zonal flow is shown in the left panel. We choose the initial radial 

zonal flow at t=0 and steady zonal flow structure to calculate the residual zonal flow level ZFR .

Analytical and numerical solutions in terms of the critical parameters, such as the safety 

factor q , radial wave vector rk and inverse aspect-ratio  , are presented in large aspect-ratio 

limit to calculate the residual zonal flow level
ZFR 14, 40, 41. The residual zonal flow level is given 

by the following formula
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zf is the fraction of impurity ions, 
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and 2 /tr tr   , 2 /p p    .

Figure 6 Residual zonal flow dependency on radial wave length.

Given 0.2 , 1.4q  ,
i z eT T T  , the ,th ik  dependency of ZFR is shown in Fig.6. 

The ,th ik  parameter ranges from 0.2 to 2.0, where is within the effective range of the Padè 

approximation employed in the zonal flow solver. In the small gyro-radius limit, the residual zonal 

flow approaches to the Rosenbluth-Hinton constant. In the finite gyro-radius limit, ~1thk  , the 



zonal flow is not shielded at all and ZFR approaches to 1. The particle simulation by GTC can 

produce accurately these two analytic limits, with various ratio , ,/th z th i  . So the new zonal 

field solver with impurities by the matrix method can produce the correct zonal flow response in a 

wide range from , ,~ 1th i th zk k    to , ,~ ~ 1th i th zkk    .

Figure 7 Volume-averaged heat diffusivity time evolution for (a) ions (b) electrons (c) impurity ions. 

The red(blue) line is from the simulation without(with) impurity ions.

VI. Nonlinear ITG simulation with impurities

To investigate the effect of impurity ions on the turbulent ion heat diffusivity, we carry out 

two nonlinear GTC simulations after the improved gyrokinetic Poisson and zonal flow solver is 

implemented and verified. The simulations use the Cyclone base case parameters42, on the 

reference surface 
0 .1/ 0 8r R  , the local parameters are 

i en n , 
i eT T , 3.1e  , 

1.4q  , ˆ 0.78s  , / 6.9TR L  , with one containing only ions and electrons, and the other 

containing an additional impurity ions 
6C 

. In order to see a significant role for the impurities we 

set the impurity fraction 0.2zf  . We also assume that the impurities are completely thermalized 



by the ions through collisions, i.e., 
z iT T . In Fig. 7, we show the time history of the heat 

diffusivity for these two simulations. In the nonlinear phase, the presence of the impurity ions 

significantly decreases the saturation level of the heat diffusivity for both ions and electrons. 

According to Eq. (17) and the parameters we have used, the residual zonal flow level is only 

slightly lower when the impurity ions are included. Thus the change in the regulation effect on 

thermal transport by the zonal flow is small. Note that the linear growth rate is lower in the

simulation with impurity ions. From Fig. 7, one can estimate
00.57 /z sC R  ,

/  00.83 /w o z sC R  . So we can conclude that the difference of the turbulent thermal diffusivity 

for these two cases mainly results from the change in linear growth rate, i.e., the linear driving 

force for the turbulence. The impurity ions play a damping role for the turbulence, which can help 

improve the confinement of tokamaks. This can be used to explain the current experimental 

observations, where external impurity injection can lead to long wavelength turbulence 

suppression, confinement improvement and ion thermal diffusivity reduction1-5. 

VII. Summary

We have implemented a new numerical scheme in the GTC code to solve multiple-species 

gyrokinetic Poisson equation and have extended the validity range of the gyrokinetic Poisson 

solver and the zonal field solver in the GTC code with impurity ions from the long wavelength

, ,~ 1th i th zkk    to the short wavelength , ,~ ~ 1th i th zkk    . For the Poisson solver, we 

have implemented an interface to calculate the 4-point averaging matrix for any particle species. 

The total matrix for the linear Poisson equation is the summation of each individual species matrix. 

The benchmark of the ITG with impurity ions between GTC and HD7 shows the validity of this 

scheme. As for the zonal flow solver, we replace the conventional integration method with a new 

matrix method based on the Padè approximation so that we can incorporate the impurity effect 

conveniently and accurately. In the case where only thermal ions are included, we have 

demonstrated the equivalence of the matrix method and the integration method. The new zonal 

field solver is further verified by calculating correctly the residual zonal flow level predicted by 

the asymptotic theory when the impurity ions are included. The comparison of nonlinear 

simulations with and without impurity shows that the impurity ions can decrease the thermal ion 

heat diffusivity through reducing the linear drive, which is consistent with the current 

experimental observation1-5 and shows that the impurities can help improve the heat confinement 

of tokamaks.
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