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A new fast global eigenvalue code, where the terms are segregated according their physics, is
developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigen-
mode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to
the kink term is unfavorable for the existence of the RSAE. An improved criterion for the RSAE
existence is given for with and without the parallel equilibrium current. In the limits of ideal mag-
netohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable
factor for the existence of the RSAE, which is however usually small. This suggests that, suppression
of the kink term in the simulation will help to find RSAE.

I. INTRODUCTION

In toroidal plasmas, the discrete shear Alfvén eigen-
modes (AEs) can exist. These modes can be desta-
bilized by fast particles and can therefore degrade the
confinement[1]. Recently, a specific AE, namely, the re-
versed shear Alfvén eigenmode (RSAE), usually localized
around the minimum value of the safety factor q (qmin)
for a reversed shear tokamak plasma, has been inten-
sively studied in experiments[2–7]. The frequency of the
RSAE mode usually sweeps up or down when qmin drops
in time. It also provides an indirect method for measur-
ing the safety factor profile[3]. Hence, it is important to
study the properties of the RSAE.

The present work is inspired by a recent experiment
in the HL-2A tokamak[8]. Under that RSAE experimen-
tal parameters, NOVA[9] cannot find the RSAE mode[8].
However, the KAEC code[10] seems can find an eigen-
mode as in the experiment by excluding the kink term
or including kinetic effects. The existence of RSAEs
has also been studied intensively theoretically, including
the effects of energetic particle[11], toroidicity[12], finite
plasma pressure[13–15], pressure gradient[16, 17], density
gradient[18], as well as some kinetic effects[10, 19]. The
effect of the parallel equilibrium current corresponding to
the kink term has also been studied recently by Deng et
al.[20, 21] using the GTC code and an analytical model
for the dispersion relation, where the toroidal coupling is
ignored.

In the literatures, three different approaches have been
employed to study Alfven eigenmodes, particularly, the
RASE. The first approach is to solve a reduced model
equation analytically, usually a 1D eigenvalue equation
(e.g., [22]). The second is to solve a more complicated
model equation numerically by finding its eigenvalues and
eigenfunctions (e.g., [9]). The third is to use large scale
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simulation to solve a more general set of equations (e.g.,
[20]).

In this paper, all these three approaches are used to
study RSAE. Firstly, we provide a set of coupling AE
equations for toroidal plasmas that retains the exact self-
adjointness of the original ideal magnetohydrodynamic
(MHD) equation, and is not limited to large toroidal and
poloidal mode numbers. Then, a fast global eigenvalue
code, namely, AMC (Alfvén Mode Code) is developed,
to calculate the Alfvén continuum spectrums and the fre-
quencies and mode structures of AEs, which can be used
effectively to benchmark other large simulation codes.
Finally, we apply this new code to study the parallel equi-
librium current effect on RSAEs in detail. An improved
criterion is found for the RSAE existence for both with
and without the parallel equilibrium current. Numerical
and analytical results show that the parallel equilibrium
current is unfavorable for the existence of the RSAE. This
explains why the aforementioned NOVA studies of the
HL-2A experiment cannot find RASE easily since they
include the parallel current automatically.

The paper is organized as follows. Sec. II describes the
formalism and numerical scheme for the linear ideal MHD
vorticity equation. Sec. III solves the preceding equation
and discusses the importance of the parallel current in
finding RSAE in both theory and simulation. Summary
and discussion are given in Sec. IV.

II. MODEL AND FORMALISM

We start from the linearized ideal MHD vorticity
equation[12, 14–16, 23]

∇ ·
[ ω2

v2
A(r, θ)

∇⊥U
]
+ B · ∇

( 1
B2
∇ ·B2∇⊥Q

)
−

∇
(J‖
B

)
· (∇Q×B) + 2

κ · (B ×∇δP )
B2

= 0,

(1)

where the stream function U is defined from plasma dis-
placement vector using ξ = (∇U × b)/B, κ = b · ∇b =
(∇× b)× b is the magnetic field curvature, b = B/B is
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the unit equilibrium magnetic field, J‖ = (c/4π)b ·∇×B
is the parallel equilibrium current, Q = (b · ∇U)/B,
and δP = (b × ∇U · ∇P )/B + (ΓP∇U · b × κ)/B with
ΓP = Pe + 7Pi/4 to correctly treat the effective geodesic
compressibility[14, 22]. Eq.(1) holds for a large aspect
ratio (ε = r/R0 � 1) tokamak plasma to second order,
and we have assumed low beta β ∼ O(ε2). The first term
is the inertial term, the second term is the field line bend-
ing term, the third term is kink term and the last one is
ballooning term. In Eq.(1), each physics term is well sep-
arated thus it is more convenient for physics studies than
the original set of MHD equations, such as the equations
used by NOVA[9] and GTAW[24]. Note that, since the
electrostatic potential δφ is related to U by δφ = ∂U/∂t,
therefore, the mode structure of U is also similar to that
of δφ.

Similar to Ref. [12, 14, 16], we consider a shifted cir-
cular flux surface equilibrium. The flux surface is defined
by the usual cylindrical coordinate (R,φc, Z)

R = R0 + rs cos θs −∆(rs), (2a)
φc = −ζs, (2b)
Z = rs sin θs, (2c)

where R0 is the major radius and the Shafranov shift
∆(0) = 0. The relations between flux coordinates (r, θ, ζ)
and geometry coordinates (rs, θs, ζs) are r = rs, ζ = ζs
and θ = θs − (ε + ∆′) sin θs, with ∆′ being the radial
derivative of the Shafranov shift ∆(r). Assuming U =∑
Um(r) exp(inζ− imθ) and expanding Eq.(1) to O(ε2),

we obtain a coupled equation

Lm,m−1Um−1 + Lm,mUm + Lm,m+1Um+1 = 0, (3)

where the operators Lm,m and Lm,m±1 are defined as

Lm,m =
∂

∂r

[ (1 + 4ε∆′)
v2

A

ω̄2 − k2
m − c2s

]
r
∂

∂r
+ (k2

m)′−

m2

r

{ [1− 4ε(ε+ ∆′)]
v2

A
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m − c2s − κ̄rα/q

2
}
,

(4)

Lm,m±1 = ω̄2
{ ∂
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(5)

Here, ω̄ = ω/ωA, ωA = VA/R0, km = n − m/q, VA =
vA(0) is the on-axis Alfvén velocity, α = −R0q

2dβ/dr
is the normalized pressure gradient, κ̄r = ε(1/2 −
1/q2) + (r∆′)′/2 + ∆′ is the averaged radial component

of the curvature. The normalized ion-sound speed term
c2s = [2/(V 2

AR
2
0)][Te + (7/4)Ti]/mi corresponding to the

geodesic acoustic coupling can be calculated from kinetic
theory[14, 22].

The above equations, which are improved from Ref.[12,
14, 16, 23, 25], recover the exact self-adjointness of ideal
MHD equation and are also not limited to large toroidal
and poloidal mode numbers. The detailed comparisons
between our equations and those in other literatures are
given in Appendix A. The proof of the self-adjointness
is provided in Appendix B. This set of model equations
supports a wide range of modes such as the Alfvén eigen-
modes (Global AE, Toroidal induced AE, RSAE and
more) and internal kink mode as well as ideal ballooning
mode (IBM).

The above equations can be solved numerically for
both continuum spectrums and eigenmodes. The con-
tinuum spectrums are obtained by setting the determi-
nant of the coefficients of the second-order derivative
terms to zero[26]. The eigenmodes are obtained by solv-
ing a matrix eigenvalue problem AX = λBX, with
ω2 = λ. The central difference scheme is used for the dis-
cretization of Eq.(3), df/dr = (fj+1 − fj−1)/(2∆r) and
d2f/dr2 = (fj+1 − 2fj + fj−1)/∆r2. The zero boundary
conditions are used in the computation. The eigen matrix
dimension is (Nm×Nr)2, where Nr is radial grid number
and Nm = mmax −mmin + 1 is number of the m mode
numbers, with m ∈ [mmin,mmax] in the computation.

A new code named AMC is developed based on the
above numerical scheme. To speed up computation, the
sparse matrix method is used to calculated the eigen-
value (mode frequency) and eigenvector (mode struc-
ture). Compared to other codes (which usually use
root finding scheme) such as NOVA[9], KAEC[10] and
GTAW[24], this new code is easier to use and much faster
to run. A typical run with Nr = 512 and Nm = 10, AMC
can find an eigenmode in seconds or less, whereas NOVA
and KAEC usually require minutes. Moreover, AMC can
also calculate all the Nd (Nd = Nr×Nm) eigenvalues and
eigenvectors for the system in minutes, without losing
solutions. Here, the eigenvalues contain both continuum
and discrete spectrums. The mode structures are usu-
ally singular for the continuum spectrums at some radial
locations, whereas the mode structures for the discrete
spectrums are usually global and smooth, which are our
main interests. The benchmarks of AMC are provided in
Appendix C.

One should also note that although the triangularity
and elongation have been excluded in our model, i.e.,
the Lm,m±2,3,··· terms have been omitted in Eq.(3), the
higher order continuum gaps (and AEs) may still exist,
as can be seen in panels (b) in Figs.1 and 2. These higher
order couplings occur in an indirect way, e.g., Um could
be coupled to Um+2 since Um is directly coupled to Um+1

and Um+1 is also coupled to Um+2.



3

III. PARALLEL EQUILIBRIUM CURRENT
EFFECTS ON MODE EXISTENCE

In this paper, we study only the lowest order par-
allel equilibrium current effects for the RSAEs, which
can be represented by the kink term in Eq.(1). For
the case without the kink term, Lm,m should be mod-
ified to Lnew

m,m = Lm,m − (3kmk
′
m + rkmk

′′
m). Similar

explicit expressions for the kink term are also obtained
in Ref.[21, 25]. Note also that if the term (k2

m)′ is
missing in Eq.(4), the Lnew

m,m would be inaccurate to be
Lnew

m,m + 2kmk
′
m.

Since RSAE is usually a single m dominant mode, fol-
lowing Ref.[11, 12, 14, 16], we can obtain the following
dimensionless equation to manifest each physics term by
simplifying and expanding Eq.(3) at the zero shear point,

∂

∂x
(S + x2)

∂

∂x
Um + (Q− S − x2)Um = 0, (6)

where x = m(r − r0)/r0. Here and below, the subscript
0 represents the quantity at r0, with r0 being the radius
at qmin. The expression for S is unchanged from that in
Ref.[14, 16]

S =
mq20

(−km0)r20q
′′
0

(
ω̄2

v2
A0

− k2
m0), (7)

where we have ignored the compressibility term c2s and
Shafranov shift term. However, Q = Qtor + Qpressure is
changed to Q = Qtor + Qpressure + Qnew. We find that
the improvement of L in our equations does not affect
the Qtor in Q, i.e.,

Qtor = 2
mq20(−km0)

r20q
′′
0

(ε2 + 2∆′ε)
1− 4k2

m0q
2
0

. (8)

This shows that the analysis of RSAE in Ref.[12, 14, 16]
still holds, though their starting equation does not sat-
isfy the self-adjointness and misses a (k2

m)′ term. This is
because that the main difference between the self-adjoint
and non-self-adjoint L operator are the derivative term
related to k′m, and k′m0 = 0 for RSAEs. The same holds
for the (k2

m)′ term, i.e., (k2
m)′0 = 0. That is, the equations

in Ref.[12, 14, 16] can be used for RSAEs, but, would be
subtle for other AEs and other modes (e.g., internal kink
and ballooning modes) when k′m 6= 0, as mentioned in
Appendix A.
Qnew is due to the absence of the kink term in Eq.(1).

For the case with the kink term, Qnew = 0. For the case
without the kink term,

Qnew '
r0km0(k′′m)0
r0(k2

m)′′0/2
' 1. (9)

We note that Eq.(6) is much broader in application
than ideal MHD modes. When dealing with fast particle
driven or kinetic driven RSAEs modes, we simply replace
the Q in Eq.(6) by Qeff = Qf +Qtor+Qpressure+Qkinetic+

.... The existence of RSAEs requires Qeff > Qcritical,
with Qcritical ' 1/4[11] in general, where Qeff depends
on several factors, such as fast ion (Qf), plasma pressure
gradient (Qpressure), toroidal coupling (Qtor), kinetic ef-
fects (Qkinetic), etc. Here, Qeff can be understood as the
Schrödinger potential, and Qeff > Qcritical can be un-
derstood similarly as the Suydam’s criterion[11]. These
terms can be either favorable or unfavorable. We find
that for the case without the kink term, the Qnew in
Eq.(9) is always larger than zero, which also makes eas-
ier Qeff > Qcritical = 1/4. Therefore, the parallel equilib-
rium current is always an unfavorable effect. The above
result is similar to the RSAE model equation by Deng
et al.[20, 21]. However, in Deng’s model equation, if the
parallel equilibrium current is included, the RSAE will
not exist; whereas in our equation the RSAE can still
exist, as will be shown later. Nevertheless, one should
keep in mind that the above analytical existence crite-
ria Qcritical = 1/4 is not rigorous. Even in the current
fluid limit, a more rigorous treatment needs to resort to
numerical computation rather than the current analytic
estimate.

Next, we verify the above conclusion numerically using
the AMC code we developed. For simplicity, we focus
on the zero-shift and zero-pressure limits, i.e., ∆(r) =
0 and β = 0, which follows c2s = 0 and α = 0 (also
Qpressure = 0). Hereafter, if not specified, the frequency
ω and the radius r are normalized by ωA and minor radius
a, respectively.

Firstly, the following reversed shear safety factor pro-
file is chosen[27],

q(r) = qm + c1(r2 − r2m)2 + c2(r2 − r2m)3, (10)

where c1 = [(qa−qm)r6m+(q0−qm)(1−r2m)3]/[r4m(r2m−1)2]
and c2 = [(qa−qm)r4m−(q0−qm)(1−r2m)2]/[r4m(r2m−1)2].
The Alfvén velocity profile related to the density profile
is given by v2

A(r) = 1/ρ(r) and ρ(r) = 1/(1 + 3r2). The
following parameters are chosen to calculate the RSAE
mode structure: n = 4, R0/a = 5, qm = 1.91, q0 = 2.0,
qa = 3.5 and rm = 0.5.

The results for the two cases with and without the kink
term are shown in Fig.1. The 1D and 2D mode structures
in panels (c) and (d) of Fig.1 show that, for the case
without the kink term, a fine global RSAE mode can be
found. Whereas, for the case with the kink term, only
a rough global mode can be found, as shown by panels
(e) and (f) in Fig.1. So, the kink term is unfavorable
for the existence of RSAE, which is consistent with our
previous simple analytical model. Here, Qtor = 0.2578
for our numerical parameters. We note that, although
Qtor is larger than the analytical critical value 1/4, the
global RSAE mode still doesn’t exist well for Qnew = 0.
This is because the analytical critical value 1/4 is a crude
estimate.

Secondly, it would also be interesting to see whether
the pure toroidicity factor (i.e., Qf = Qpressure =
Qkinetic = ... = 0 but Qtor 6= 0) can trigger RSAE in
a global code. Our numerical calculations by the AMC
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FIG. 1: The q-profile is Eq.(10) and v2
A(r) = 1 + 3r2. Under these parameters, a fine global RSAE mode only exist when the

kink term is removed.

code show that it is possible although difficult.
The following q profile is chosen

q(r) =
qm

[1− (r − 0.5)2/w2
q ]
, (11)

with qm = 1.87 and wq = 2.5. The toroidal mode number
n = 10 is employed to make Qtor � Qcritical = 1/4.

Fig.2 shows the RSAE mode structures for the cases
with and without kink term. For both cases, a fine global

RSAE mode can be identified. And, the mode structures
for both cases are similar except a slight difference in fre-
quency. This indicates that the kink term mainly affects
whether the RSAE can exist, but barely affects the mode
structure with the existence of the RSAE. Since the terms
in Qeff are decoupled, Qnew can be used to mimic other
physics effects, such as Qf , Qkinetic, to excite RSAE. In
other words, we can suppress the kink term artificially
to excite the RSAE. However, this method is only useful
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FIG. 2: The q-profile is Eq.(11) and v2
A(r) = 1. A fine global RSAE mode exist for both cases with and without kink term.

for identifying the RSAE mode quickly.

A simulation verification is shown in Fig.3 using GTC
code[21], where the q profile is given by q = 1.948 −
0.31(ψ/ψw) + 0.31(ψ/ψw)2, with ψ the poloidal flux and
ψw = ψ(r = a) = 0.0105B0R

2
0, with B0 the magnetic

field at the magnetic axis. The corresponding a/R0 =
0.200. The parameters are similar to that in Fig.2 and
also yields Qtor � Qcritical = 1/4 for n = 10. Fig.3 shows
that a fine global RSAE mode can be found for both

cases. We have used the antenna to excite the eigenmode
in this simulation to overcome the continuous damping
and noise.

IV. SUMMARY AND DISCUSSION

In this study, we developed a fast eigenvalue code AMC
to study Alfvén eigenmodes and ideal MHD instabili-
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FIG. 3: GTC simulation of RSAE: (a) q(r) profile; (b & c) electrostatic potential φ on poloidal plane without and with kink
term. Parameters: n = 10, R0/a = 5.0, qmin = 1.87. Under these parameters, RSAE exists for both with and without parallel
equilibrium current cases.

ties in tokamaks. By using this code, we verified that
the equilibrium parallel current contribution Qnew, which
corresponding to the kink effect, is usually unfavorable
for the existence of RSAE. We show by both analytic
theory and numerical calculation that the artificial sup-
pression of the kink term in the simulation will help to
find RSAEs. In the ideal MHD and zero-pressure limit,
the main favorable term is the toroidicity term Qtor. Al-
though small, the toroidicity effect Qtor can also excite
RSAE under certain parameters. To remove the spuri-
ous imaginary frequencies from the ideal MHD modes,
we construct a self-adjoint operator for the MHD model
equation.
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APPENDIX A: THE OPERATOR L

A slight difference between Eqs.(3)-(5) and those in
Ref. [12, 14, 16] is that the Lm,m±1 term in this paper
is exactly self-adjoint[29] (all eigenvalues ω2 are real),
whereas the Lm,m±1 term in Ref. [12, 14, 16, 23] has
broken the self-adjointness of the ideal MHD equation to
the order of O(ε2). The break of the self-adjointness of
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the L operator will bring spurious imaginary parts to the
eigenvalues. A term (k2

m)′[25, 26] in Lm,m, coming from
the cancelation between the kink term and the field line
bending term, is also missed in Ref. [12, 14, 16], which
is important for low m modes (see below and Fig.4).

Several test runs for the stable AEs show that the
eigenvalues of the self-adjoint equation (3)-(5) are in-
deed all real numbers, and some small imaginary parts
(e.g., 10−6) originated from the discrete errors can be
suppressed by using larger Nr. Whereas, the numeri-
cal results using the non-self-adjoint equations in Refs.
[12, 14, 16, 23] will give artificial non-real eigenvalues.
The imaginary parts of those eigenvalues can be large to
10−2, which is consistent with the order of approxima-
tion, i.e., O(ε2). To avoid these non-real solutions, we re-
tain the self-adjointness of Eqs.(3)-(5), though the differ-
ence is merely in second order. When the self-adjointness
of L is satisfied, we find that a slight difference in the
second order term would not affect the results too much.
For example, solving the ideal MHD part of Eq.(35) in
Ref.[25], which is self-adjoint, will give results similar to
those from the AMC code in the zero-β limit. This indi-
cates that the second order approximation is adequate.
Fig.4 shows how the inaccurate expressions for L affect
the solutions, where a TAE case is solved and the pa-
rameters is taken from Ref.[26] (see Appendix C). Pan-
els (a) and (b) give all the solutions using the non-self-
adjoint Eq.(82) in Ref.[23] and the self-adjoint MHD part
of Eq.(35) in Ref.[25]. We can see that several artificial
imaginary frequencies will arise when the self-adjointness
is broken. Panels (c) and (d) show the effects of the (k2

m)′
term. When this term is missed, both the mode struc-
ture and eigen frequency will be affected. For example,
the dominant m = 1 mode is shifted outward and con-
cave in panel (c) at range 0 < r < 0.65 instead of the
bulging structure in panel (d) at range 0 < r < 0.57.

Note also that there exists a sign difference in the
definition of Lm,m±1 between Refs.[14] and [16]. This
barely affects the solutions, which is mainly because
that Lm,m+1 and Lm,m−1 are symmetric. However, one
should be careful that moving v2

A(r) out of the ∂r deriva-
tive as in Ref.[16, 21] will break the self-adjointness.

APPENDIX B: DISCRETIZEATION THE
SELF-ADJOINT L OPERATOR

The operator L̂ in an arbitrary second order ODE
L̂y ≡ a(x)y′′ + b(x)y′ + c(x)y = λy, where a, b and c
are real functions of x, is not always self-adjoint, i.e.,
the eigenvalues of the above equation are not always real
numbers. However, a self-adjoint Sturm-Liouville opera-
tor in the following form always give real eigenvalues

L̂ =
d

dx

[
f(x)

d

dx

]
+ g(x), (B1)

We can discrete this operator properly to an equivalent
matrix and to show that the corresponding matrix is self-

TABLE I: Eigenmode frequencies (normalized by ωA =
VA/R0 ) benchmark of AMC with KAEC and NOVA.

AMC KAEC NOVA -
GAE 1.3842 1.3843 - -
TAE 0.3107 0.302 0.3127 0.31 (Ref.[26])

Odd 0.4088 0.4086 0.4050 0.4095 (accu.)TAE
Even 0.3505 0.3523 0.3550 0.3477 (accu.)

adjoint (Hermitian). Then the linear ODE is transformed
to an eigenvalule problem AX = λBX in the matrix
form.

For simplicity, the finite difference approach is used
to discretize the Sturm-Liouville operator in the form of
Eq.(B1), i.e., L = fj(yj+1−2yj +yj−1)/∆x2 +f ′j(yj+1−
yj−1)/(2∆x) + gjyj . The corresponding finite difference
matrix is shown to be self-adjoint. Here, the matrix B
is unit matrix and can be ignored, whereas A is a real
tridiagonal matrix. That is, we need only to show that A
is symmetric, i.e, A = AT , or more explicitly, the matrix
elements Aj,j+1 = Aj+1,j , i.e.,

fj

∆x2
+

f ′j
2∆x

=
fj+1

∆x2
−
f ′j+1

2∆x
, (B2)

where the prime is the derivative. Eq.(B2) can be shown
to hold to O(∆x2). Therefore, the matrix A is self-
adjoint to O(∆x2).

Eq.(6) and the Lm,m operator in Eq.(4) are in the
Sturm-Liouville form and thus self-adjoint. The self-
adjointness of the operator Lm,m±1 in Eq.(5) can be
shown in a similar manner.

APPENDIX C: BENCHMARK OF THE AMC
CODE

Benchmark of the AMC code is given in this appendix.
Firstly, the global Alfvén eigenmode (GAE) in cylin-

der geometry is solved by the AMC code and the result is
compared to that from the KAEC code[10], with the den-
sity profile ρ = 1.0− 0.98(r/a)2, the safety factor profile
q = 1.001 + 2.0(r/a)2, zero-pressure, the toroidal mode
number n = 0 and the poloidal mode numberm = 2. The
eigenmode frequencies from these two codes agree with
each other, i.e., ωAMC

GAE = 1.3842 and ωKAEC
GAE = 1.3843[10].

Their mode structures are also similar to each other.
Secondly, the TAE result in Ref.[26] is compared to

that from the AMC code. The profiles and parameters
are: q = 1.0 + 1.0(r/a)2, ρ = 1.0, n=1 and R0/a =
4. The eigenmode frequencies in Ref.[26], and calculated
by NOVA, KAEC and AMC are shown in Table I. The
radial mode structures [Fig.4(d)] from these codes are
also similar. As mentioned, we also find that the (k2

m)′
term we add back in Lm,m is important to this low m
mode. Otherwise, the frequency and mode structure will
not match this well [Fig.4(c)].
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FIG. 4: The effects of the non-self-adjoint L for n = 1 TAE mode. Eigen frequencies from (a) the non-self-adjoint Eq.(82) in
Ref.[23] and (b) the self-adjoint Eq.(35) in Ref.[25]. Panels (c) and (d) show the radial mode structures and frequency for cases
without (Ref.[12, 14, 16]) and with (this paper) (k2

m)′ correction.

We give a further comparison of the odd and even
TAEs[28]. The profiles and parameters are: q = 1.35 +
1.2(r/a)2, ρ = 1/[1 + 2.0(r/a)2], n=1 and R0/a = 4.
The odd and even continuum accumulating points (accu.)
and eigenmode frequencies calculated by NOVA, KAEC
and AMC are also shown in Table I. They are consis-
tent with each other. The continuum spectrum and
mode structure calculated by AMC is shown in Fig. 5.
From Table I and panel (b) in Fig. 5, we find that the
odd eigenmode frequency is slightly below the continuum
spectrum and the even eigenmode frequency is slightly

above the continuum spectrum, as expected. The 2D
(r, θ) contours in panels (d) and (f) show the ballooning
and anti-ballooning structures of even and odd TAEs.

Finally, we have also compared the ideal MHD RSAE
results with KAEC in Refs. [10] and [15], and GTC and
HMGC in Ref.[20]. Similar mode frequencies and mode
structures are obtained, despite some minor differences.
In addition, the AMC code has also been successfully ap-
plied to the HL-2A experiment for the Alfvén modes[30].
Extending AMC to study the kinetic and collisional ef-
fects (e.g., tearing mode) is also under consideration.
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